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Abstract.   The present paper aims at studying the seismic response of structures equipped with viscoelastic 
dampers (VED). The performance of such a passive control system is here analyzed using the energy 
balance concept, which leads to an optimal design process. The methodology is based on an energy index 
(EDI) whose maximization permits determination of the optimal mechanical characteristics of VED. On the 
basis of a single degree of freedom model, it is shown that the maximum value of EDI corresponds to a 
simultaneous optimization of the significant kinematic and static response quantities, independently of the 
input. By using the proposed procedure, the optimal design of new and existing structures equipped with 
VED, inserted in traditional bracing systems, are here analyzed and discussed. 
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1. Introduction 
 

In the last few years a review process of the methodologies for approaching some problems of 
seismic analysis of structures has taken place. For example, at the beginning of the 90’s a 
particular attention was paid on the development of concepts concerning the energy quantities 
involved in the structural response, from which some interesting design criteria were derived 
(Uang and Bertero 1988).Significant examples are found in the field of seismic passive control of 
structures(Ciampi et al. 1995, Filiatrault and Cherry 1990). 

Unfortunately, for several reasons its application has suffered a stalemate, even if it was clearly 
demonstrated that the advantages in using it may be important. For example one of the benefits, 
with respect to more traditional design methodologies, is to have the possibility of optimizing the 
structural response by reducing both kinematic and static response quantities contemporaneously, 
as several papers have already shown in the past (Ciampi and De Angelis 1996, Paolacci and De 
Angelis 1999, Renzi et al. 2007). Even if this idea seems to be abandoned in favour of different 
approaches, for example the “Direct Displacement” approach (Ponzo et al. 2007, Albanesi et al. 
2007, Kim and Choi 2003, Soda and Takahashi 2000), the author deems that it may still be 
considered valid for several implications, as detailed in the following. 
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An interesting application is represented by the seismic passive control of structures equipped 
with viscoelastic devices (VED). 

Many design methodologies of VED already proposed in literature are based on simplified 
procedures (Kasai et al. 1993, Chang et al. 1996, Park et al. 2004). To simulate the viscoelastic 
behaviour, it is usually considered sufficiently accurate, at least for a preliminary design, to refer 
to simple models like the Kelvin or Maxwell unit (Lewandowski and Chorążyczewski 2007, Shing 
and Chang 2009). Moreover, it appears that design procedures which explicitly use optimization 
concepts based on energy considerations have been considered only occasionally in literature, 
(Abbass and Kelly 1993, Kasai and Munshi 1994, Paolacci and De Angelis 2001, Lee et al. 2005); 
this occurred more systematically in the case of yielding-based or friction-based dampers (Inoue 
and Kuwahara 1998, Ciampi et al. 2003, Renzi et al. 2007). Another characteristic aspect of VED 
is the strong temperature dependence of the mechanical properties of viscoelastic materials. Many 
papers have shown that raising temperature may produce detrimental effects on the stiffness and 
dissipation capability of VED (Chang et al. 1998a, Inaudi et al. 1996, Kasai et al. 2001). This can 
be taken into account in different ways. A simplified approach consists of calculating the 
maximum temperature increase developed during the motion to correct storage and loss modulus 
(Chang et al. 1992). A more refined approach consists in the implementation of the temperature 
dependency on storage and loss modulus directly in the model used for the numerical simulations. 
This enables to account for the influence of the instantaneous variability of temperature on the 
viscoelastic material properties (Tsai 1994). Actually this effect depends strongly on the level of 
shear strain in the VED. For example in (Inaudi et al. 1996, Lai et al. 1999) the authors have 
shown that for shear deformations lower than 15%, the behaviour remains substantially linear and 
the temperature rise effect can be neglected, being the temperature increment confined in a range 
of 1-2°C. On the contrary, for higher values of  the internal temperature variation can be 
extremely high, especially in the high frequency range, where a higher number of deformation 
cycles is expected. In this case a non-linear analysis is recommended, including in the model of 
VED the temperature rise effect.  

From the above considerations, in the present paper a simplified design methodology of VED is 
proposed. It is formulated as an optimization problem, where the objective function is an energy 
index, (EDI), a function of both the input energy of the structure and the energy dissipation of the 
dampers.The EDI index differs from other energy indexes,as the absolute energy dissipation of the 
damper (Lee et al. 2005) or the simple ratio between the energy dissipation of the damper and the 
input energy (Abbass and Kelly 1993),because it takes into account the instantaneous variability of 
the energy dissipation capability of dampers with respect to the input energy; therefore it is 
capable to account for the instantaneous variability of structural response and the seismic input. 

The temperature rise effect is not included in the adopted model, with the consequence that 
during the motion the material properties are considered invariable. At this end, according to the 
above considerations, the hypothesis of small shear deformation  is here adopted. On the contrary, 
the ambient temperature variation is consideredby adopting the well known frequency-temperature 
equivalence principle (Ferry et al. 1952). 

Many design procedure formulated in the past adopt iterative approaches (Chang et al. 1993, 
Xua et al. 2003, Lee et al. 2005), which are time-consuming and often provide only preliminary 
indications about the optimal characteristics of a VED. For this reason, in this work, a design 
approach, based on the seismic response of simple models, useful for a preliminary design of 
structures equipped with VED, is proposed.  
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Fig. 1 (a) SDOF model of a structure equipped with VED and (b) constitutive law of VED 

 
 
At this end, the dynamic response of a single degree of freedom model, representing a generic 
structure equipped with VED, is initially studied for harmonic and white-noise base excitations, 
corresponding to the limit cases of narrow-and wide-band input, respectively. Closed-forms of the 
response quantities, even for the energy terms, are then obtained, and synthetic indications are 
provided, which are for understanding the effects of more general inputs (Inaudi et al. 1993).  

