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Abstract.  This paper examines whether the ―effective period‖ of bilinear isolation systems, as defined 
invariably in most current design codes, expresses in reality the period of vibration that appears in the 
horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds 
with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear 
isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet 
analysis together with a powerful time domain identification method for linear systems known as the 
Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory 
trace with a narrow frequency band as in the case of free vibration or forced vibration response from most 
pulselike excitations, the paper shows that the ―effective period‖ = Teff of the bilinear isolation system is a 
dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the 
bilinear system = T2 is an even better approximation regardless the value of the dimensionless strength, 
Q/(K2 uy) = 1/α – 1, of the system. As the frequency content of the excitation widens and the intensity of the 
acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period 
of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several 
earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the 
expectation of the design codes to identify a ―linear‖ vibration period has a marginal engineering merit. 
 

Keywords:  seismic isolation; equivalent linearization; bilinear behavior; system identification; health 

monitoring; earthquake protection 

 
 
1. Introduction 
 

Starting in the late 1950s researchers began recognizing the importance of studying the 

response of structures deforming into their inelastic range and this led to the development of the 

inelastic response spectrum. In parallel with the development of inelastic response spectra in the 

1960s (Veletsos and Newmark 1960, Veletsos et al. 1969, Veletsos and Vann 1971), there has been 

significant effort in developing equivalent linearization techniques (Caughey 1960, 1963, Roberts 

and Spanos 2003, Crandall 2006) in order to define equivalent linear parameters (natural periods 

and damping ratios) of equivalent linear systems that exhibit comparable response values to those 

of the nonlinear systems (Iwan and Gates 1979, Iwan 1980). 
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In the mid 1970s seismic base isolation has emerged as a practical and economical alternative 

to conventional structural design (Kelly et al. 1977, Kelly 1986, Buckle and Mayes 1990). Given 

that the two most practical and widely accepted type of isolation bearings are the lead rubber 

bearing and the spherical sliding bearing which both exhibit a bilinear behavior, the bilinear 

hysteretic system is by now the most widely used model in describing the nonlinear behavior of 

practical seismic isolated systems. Despite that the behavior of the most practical seismic isolation 

systems is bilinear, the fundamental concept of seismic isolation, as expressed in most current 

design codes (AASHTO 1991, NZMWD 1983, FEMA 1998, Eurocode 2009 among others), is that 

an isolation system shall offer a flexible support so that the period of vibration is lengthen 

sufficiently to reduce the force response. Accordingly, while the behavior of the most practical 

isolation systems is bilinear, all design codes invariably ask the design engineer to work with a 

vibration period –that is the ―isolation‖ period. In view of this demand the concept of equivalent 

linear parameters has become central in the analysis and design of seismic isolated structures and 

this led to the wide acceptance of the ―effective period‖ and the associated ―effective stiffness‖. 

The main scope of this work is to access the engineering merit of these quantities. 

This work has been mainly motivated from system identification studies on seismic isolated 

structures in which modal periods and damping ratios are expected to be extracted from recorded 

response histories above and below isolators. This work shows that there are appreciable 

differences between the first modal period extracted with identification techniques and the 

―effective period‖ which according to the design codes is expected to be the ―period of vibration‖. 

During the effort to uncover these differences this work also concludes that when the response 

history of the bilinear system has a coherent oscillatory trace with a narrow frequency band, the 

effective period, Teff as derived from the non-existing effective stiffness, Keff ,of the bilinear system 

(in which iterations are needed to be determined) is a dependable estimate of its vibration period; 

nevertheless, the period associated with the second slope of the bilinear system = T2 is an even 

better approximation of the vibration period regardless the value of the dimensionless strength, 

Q/(K2 uy) = 1/α – 1. Accordingly, whenever the concept of a vibration period is meaningful, the 

effective period, Teff can be replaced with T2 which is known a priori. 

Initially, the ―effective stiffness‖ = Keff, was introduced by practicing engineers in an effort to 

reach an estimate for the peak forces that develop in seismic isolated structures with bilinear 

(inelastic) behavior by simply employing a statically equivalent linear analysis. At present, Keff, 

together with the corresponding effective period, Teff and the associated effective damping 

coefficient, ξeff, consist the most widely used quantities for estimating through an iterative 

procedure peak inelastic displacements and the associated peak shear forces/overturning moments 

according to most current design codes (AASHTO 1991, FEMA 1998, Eurocode 2009 among 

others). 

The main challenges that Teff is facing are: (a) that it depends on the unknown peak inelastic 

displacement; and therefore, iterations on the design spectrum are required to reach convergence, 

(b) in seismic isolation applications it has not been established to what extent the effective period, 

effeff KmT /2 , (what appears in the horizontal axis of the design spectrum) is indeed the 

vibration period (the time needed to complete one cycle) of a mass, m, supported on a system with 

bilinear behavior (mass isolated on lead rubber or spherical sliding bearings) and (c) that in several 

occasions there are significant departures of the peak inelastic deformation/force of the bilinear 

system from the elastic displacement/force of the ―effective‖ linear system. 

The concerns with challenge (b) have been expressed indirectly in several review-type 
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publications and textbooks (Naeim 2001, Naeim and Kelly 1999) where, while they introduce, 

effeff KmT /2  as the ―vibration period‖ of a structure isolated on bearings with bilinear 

behavior (T1 = Teff — what appears in the horizontal axis of the spectrum); for the case of spherical 

sliding bearings (where the first slope is 200 to 500 times larger than the second slope—a much 

more aggressive bilinear behavior), the concept of the effective period, effeff KmT /2  is 

suddenly abandoned, and the isolation period (vibration period), is derived from the second slope 

of the system, gRTTI /22  . Fig. 1 (left) plots typical bilinear force displacement loops 

that correspond to a lead rubber bearing (say strength Q = 0.05 mg, period that corresponds to the 

second slope, K2, is 2.5 sec, and K1 / K2 = 1 / α = 10); while Fig. 1 (right) plots the corresponding 

force displacement loops from a spherical sliding bearing (TI = 2.5s → R = 1.55 m, uy = 0.00025 m 

and coefficient of friction f = 0.05; therefore K1 / K2 = 1/α = 1 + fR / uy = 311). 

The above inconsistency, where the entire concept of the effective period is abandoned in the 

very case where the bilinear behavior is most pronounced (large difference between K1 and K2) 

remains confusing to the non-expert and most importantly uncovers potential technical weaknesses 

in the concept of the ―effective period‖, Teff. This paper revisits the practical significance and 

engineering merit of the ―effective period‖, Teff, while investigates to what extent it expresses the 

oscillatory characteristics of an isolated structure. In this regard, the dynamic response of several 

bilinear hysteretic systems (with different normalized strengths and second slopes) is investigated 

for three types of excitation: free vibration, pulse-type forced vibration and earthquake forced 

vibration. The investigation methods include: similitude, Fourier spectrum response analysis, 

wavelet response analysis and the Prediction Error Method response analysis. 

 

 
2. Review of design codes and related past publications 
 

The currently available design specifications AASHTO (1991), FEMA (1998), IBC (2000), 

Eurocode (2009) among others use invariably the equivalent linear static procedure. Details on the 

specific steps followed by the most widely accepted codes can be found in Mayes et al. (1991), 

Hwang and Sheng (1993, 1994) as well as and in the original documents of the abovementioned 

design specifications. Below we only revisit the main steps followed by the 1991 AASHTO Guide 

Specification for Seismic Isolation Design given that all subsequent design specifications follow a 

similar approach. 

 
2.1 The AASHTO guide specifications 
 

The code specifications that established the quantity, Keff, of the bilinear system shown in Fig. 1 

as a key quantity for the response analysis of seismically isolated structures is apparently the 1991 

AASHTO Guide Specifications for Seismic Isolation Design. At that time the code did not make a 

distinction between the Design Base Earthquake (DBE) and the Maximum Credible Earthquake 

(MCE) and merely offers the design spectrum presented in Fig. 2. According to the AASHTO 

Guide specification the statically equivalent seismic force is given by 

 ieff dKF                                (1) 

where ΣKeff is the sum of the effective linear stiffnesses of all bearings supporting the 
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Fig. 1 The hysteretic loops of lead rubber bearings (left, say uy = 2 cm = 20 mm) and spherical-sliding 

bearings (right, say uy = 0.25 mm) together with the inconsistent code definition of the isolation 

period, TI, as the yield displacement decreases (Keff is abandoned in the right plot) 
 

 
Fig. 2 The AASHTO Acceleration spectrum 

 

 
superstructure and di is the displacement across the isolation bearings given by 
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where A, Si and B are the acceleration, site and damping coefficients offered in the AASHTO 

Guide specifications and the effective period, Teff is given by 
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The effective linear stiffness Keff of the isolators used in the analysis shall be calculated at the 

design displacement, however iterations on the design spectrum are needed given that the effective 

period Teff as offered by Eq. (3) updates the maximum displacement as defined by Eq. (2). 

The conceptual weakness of the Statically Equivalent Seismic Force Procedure offered by Eqs. 

(1)-(3) is that while its ultimate goal is to reach an estimate for the peak design ―static‖ forces, the 

estimation of the isolators displacement di = SD involves the effective period, Teff given by Eq. (3). 

By involving the effective period, Teff, the ―static‖ procedure also takes a stand on the oscillatory 

character of the bilinear system; and the effective period, Teff, which originates from the 

non-existing, Keff, is silently upgraded with unsubstantiated liberty to a real physical quantity–that 

is the time needed for the isolated structure to complete one cycle of vibration. This technically 

weak concept is rooted to such an extent in the profession that several documents show values of 

Teff with superficial precision up to two decimal digits. Part of the motivation of this study is to 

investigate to what extent the effective period, Teff, may express the oscillatory response of a 

system with bilinear behavior. 

 

 

2.2 Simple geometric relations 
 

With reference to Fig. 1 (left) one can derive via the use of similar triangles a relation between 

the effective stiffness, Keff and the first slope of the bilinear model, K1. 



 )1(1
1


 KKeff                              (4) 

and in terms of periods Eq. (4) gives 

)1(1 





Ieff TT                             (5) 

In the above equations, μ = umax / uy is the displacement ductility and α = K2 / K1 is the 

second-to-the-first stiffness ratio. Eqs. (4) and (5) are well known in the literature (Hwang and 

Sheng (1993, 1994) and references reported therein). They are popular geometric relations which 

are valid for any value of the parameters K1, α and μ. Nevertheless, while the expression given by 

Eq. (5) is geometrically correct, its physical value remains feeble since there is no physical 

argument that associates the results of Eq. (5) with the vibration period of mass supported on a 

bilinear hysteretic system. 

Fig. 3 plots with a solid line the values of the period shift, Teff / T1, as given by Eq. (5) as a 

function of the displacement ductility μ. The top-left plot of Fig. 3 is for values of α = K2 / K1 = 

0.15 ≈ 1/6.5, which is the value of α recommended by the New Zealand Ministry of Works and 

Development (NZMWD 1983) for lead rubber bearings. Fig. 3 (bottom-left) plots the results of Eq. 

(5) for the widely used value of α = 0.05 (Hwang and Sheng 1993, 1994); while, Fig. 3 (right) 

plots the results of Eq. (5) when spherical sliding bearings are used. With reference to Fig. 1, K1 = 

(Q + K2uy) / uy and therefore 
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Fig. 3 Values of the period shift, Teff / TI, as a function of the displacement ductility μ = umax / uy as they result 

from similar triangles and other approximate expression presented in the literature 

 

 
For a typical spherical sliding bearing Q/m = 0.05 g, uy = 0.25 mm = 0.00025 m (Mokha et al. 

1990, Constantinou et al. 1990), sgRT 5.2/22   , Eq. (6) yields a value of α = 0.0032. In the 

interest of completeness Table 1 offers the values of α = K2 / K1 for the typical values of strength, 

Q/m, second period, T2, and values of yield displacement uy ranging from spherical sliding 

bearings to lead rubber bearings. Fig. 3 shows that regardless of the value of, α = K2 / K1, the 

period shift, Teff / T1, eventually tends asymptotically to the value /1/ 12 TT  as the value of 

the ductility μ increases. This asymptotic trend in association that in spherical sliding bearings 

(SSB) the ductility μ is very large was probably the reason that several review type publications 

and textbooks (Naeim 2001, Naeim and Kelly 1999) abandoned the concept of the effective period, 

effeff KmT /2  and they introduce, to the surprise of the non-expert, that for SSB, 

gRTTI /22   – not Teff. Assuming a common inelastic displacement, umax, for lead rubber 

and spherical sliding bearings, Fig. 3 shows that the effective period Teff as offered by Eq. (5) 

approaches the value of T2 in a comparable way (when we look to the corresponding values of 

ductilities for LRB and SSB). Accordingly the question that rises is whether T2 may also replace 
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Table 1 Values of α = K2 / K1 for typical values of isolation strength, Q/m and yield displacement, uy 

 

α = K2 / K1

 

Q/m = 0.03 g
 

Q/m = 0.05 g
 

Q/m = 0.07 g
 

uy (cm) uy (cm) uy (cm)  

T2 (s)
 

0.025 0.5 1.0 2.0 0.025 0.5 1.0 2.0 0.025 0.5 1.0 2.0 

2.0 0.0083 0.1435 0.2509 0.4012 0.0050 0.0913 0.1674 0.2867 0.0036 0.0670 0.1256 0.2231 

2.5 0.0053 0.0968 0.1766 0.3001 0.0032 0.0604 0.1140 0.2046 0.0023 0.0439 0.0842 0.1552 

3.0 0.0037 0.0693 0.1296 0.2295 0.0022 0.0428 0.0820 0.1516 0.0016 0.0309 0.0600 0.1132 

3.5 0.0027 0.0519 0.0986 0.1795 0.0016 0.0318 0.0616 0.1160 0.0012 0.0229 0.0448 0.0857 

 

 
Teff in the case of lead rubber bearings as well. Part of the scope of this paper is to offer an answer 

to this question. 

Returning now to Eq. (4), the reader recognizes that as the yield displacement decreases, Eq. 

(4) combines very large (K1 and μ) and very small (α) numbers. At the limiting case of a spherical 

sliding bearing, the first stiffness  yuQK1 – that is the elasticity of the teflon layer of the 

articulated slider before sliding occurs, is a very large quantity and totally indifferent to the design 

engineer while the corresponding value of α = K2 / K1 is a very small number as shown in Table 1. 

Accordingly, the reader shall recognize that as the value of the ductility, yuumax , of the 

bilinear system increases, Eqs. (4) and (5) while they remain correct as geometric relations, their 

engineering value becomes marginal. What is much more interesting is to multiply and divide Eq. 

(4) by the second slope of the system, K2; therefore, relating Keff and K2 via the equation 



 )1(1
2


 KKeff                             (7) 

In terms of periods Eq. (7) becomes 

)1(1
2







TTeff                             (8) 

In studying the response of isolated structures, the displacement ductility yuumax  may 

vary either because the maximum displacement, umax, increases or because the yield displacement 

decreases when shifting from lead rubber bearings to spherical sliding bearings and in this case the 

ratio α = K2 / K1 varies as well. Accordingly, the behavior of Eq. (8) as the value of the ductility 

increases depends on the values that the product αμ assumes (not just the values of μ). Therefore, it 

is worth investigating the behavior of the product αμ as μ increases. 

With reference to Fig. 1, K1uy = Q + K2uy; therefore 

yy uKQu
K

2
2 


                              (9) 

Dividing Eq. (9) by the elastic force that develops in the isolation system = K2umax, it yields 
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Eq. (11) shows that for large values of the displacement ductility, yuumax , the term, αμ, 

becomes a constant equal to the ratio of the elastic forces that develop in the isolation system, 

K2umax, to the strength of the isolation system, Q. Accordingly, for large values of μ and after 

taking that 1 – α ≈ 1 Eq. (8) gives 
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when 1max2 uKQ , Eq. (11) can be expanded into a Taylor series, 
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In the event that one insists on using the concept of the effective period, Teff, Eq. (12) (or Eq. 

(15)) has much more physical meaning than Eq. (5) (or Eq. (10)) since the displacement ductility, 

μ, is a quantity of marginal interest in seismic isolation. 

Given the introduction of the effective stiffness maxmax uFKeff  by the aforementioned 

design codes, the main motivation of this paper is to examine to what extent Eq. (5) (or Eq. (10)) 

which is a geometric relation that has been derived solely from similar triangles reflects indeed a 

physical reality – that is whether it expresses to a satisfactorily extent the oscillatory character of a 

bilinear system. 

 

2.3 The work of Iwan and Gates (1979) and Iwan (1980) 
 

Early theoretical work of the effective period and damping of stiffness-degrading structures 

was presented by Iwan and Gates (1979). The hysteretic model examined by Iwan and Gates 

(1979) is a collection of linear elastic and Coulomb slip elements which can approximate the 

phenomenon of cracking, yielding and crushing. A special case of their hysteretic model is the 

bilinear model that is of interest in this study. What is important to emphasize is that the Iwan and 

Gates (1979) study was motivated by the yielding response of traditional concrete and steel 

structures where the initial elastic stiffness, K1, is a dominant parameter of the model; while, the 

displacement ductility assumes single digit values (say μ ≤ 8). Iwan and Gates (1979) observed 

that the average inelastic response spectra resemble the linear response spectra except for a 

translation along an axis of constant spectral displacement. The above observation was a major 

contribution at that time for it indicates that the effective period of each corresponding linear 
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system would be of some constant multiple of the first period of the hysteretic system. 

Ieff CTT                                  (14) 

Eq. (14) is similar to Eq. (5); however, in the work of Iwan and Gates (1979) the constant, C, 

appearing in Eq. (14) is not an outcome from similar triangles (which result by assuming that Keff 

is the slope of the line that connects the axis origin with the point on the backbone curve where we 

anticipate the maximum displacement to occur), but is the outcome from minimizing the root 

mean square (RMS) of the difference between the spectral displacements of a bilinear system and 

a family of potentially equivalent linear systems. 

In a subsequent publication (Iwan (1980)), the period shift, Teff / T1, was graphed as a function 

of the ductility, μ. The least square log-log fit of these data resulted for a bilinear system with, α = 

K2 / K1 = 0.05, the following expression 

8,])1(121.01[ 939.0   Ieff TT                      (15) 

It is worth mentioning that the work of Iwan and Gates (1979) and Iwan (1980) examined 

bilinear systems which exhibit values of displacement ductility up to μ = 8. 

Fig. 3 (bottom-left) plots with a heavy solid line the values of the period shift, Teff / T1, as 

offered by Eq. (15) for α = 0.05 and up to values of ductility, μ = 8. These values are compared 

with the results from AASHTO (1991) geometric relation given by Eq. (5). As indicated earlier, 

the minimization procedure presented by Iwan and Gates (1979) and Iwan (1980) results an 

appreciably smaller period shift, Teff / T1, that what is predicted by the geometric relation given by 

Eq. (5). 

 
2.4 The work of Hwang and Shang (1993, 1994) and Hwang and Chiou (1996) 
 

While the work of Iwan and Gates (1979) investigated the effective period and damping of a 

bilinear system that approximates the nonlinear behavior of traditional concrete and steel 

structures (moderate values of the displacement ductility, μ < 8); Hwang and Sheng (1993, 1994) 

investigated the effective period of the bilinear system that approximates the nonlinear behavior of 

lead rubber isolation bearings where the displacement ductility can reach the value of μ = 25or 

greater. 

Initially, Hwang and Sheng (1993, 1994) argued that the effective stiffness and the associated 

effective period of the bilinear system as suggested by the 1991 AASHTO Guide Specifications for 

seismic isolation (Eq. (5)) is an unrealistic representation of what happens in reality and suggested 

the following expression for the effective period for all practical values of α = K2 / K1 

Ieff TT ]})1(13.01ln[1{ 137.1                        (16) 

The predictions of Eq. (16) which was presented later as the Caltrans Method (Hwang and 

Chiou 1996) are also shown in Fig. 3 (top-left) with a thin solid line. 

Eq. (16) as well as any empirical equation that attempts to offer an estimate on the effective 

period Teff shall also satisfy the constraint – that the proposed period Teff shall always be less than 

or equal to the period T2 which corresponds to the second slope of the bilinear system. 

Accordingly, 
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Fig. 3 (top-left) shows that for α = K2 / K1 = 0.15 Eq. (16) proposed by Hwang and Sheng (1993, 

1994) violates the physical constraint given by Eq. (17) for values μ > 20; whereas, Fig. 3 

(bottom-left) shows that for α = K2 / K1 = 0.05 Eq. (16) offers an isolation period that is even 

shorter than the isolation period which results from the geometric relation given by Eq. (5) adopted 

by AASHTO 1991. 

In a subsequent publication, Hwang and Chiou (1996) proposed a refined model for lead rubber 

bearings where the effective period is offered by the following equation 

12

1
737.01

)1(1
TTeff 








 












                     (18) 

Eq. (18) is merely the geometric relation adopted by AASHTO (1991) given by Eq. (5) 

modified by the multiplication factor 1 – 0.737(μ – 1)/μ2. The predictions of Eq. (18) (dashed line) 

are also offered in Fig. 3 (left) which is relevant to lead rubber bearings. Note that the predictions 

of Eq. (18) follow very closely the geometric relation adopted by AASHTO (1991), revealing that 

the multiplication factor 1 – 0.737(μ – 1)/μ2 has a minor effect. The proximity of Eq. (18) that was 

finally proposed by Hwang and Chiou (1996) to the predictions of Eq. (5) adopted by AASHTO 

(1991) leaves the reader perplexed given the initial comments of Hwang and Sheng (1993, 1994) 

that the effective period of the bilinear system as suggested by the 1991 AASHTO Guide 

Specifications is an unrealistic representation of what happens in reality. 

 

 
3. The relative importance of the parameters of the bilinear model associated with 

the behavior of seismic isolation bearings 
 

Before proceeding with the evaluation of the engineering merit of the ―effective period‖ of the 

bilinear system, in this section we discuss the relative significance of the parameters of the bilinear 

system. With reference to Fig. 1 (left) the bilinear model is fully described with any three of the 

five parameters shown in Fig. 1, which are the strength, Q, the initial stiffness, K1, the yield force, 

Fy, the yield displacement, uy, and the second stiffness, K2. 

The main difference between the behavior of bilinear isolation bearings and the behavior of 

traditional steel and reinforced concrete structures which also exhibit a bilinear behavior is in the 

values of strength and peak inelastic deformation. Isolation bearings have intentionally lower 

strength (say 0.03 ≤ Q /mg ≤ 0.09); and therefore, experience large values of inelastic 

displacements. Accordingly, the behavior of bilinear isolation bearings is primarily controlled by 

the strength, Q, and the second stiffness, K2; while, the yield displacement, uy, and the associated 

first stiffness, K1 have marginal significance. The marginal significance of the yield displacement, 

uy, in the peak response of a bilinear isolation system has been shown in the past via parametric 

studies (Makris and Chang (2000)) and subsequently through formal dimensional analysis (Makris 

and Black (2004), Makris and Vassiliou (2011)). Given the marginal significance of the yield 

displacement, uy, the displacement ductility μ = umaxuy is also of marginal interest in seismic 

isolation and should be avoided as a dimensionless quantity (see Eq. (12) or (13)). 
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Now while the design codes on seismic isolation do not state explicitly the marginal 

significance of the first stiffness, K1, the iterative procedure proposed by the design codes 

introduced in the previous section to converge on the effective stiffness, Keff, involves only the 

strength, Q , and the second stiffness, K2 (the first stiffness, K1, and the yield displacement, uy, are 

immaterial in estimating umax). Accordingly, the behavior of the bilinear model is described in a 

robust way by the controlling parameters, Q  and K2 together with one of the marginal parameters 

K1, uy or Fy. In this study, for the third parameter we select uy. Its value ranges from 0.25 mm 

(spherical sliding bearing, Mokha et al. (1990)) up to 2 cm or even higher (for lead rubber 

bearings). 

 

 
4. Free-vibration period of a bilinear system 

 
Our evaluation on the engineering merit of the effective period, Teff, commences with the 

free-vibration response analysis of a mass m supported on a mechanical system with bilinear 

behavior. Given that the bilinear behavior is fully described by the normalized strength, Q /m, the 

normalized second stiffness K2/m and the yield displacement, uy, the free vibration period – that is 

the isolation period, TI is a function of 
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fT yI

2,,                             (19) 

The four variables appearing in Eq. (19) ][TTI  , 2[][[  TLmQ ][Lu y  , 
2

2 ][  TmK involve only two reference dimensions; that of length [L] and time [T]. According to 

Buckingham‘s Π-theorem, the number of independent dimensionless products that describe the 

problem is the number of total physical variables = 4 minus the number of reference dimensions = 

2. Therefore, the number of dimensionless products that describe the problem is 4 – 2 = 2. Since 

the repeating variables need to have independent dimensions, the choice for the repeating variable 

is the period associated with the second slope; ][2 22 TKmT   and the yield displacement 

uy= [L]. Consequently, the two dimensionless products are  22 2 KmTTTIT   and 

)()()1()( 22 yyQ uKQKmumQ  . With the two dimensionless Π-products established 

Eq. (19) reduces to 
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Eq. (20) indicates that the free-vibration period of the bilinear system is equal to the period 

associated with the second slope, 22 2 KmT  , while being modified by some function 

φ(Q/(K2uy)). In order to find the expression of the function φ(Q/(K2uy)) we conduct a series of 

numerical runs to compute the free-vibration response of the bilinear system. A rigid mass 

supported on bilinear bearings with second slope K2 is set away from equilibrium at a given initial 

displacement (say u0 = 20 cm, 30 cm and 40 cm) and zero initial velocity and is let free to undergo 

free vibration. 
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Fig. 4 Selective force-displacement loops from the free vibration response of bilinear isolation systems (T2 = 

2.5s) and the associated Fourier spectra 
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4.1 Fourier analysis 
 

In our investigation only runs where a full cycle or more was completed were retained and the 

free-vibration period was defined as the period where the peak value in the Fourier spectrum 

happens. Fig. 4 shows selective force displacement loops of the bilinear system under free 

vibration response together with the corresponding Fourier spectra. The vibration period of the 

system, TI, is extracted at the period where the maximum of the Fourier spectrum happens. Fig. 5 

(left) plots the computed isolation period, TI, normalized to the period associated with the second 

slope, 22 KmTI  , as a function of the dimensionless product ПQ = Q/(K2 uy) = K1 / K2 – 1 = 1 

/ α – 1. Regression analysis from all the data yields a mean value for TI / T2 = 0.99, indicating that 

the function φ(Q/(K2uy)) appearing in Eq. (19) is merely a constant with value, φ = 0.99 ≈ 1. The 

remarkable finding from this analysis is that the vibration period of a bilinear isolation system is 

precisely the period associated with the second slope = T2. Furthermore, the standard deviation of 

the computed values from the mean value TI / T2 = 0.99 is very small, SD = 0.045, showing that the 

computed data are strongly correlated with the vibration period T2. Fig. 5 (right) plots the 

computed isolation period, TI, from the Fourier analysis normalized to the effective period, Teff. In 

this calculation the effective stiffness, Keff = Fmax / u0 was computed as the ratio of the peak force 

Fmax, that develops at the peak initial displacement, u0, prior to the initiation of the motion which is 

a calculation that selects the longest possible Teff. The regression analysis from all data yields a 

mean value for TI / Teff = 1.06, and a very small standard deviation, SD = 0.053, indicating that Teff 

is a dependable approximation of the vibration period of the bilinear system; nevertheless, the 

period associated with the second slope, T2 is an even better approximation (see Fig. 5 left). 

 
4.2 Wavelet analysis 
 

The result offered by Fig. 5 – that the free-vibration period of the bilinear system is essentially 

free-vibration response histories with wavelet analysis. Over the last two decades, wavelet the 

 

 

  

Fig. 5 Values of the vibration period of bilinear isolation systems during free vibrations extracted with 

Fourier analysis 
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period associated strictly with the second slope, is further confirmed by analyzing the transform 

analysis has emerged as a unique new time-frequency decomposition tool for signal processing 

and data analysis. There is a wide literature available regarding its mathematical foundation and its 

applications (Mallat 1999, Addison 2002 and references reported therein). Wavelets are simple 

wavelike functions localized on the time axis. For instance, the second derivative of the Gaussian 

distribution, 2/2te , known in seismology literature as the symmetric Ricker wavelet (Ricker 1943, 

1944 and widely referred as the ―Mexican Hat‖ wavelet, Addison 2002) 

2/2 2

)1()( tett                              (21) 

is a widely used wavelet. Similarly the time derivative of Eq. (21) or a one cycle cosine function 

are also wavelets. A comparison on the performance of various symmetric and antisymmetric 

wavelet to fit acceleration records is offered in Vassiliou and Makris (2011). In order for a 

wavelike function to be classified as a wavelet, the wavelike function must have: (a) finite energy 






 dttE
2

)(                             (22) 

and (b) a zero mean. In this work we are merely interested to achieve a local matching of the 

response history of a bilinear system with a wavelet that will offer the best estimates of period, TI. 

Accordingly, we perform a series of inner products (convolutions) of the acceleration response 

history of the bilinear system, )(tu  with the wavelet )(t by manipulating the wavelet through a 

process of translation (i.e., movement along the time axis) and a process of dilation-contraction 

(i.e., spreading out or squeezing of the wavelet) 













 
 dt

s

t
tuswsC


 )()(),(                         (23) 

The values of s = S and ξ = Ξ for which the coefficient, C(s, ξ) becomes maximum offer the 

scale and location of the wavelet )()( stsw   that locally matches best the free-vibration 

response history, )(tu . Eq. (23) is the definition of the wavelet transform. The quantity w(s) 

outside the integral in Eq. (23) is a weighting function. Typically, w(s) is set equal to s1  in 

order to ensure that all daughter wavelets )()()(, stswts      at every scale s have the 

same energy. The same energy requirement among all the daughter wavelets ψs,ξ(t) is the default 

setting in the MATLAB wavelet toolbox (2002) and what is used in this analysis. A detail analysis 

on the role of the weighting function in the definition of the wavelet transform is presented in 

Vassiliou and Makris (2011). Each set of plots in Fig. 6 show the best matching Ricker wavelet on 

selected free vibration responses of bilinear isolation systems (center); while, the associated 

scalogram (bottom) shows contours of the value of C(s, ξ) as defined by Eq. (23) for all locations, t, 

and all scales, ξ. The maximum value C(s, ξ) happens at the most bright location of the contour. 

Similar to Fig. 5 (left), Fig. 7(left) plots the computed isolation period TI normalized to the 

period associated with the second slope  22 KmTI  , as a function of the dimensionless 

product ПQ = Q / (K2uy) = K1 / K2 – 1 = 1 / α – 1 as extracted with wavelet analysis. In Fig. 7 the 

period of free vibration of the bilinear system has been extracted with the symmetric Ricker 
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Fig. 6 Matching the free vibration acceleration histories of bilinear systems (T2 = 2.5s) with symmetric 

Ricker wavelets together with the associated scalograms. In a symmetric Ricker wavelet the period T 

= π√2̄S , where S is the scale of the wavelet 
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Fig. 7 Values of the vibration period of bilinear isolation systems during free vibrations extracted with 

wavelet analysis 

 

 
wavelet. Regression analysis from the data yields a mean value for TI / T2 = 1.01 and a small 

standard deviation, SD = 0.044 which confirms in a decisive manner that the function φ appearing 

in Eq. (5) is a constant with φ = 1. Fig. 7 (right) shows that the regression analysis from all data 

yields a mean value for TI / Teff = 1.06 and a small standard deviation, SD = 0.027, indicating that 

Teff as results from Keff = Fmax / u0 is a good approximation of the vibration period of the bilinear 

system, nevertheless, the period associated with the second slope, T2 is an even better 

approximation. Consequently, the results presented in Figs. 5 and 7 suggest that as long as a 

bilinear system completes one cycle under free vibration the period that prevails during its free 

vibration is T2 – that is the period associated with the second slope K2; and this result is 

independent of the value of the dimensionless strength 112  yQ uKQ . 

 

 
5. Predominant period of a bilinear system under forced excitation 

 

5.1 Pulse excitation 
 

Our evaluation on the engineering merit of the effective period, Teff, proceeds with the forced 

vibration response analysis of the bilinear system which is first subjected to a pulse excitation. The 

motivation for first using pulse excitations is to deal initially with coherent excitations that contain 

only a narrow frequency band. As excitation pulse we select the symmetric Ricker acceleration 

pulse (Ricker 1943, 1944) 
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which is a popular wavelike function to approximate the coherent pulse that appears in several 

recorded near source ground motions (Garini et al. 2010, Vassiliou and Makris 2011). The right 
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hand side of Eq. (24) is merely the mother Ricker wavelet given by Eq. (21) which has been 

magnified with an acceleration amplitude ap dilated by a scale 22 pTs  and translated by Tp. 

The forced vibration response of the bilinear system is fully described by the three parameter 

mentioned before which describe its bilinear behavior–that is the normalized strength, mQ , the 

normalized second slope, 22 2 KmT  , and the yield displacement, uy; together with the two 

parameters that describe the pulse excitation–that is  the pulse acceleration, ap, and the pulse 

period, Tp. Accordingly, the period that dominates the forced vibration response of the bilinear 

system – that is the isolation period, TI, is a function of 









 ppyI TaTu

m

Q
fT ,,,, 2                           (25) 

The six variables appearing in Eq. (26) TI = [T], Q/m = [L][T]
-2

, uy = [L], 

][2 22 TKmT   , ap = [L][T]-2 and Tp = [T] involve again only two reference dimension that 

of length [L] and time [T]; therefore, the number of dimensionless products that describe the 

problem is 6-2=4. As in the previous sections the choice for the repeating variables is the period 

associated with the second slope, ][2 22 TKmT    and the yield displacement, uy = [L]. 

Based on this organization the dependent dimensionless product 

2T

T I
I                                  (26) 

is a function only of the independent dimensionless products 
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                                (27) 
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                                (29) 

While the first two dimensionless products ПQ and ПT have a clear engineering significance, the 

engineering significance of Пa is not clear. Nevertheless, the quantity, Пa / ПQ = 4π2map /
 Q which 

is the ratio of the inertia forces to the strength of the system has a clear engineering significance. 

Accordingly, the dimensionless product given by Eq. (29) is replaced with the dimensionless 

product 

Q

map

Q

a
aq 
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and Eq. (27) is reduced to 
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As in the free vibration case, Eq. (31) indicates that the period which prevails during force 

vibration–that is the isolation period is equal to the period associated with the second 

slope 22 2 KmT  , while being modified by some function  QmaTTuKQ ppy ,, 22 . 

The dynamic response of a mass, m, supported on isolation bearings with bilinear behavior as 

described in Fig. 1 is governed by 

)()()(
2

2 tutz
m

Q
tuu g

                          (32) 

where u(t) = relative to the ground displacement history, )(tug
 ground acceleration, Q/m = 

specific strength, ω2 = 2π/T2 and z(t) = hysteretic dimensionless quantity with 1)( tz  that is 

governed by 

0)()()()()()()(
1




tutztutztztutzu
nn

y
                  (33) 

The model given by Eqs. (32) and (33) is the Bouc-Wen model (Wen 1975, 1976) in which β, γ 

and n are dimensionless quantities that control the shape of the hysteretic loop. Fig. 8 plots with a 

solid line the acceleration responses above isolators of two different isolation systems subjected to 

a Ricker pulse excitation shown below. 

 
5.1.1 Wavelet analysis 

The identification of the vibration period of bilinear isolation systems subjected to pulse 

excitation is first achieved with the wavelet analysis introduced in the previous section. Fig. 8 

(left) plots with a dashed line the best matching wavelet (Vassiliou and Makris 2011) on the 

acceleration response history above isolators with bilinear behavior. A number of bilinear systems 

and Ricker pulse excitations have been selected to cover a wide range of the dimensionless 

products given by Eqs. (27), (28) and (30). Fig. 9 (left) plots the computed isolation period TI 

normalized to the period associated with the second period 22 2 KmT   as a function of the 

dimensionless products ПQ = Q/(K2 uy) = K1 / K2 – 1 = 1/α – 1 as extracted with wavelet analysis in 

which the daughter wavelet is the Mavroeidis and Papageorgiou (M&P) wavelet (Vassiliou and 

Makris 2011). Regression analysis from all data yields a mean value for TI / T2 = 1.05, indicating 

that the function  QmaTTuKQ ppy ,, 22  appearing in Eq. (19) is a constant with value φ = 

1.05. At the same time it shall be recognized that the standard deviation now is SD = 0.082 which 

is two times larger than the value of the standard deviation computed during the free vibration 

response (see Fig. 5 and 7). Fig. 9 (right) plots the computed vibration (isolation) period, TI, with 

wavelet analysis normalized to the effective period, Teff. In this calculation the effective stiffness, 

Keff = Fmax / umax was computed by finding the peak force developed at the peak inelastic 

displacement umax identified during the response history and regression analysis from all data 

yields a mean value for TI / Teff = 1.15 and a standard deviation SD = 0.076. Accordingly, this 

analysis shows that Teff as given by Eq. (5) is a dependable approximation of the vibration period 

of the bilinear system; nevertheless, the period associated with the second slope, T2, is an even 

better approximation. 
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Fig. 8 Matching the acceleration response histories above isolators with bilinear behavior with wavelet 

analysis (left) and the Prediction Error Method (right) which is applied only in the interval of the 

response history where the second slope, K2 is engaged ( 1)( tz ) 
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Fig. 9 Values of the vibration period of bilinear isolation systems identified during forced vibration 

(symmetric Ricker pulses) with wavelet analysis 
 

 

5.1.2 Time domain analysis 
Over the years, various powerful time domain methods have been developed and applied 

successfully. Perhaps, the most well known and powerful method in the system identification 

community is the Prediction Error Method (PEM). 

It initially emerged from the maximum likelihood framework of Aström and Bohlin (1965) and 

subsequently was widely accepted via the corresponding MATLAB (2002) identification toolbox 

developed following the theory advanced by Ljung (1987, 1994, 2002). Fig. 8 (right) shows the 

identification of the acceleration history above isolators of two bilinear isolation system with PEM 

when excited by the symmetric Ricker wavelets shown in the left of Fig. 8. The identification has 

been conducted only in the segment of the time history where the bearing deformation enters the 

second slope. 

The engagement of the second slope is monitored with the dimensionless internal variable z(t) 

which is governed by Eq. (33) and assumes the values (+1, –1) when the bearing displacement, 

u(t) > uy. The time histories of the z(t) are also shown in Fig. 8 (right). Fig. 10 (left) plots the 

computed vibration (isolation) period TI, with the prediction error method (PEM) normalized with 

the second period, T2. While there are several data on the TI / T2 = 1 line in particular for large 

values of ПQ, the data show a wider scattering than the data obtained with wavelet analysis (see 

Fig. 9) resulting a mean value for TI / T2 = 0.89 with a standard deviation SD = 0.160. Fig. 10 

(right) plots the computed vibration (isolation) period TI, with PEM normalized to the effective 

period, Teff. As in the wavelet analysis, in this calculation the effective stiffness Keff = Fmax / umax 

was computed by finding the peak force developed at the peak inelastic displacement umax 

identified during the response history and regression analysis from all data yields a mean value for 

TI / Teff = 0.97 and a standard deviation SD = 0.164. Accordingly, when the PEM is employed the 

period associated with Teff appears to be a better approximation. 

 
5.2 Earthquake excitation 
 

Our evaluation on the engineering merit of the effective period, Teff, continues with the forced  
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Fig. 10 Values of the vibration period of bilinear isolation systems during forced vibration (symmetric Ricker 

pulses) extracted with the Prediction Error Method (PEM) 
 

  

  

Fig. 11 Continued 
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Fig. 11 Matching the acceleration response histories above isolators with bilinear behavior with wavelet 

analysis (left) and the Prediction Error Method (right) which is applied only in the interval of the 

response history where the second slope, K2 is engaged ( 1)( tz ) 
 

 

vibration response analysis of the bilinear system when subjected to earthquake excitation. For 

the seismic response analysis we select six historic earthquake records listed in Table 2 which 

cover a wide range of spectral accelerations. 

Under earthquake excitation the period that dominates the forced vibration response of the 

bilinear system – that is the isolation period, TI, is a function of 

),,,( 2 parametersexcitationTu
m

Q
fT yI                     (34) 

identified during the response history and regression analysis from all data yields a mean value for 

TI / Teff = 0.97 and a standard deviation SD = 0.164. Accordingly, when the PEM is employed the 

period associated with Teff appears to be a better approximation. 

 
5.2 Earthquake excitation 
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Table 2 Earthquake records selected for this study 

Earthquake Record station Magnitude, Mw PGA(g) 

1979 Coyote Lake, CA Gilroy Array #6 230 5.7 0.43 

1979 Imperial Valley, CA El Centro Array #5 140 6.5 0.52 

1986 El Salvador Geot. Inv. Center 180 5.5 0.48 

1992 Erzincan, Turkey 95 Erzincan 6.9 0.52 

1992 Cape Mendocino, CA Cape Mendocino/000 7.2 1.49 

1995 Aigion, Greece OTE Building 6.2 0.54 

 

 

Our evaluation on the engineering merit of the effective period, Teff, continues with the forced 

vibration response analysis of the bilinear system when subjected to earthquake excitation. For the 

seismic response analysis we select six historic earthquake records listed in Table 2 which cover a 

wide range of spectral accelerations. 

Under earthquake excitation the period that dominates the forced vibration response of the 

bilinear system – that is the isolation period, TI, is a function of 

),,,( 2 parametersexcitationTu
m

Q
fT yI                     (34) 

In analogy to the dimensional analysis presented for the case of forced vibrations under pulse 

excitation (see Eq. (33)), Eq. (34) can be expressed in terms of dimensionless products 

)parameters excitation essdimensionl
uK

Q

T

T

y

I ,(
22

                (35) 

As in the case of pulse excitation, Eq. (35) indicates that the period which prevails during force 

vibration – that is the isolation period is equal to the period associated with the second 

slope 22 2 KmT  , while being modified by some function yuKQ 2( , essdimensionl  
)parameters excitation . 

The identification of the ―vibration‖ period of bilinear isolation systems subjected to 

earthquake excitation is first achieved with wavelet analysis. 

Fig. 11 (left) plots with a dashed line the best matching Mavroeidis and Papageorgiou (M&P) 

wavelet (Vassiliou and Makris 2011) on the acceleration response history of a bilinear system with 

strength Q/m = 0.03 g and period that corresponds to the second slope T2 = 3s when subjected to 

the El Centro Array#5 ground motion recorded during the 1979 Imperial Valley earthquake. A 

number of bilinear systems have been selected to cover a wide range of the dimensionless product 

ПQ = Q/K2 uy = 1 / α – 1 and values of yield strength Q/(mg) = 3%, 5%, 7% and 9%. Fig. 12 (left) 

plots the computed isolation period TI normalized to the period associated with the second slope 

22 2 KmT   as a function if the dimensionless product ПQ = 1 / a – 1 as extracted with 

wavelet analysis in which the daughter wavelet is the M&P wavelet (Vassiliou and Makris 2011). 

Fig. 12 (left) shows that the mean value of TI / T2 = 0.94 is close to unity; nevertheless, the 

scattering of the data from the mean value is now appreciable yielding a value for the standard 

deviation, SD = 0.310. 
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Fig. 12 Values of the vibration period of bilinear isolation systems identified during forced vibration 

(recorded earthquake motions) with wavelet analysis 
 

  

Fig. 13 Values of the vibration period of bilinear isolation systems identified during forced vibration 

(recorded earthquake motions) with the Prediction Error Method (PEM) 
 

 

Accordingly, there are several situations where the identification signals either from wavelet 

analysis or from the prediction error method (shown in Fig. 13) are incapable to yield a coherent 

vibration period. Fig. 12 (right) shows that when the computed isolation period, TI, is normalized 

with the effective period, Teff, the mean value is TI / Teff = 1.14 while the scattering is even larger 

than in Fig. 12 (left), yielding a standard deviation SD = 0.360. 

 
 
6. A matching index 

 

The forgoing analysis on the free vibration, forced vibration with a single-period mathematical 

pulses and forced vibration with recorded strong earthquake motions revealed that as the 
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frequency content of the excitation widens and the intensity of the excitation fluctuates the 

standard deviations of the predicted ―linear vibration period‖ of the bilinear system increases 

regardless whether this vibration period, TI, is approximated with either the effective period, 

 )(11 max22 uKQTTeff  or merely with the period associated with the second slope, TI, – 

which in general offers superior results. The wide scattering of some data points from the mean 

values of TI / T2 or TI / Teff in Figs. 9-13 is because in the corresponding response histories the 

nonlinearities associated with the bilinear behavior dominate the response; therefore, the concept 

of associating a ―vibration period‖ as required by the current design codes is meaningless. 

Interestingly, the scattering of data does not show any correlation with the normalized strength of 

the system. For instance, Fig. 11 (bottom-left) plots with dashed line the best matching M&P 

wavelet on the acceleration response history of a bilinear system with strength Q/mg = 0.03 and T2 

= 3s when subjected to the 1979 Coyote Lake, Gilroy Array #5 record; while Fig. 11 (right) plots 

with a dashed line the response of the best matching equivalent linear system, as identified with 

PEM during the time interval that the second slope of the bilinear system is engaged. With the 

wavelet identification TI = 2.0s (TI / T2= 0.66 and TI / Teff = 0.81) while with the PEM identification 

TI = 2.06s (TI / T2 = 0.69 and TI / Teff = 0.83). The ratios for TI / T2 or TI / Teff given above in 

association with the assessment after visual observation of the scattering of all data in Figs. 12 and 

13 suggest that the idea of associating a vibration period in several occasions should be abandoned. 

Consequently, we reach the conclusion that for bilinear isolation systems the ―period of vibration‖ 

as expressed in most current design codes (AASHTO (1991), NZMWD (1983), FEMA (1998), 

Eurocode (2009) among others) can be identified only for certain combination of bilinear systems 

and ground motions. There is a class of response histories above isolators that are not capable to 

reveal any ―vibration period‖. In this section we attempt to identify this class of response histories 

by proposing a matching index. 

The idea behind developing a dependable matching index is that the wavelet signal or the PEM 

signal that is derived from the identification algorithms introduced earlier need to match to a 

reasonable extent the acceleration history of the bilinear system (accelerations above isolators). 

Accordingly, we introduce a matching index rwav and a matching index rPEM as the ratio of the 

inner product of the best matching signal with the record normalized by the energy of the record 
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where ψ(t) is the best matching wavelet, a(t) is the acceleration history of the resulted PEM signal 

and )(tub
  is the acceleration history of the bilinear system above isolators. Clearly, both rwav and 

rPEM assume values between zero and one. Fig. 14 (top) plots the vibration periods of a wide range 

of bilinear systems identified during forced vibrations (pulse and earthquake excitations) with 

wavelet analysis (all data appearing in Figs. 9 and 12), where now they are plotted as a function of 

the matching index rwav defined by Eq. (36). Fig. 14 (top) reveals that regardless if the data are 

normalized with T2 or Teff their dispersion decreases as rwav increases. Fig. 14 (bottom) plots the 

standard deviation of the data shown in Fig. 14 (top) for any given value of rwav up to rwav = 1. For  
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Fig. 14 Top: Values of the vibration period of bilinear isolation systems identified during forced vibration 

(symmetric Ricker pulses and recorded ground motions) with wavelet analysis (all data shown in 

Figs. 9 and 12) plotted vs the matching index, rwav; Bottom: Vales of the standard deviation, SD(rwav) 

of the data shown above from any given value of rwav up to rwav = 1 
 

 

instance, the value of SD ≈ 0.15 shown for rwav = 0.3 is the standard deviation of all the data within 

0.3 ≤ rwav ≤ 1 (all points in the shaded region). Fig. 15 (top) plots the vibration periods of the 

bilinear systems identified during the forced vibration (pulse and earthquake excitation) with the 

prediction error method (all data appearing in Figs. 10 and 13), where now they are plotted as a 

function of the matching index rPEM defined by Eq. (36). Fig. 15 (bottom) plots the standard 

deviation of the data shown in Fig. 15 (top) from any given value of rPEM up to rPEM = 1. For 

instance, the value of SD = 0.15 shown for rPEM =0.4 is the standard deviation of all the data within 

the range 0.4 ≤ rPEM ≤ 1.0 (all points in the shaded region). Similar to Fig. 14, Fig. 15 reveals that 

regardless if the data are normalized with T2 or Teff their dispersion decreases as rPEM increases. 

Figs. 14 and 15 show that there are several response histories with rwav or rPEM – values as low 

as 0.3 or even less while, their corresponding ―vibration period‖ departs from the mean value to 

such an extent that creates disproportional growth in the standard deviation when rwav or rPEM 

approaches the axis origin. 
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Accordingly, there is a need to develop a procedure to separate the ―good‖ response histories 

where the concept of associating a ―vibration period‖ as required by the current design codes is 

meaningful. This separation is most useful in system identification studies which attempt to extract 

the isolation period of seismically isolated bridges from recorded signals above and below 

isolators. 

 

 

7. Selection of the “Good” response histories 
 

The final goal of this paper is to separate the response histories of bilinear systems where the 

concept of associating a ―vibration period‖ as required by the current design codes is meaningful; 

from the response histories where the concept of associating a vibration period is meaningless. 

This separation can be achieved if one observes the plots of the standard deviations, SD(rwav) and 

SD(rPEM), shown in Figs. 14 (bottom) and 15 (bottom) which exhibit a growing values of SD when 

rwav < 0.3 or when rPEM < 0.4. Our aim is to take the best elements offered by the wavelet analysis 

and by the Prediction Error Method (PEM). We return now to Fig. 11 (bottom) where the isolation 

system with Q/mg = 0.03 and T2 = 3s when excited by the 1979 Coyote Lake, Gilroy Array#6 

record experienced few and small displacements beyond the yield displacement uy (see the few and 

small plateaus in the z-history). In such situations the response history above isolators contains 

poor information regarding the isolation period, T2, associated with the second slope of the bilinear 

system. Accordingly, when evaluating a response history we need also to include a measure that 

indicates to what extent the second slope of the bilinear system was engaged. This need is served 

with the engagement ratio ΣNiplateau/ΣNi where Niplateau are the number of data points within 

the segment where 1)( tz and Ni are all the data points between the first and last yielding of the 

system during the excitation. 

Our selection process proceed by taking only the data in Fig. 14 with rwav > 0.3 or the data in 

Fig. 15 with rPEM > 0.4 and re-evaluate them by computing an improved matching index which 

incorporates the engagement ratio 
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Any response history with either rwav > 0.3 or rPEM > 0.4 is retained as a potentially ―good‖ 

response history and its identified vibration period appears in Fig. 16. 

Accordingly, Fig. 16 (top) shows the vibration periods extracted from the responses of bilinear 

systems that passed the first screening (rwav > 0.3 or rPEM > 0.4) and are plotted as a function of the 

improved matching index, r, given by Eq. (37). Therefore, the number of data shown in Fig. 16 is 

smaller than the number of the data appearing in Fig. 14 or Fig. 15. It is interesting to note in Fig. 

16, several response histories which passed the first screening (rwav > 0.3 or rPEM > 0.4) their 

improved r index is now poor (r > 0.3)–therefore, the need for a more refine selection. Fig. 16 

(bottom) plots the standard deviation of the data shown in Fig. 16 (top) from any given value of r 
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Fig. 15 Top: Values of the vibration period of bilinear isolation systems identified during forced vibration 

(symmetric Ricker pulses and recorded ground motions) with PEM (all data shown in Figs. 10 and 

13) plotted vs the matching index, rPEM; Bottom: Vales of the standard deviation, SD(rPEM) of the 

data shown above from any given value of rPEM up to rPEM = 1 

 

  

Fig. 16 Continued 

424



 

 

 

 

 

 

The engineering merit of the “Effective Period” of bilinear isolation systems 

  

Fig. 16 Top: Values of the vibration period of bilinear isolation systems under forced vibrations with 

matching index rwav > 0.3 or rPEM > 0.4 plotted vs the improved index r given by Eq. (36); Bottom: 

Values of the standard deviation SD(r)of the data shown above from any given value of r up to r = 1 

 

 
up to r = 1. For instance, the value of SD = 0.1 shown when r = 0.5 is the standard deviation of all 

the data within 0.5 ≤ r ≤ 1.0. 

Interestingly, for values r < 0.5 the values of the standard deviation SD(r) exhibits a finite jump 

above the value of SD = 0.1 and for values of r < 0.35, vexhibits a rapid increase as we move 

towards the axis origin. 

In conclusion, recorded time histories with r > 0.5 are characterized as ―good‖ response 

histories and the identified period TI is strongly correlated with the period associated with the 

second slope of the bilinear system, T2 or with the effective period Teff. In contrast, this analysis 

shows that for recorded time histories above isolators with r < 0.5, the concept of assigning a 

―vibration period‖ becomes feeble and shall be abandoned. 

 

 
8. Conclusions 

 

This paper examines whether the ―effective period‖ of bilinear isolation systems, as defined 

invariably in most current design codes, expresses in reality the period of vibration that appears in 

the horizontal axis of the response spectrum. The study employs Fourier and Wavelet analysis 

together with a time domain identification method for linear systems known as the Prediction 

Error Method (PEM) to process the vibration response of a wide collection of bilinear isolation 

systems subjected to pulse and earthquake excitations. 

When the response history of the bilinear system exhibits a coherent oscillatory trace with a 

narrow frequency band as in the case of free vibration of forced vibrations from most pulselike 

excitations, the paper shows that the ―effective period‖ = Teff of the bilinear isolation system is a 

dependable estimate of its vibration period. At the same time the paper concludes that the period 

associated with the second slope of the bilinear system = T2 is an even better approximation of the 

―vibration period‖ regardless of the value of the dimensionless strength Q/(K2uy) = 1 / α – 1 of the 

system. Consequently, this study concludes that whenever the concept of associating a ―vibration 
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period‖ is meaningful the ―effective‖ period, Teff can be replaced with T2 which is a period that is 

known a priori (no iterations are needed) and offers in general superior results. This finding serves 

both simplicity and a more rational estimation of maximum displacement. Simplicity is served 

because instead of looking for Teff – a quantity that derives from the non-existing Keff, for which 

iterations are needed to be approximated, the paper shows that the period associated with the 

second slope of the bilinear system = T2 (that is known a priori – no iterations are needed) is a 

better single-value descriptor of the frequency content of the dynamic response of a bi-linear 

isolation system. Given that T2 is always longer than Teff the peak inelastic displacement does no 

run the risk to be underestimated. 

Most importantly, the paper shows that as the frequency content of the excitation widens and 

the intensity of the acceleration response history fluctuates more randomly the computed vibration 

period of the bilinear isolation system exhibits appreciable scattering from the computed mean 

value. This scattering of the identified period values is due to the nonlinear nature of the response 

signal; and therefore, for this class of response histories the expectation of the design codes to 

identify a ―linear vibration period‖ has marginal engineering merit. 

The paper develops a physically motivated matching index that permits the separation of the 

response histories of bilinear systems where the concept of associating a ―vibration period‖ is 

meaningful from those where the concept of associating a ―vibration period‖ is feeble. 

In conclusion, the engineering merit of the effective period Teff of bilinear isolation systems as 

given by Eq. (5) is marginal given that: (a) whenever the concept of associating a ―vibration 

period‖ is meaningful (r > 0.5), this ―vibration period‖ can be approximated in a superior way with 

the period associated with the second slope = T2 as (see Figs. 5,7 and 9) and (b) when the matching 

index r is low (say r < 0.5) the concept of associating a ―vibration period‖ has marginal 

engineering value. 
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