Subsequently, the case of structures equipped with viscoelastic dampers, inserted in a 
traditional elastic bracing system, is considered. The Maxwell model is used to simulate the 
dynamic behaviour of viscoelastic dampers, whoseoptimal mechanical characteristics are 
evaluated using the EDI criterion. The procedure leads to useful graphs both for the design of new 
structures and the retrofitting of existing constructions equipped with VED. It will be shown that 
these results can be obtained independently of the input.  
 
 
2. The dynamic behaviour of systems equipped with VED 

 
Let us consider a generic linear elastic structure equipped with damping devices, in particular 

VED. Since it is often possible to reduce complex dynamic systems to simpler equivalent systems, 
e.g. one degree of freedom systems, their behaviour can be investigated using the oscillator shown 
in Fig. 1a, representative of a generic structure with VED. 

The frequency and the damping of the uncontrolled structure are =(K/m)1/2 and =C/2m 
respectively, where K is the stiffness, m is the mass and  is the damping ratio. The constitutive 
law of the dissipation device is shown in Fig. 1b, whose behaviour depends on the complex 
stiffness Kd

*(i,T)=Kd’(,T)+iKd’’(,T). The latter is characterized by a real part and an 
imaginary part, named storage modulus and loss modulus respectively, which are frequency () 
and Temperature (T) dependent functions; their physical meaning is easily discerned from the 
integral formulation of the constitutive law, which, in the steady-state case, takes the following 
form 
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Fig. 2 A typical VED arrangement 
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where x(t) is the displacement applied to the system with amplitude x0, and Fd(x)is the resultant 
force in the damper. It is obvious that the storage modulus is related mainly to the elastic  
behaviour of the device, whereas the loss modulus defines its dissipation capability, which is 
associated to the area of the ellipse shown in Fig. 1b. The following simple equations relate the 
moduli of the device to storage modulus G’(,T) and loss modulus G’’(,T) of viscoelastic 
material 
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where A is the area of the viscoelastic device and t is the total thickness of the viscoelastic layers. 
The term Kd’=F0/x0cos represents the stiffness calculated at the maximum displacement x0 of the 
cycle, whereas |Kd*| is the modulus of the complex stiffness. It can be noticed that the maximum 
force F0 does not correspond to the maximum displacement x0 of the cycle and that this out-of-
phasebehaviour is represented by the loss factor tan.  

Fig. 2 shows an example of arrangement of a viscoelastic device. It is composed by 2 layers of 
viscoelastic material attached to three steel plates, one internal and two external. The longitudinal 
differential movement x between the internal and the external plates corresponds to the relative 
displacement between two points of the same structure or of two different structures connected by 
the VED. Under a shear force Fd the damper undergoes a shear deformation =2x/t. 

The ratio between the loss and the storage modulus of material or structure, Tan , named loss 
factor shows, for a typical viscoelastic material, a limited variability with frequency and 
temperature; this characteristic can be used, as illustrated hereafter, to reduce the number of the 
damper parameters. Experimental tests have shown that for usual viscoelastic materials Tan is 
variable between 0.8 and 1.4 (Blondet 1994, Kasai et al. 2004). 

As stated in the introduction, a viscoelastic material can exhibit temperature rise that may 
change the mechanical characteristics of the material (i.e., storage and loss modulus). This depends 
on the deformation level and the excitation frequency. In particular by using a simple temperature-
dependent numerical model, some authors has been shown that a limited value of shear 
deformation () limits also the temperature rise in a VED, (Inaudi et al. 1996, Chang et al. 1998b). 
They have shown that shear deformations <20%, produce a maximum variation of internal 
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temperature of 1-2°C,whereas a deformation level of 100% can induce a temperature rise greater 
than 10°C, especially for high frequencies. In addition, a so high level of deformation can induce a 
noticeable non-linear behaviour. Therefore, in what follows a limited deformation level is 
supposed and the temperature rise effect is neglected. 

Consequently, the external temperature is only taken into account, considered here as design 
data. According to the “frequency-temperature equivalence principle” (Jones 2001, Kasai et al. 
2001), storage modulus and loss factor can be expressed as follows 

  ),(',' refTGTG    

  ),(, refTTanTTan                                                          (3) 

where  is the shifting factor and  is the equivalent frequency. Generally, the shifting factor  is 
calibrated using experimental dataand decreases with temperature. For example, for Tref=20°C and 
Tan=1 a variation of temperature of 10°C corresponds,for commercial VED, to a loss factor 
variable between 1.5 and 0.8 (Chang et al. 1992, Kasai et al. 2004). 
 

2.1 Mechanical models for viscoelastic materials 
 
In literature the behaviour of viscoelastic materials is modelled using different constitutive laws. 

One approach is based on complex rheological models obtained as a combination of simple units, 
such as the Maxwell or Kelvin-Voigt models. In this case the mathematical formulation leads to a 
time-dependent linear ordinary differential equation with constant coefficients, whose generic 
form is (Flugge 1967) 
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where (t) and (t) are the stress and the strain respectively of the material and un and um are 
coefficients. According to the correspondence principle, this Eq. becomes,in the frequency domain, 
an algebraic Eq. defining the complex stiffness G(i,T)=G’(,T)+iG’’(,T).This is possible by 
using,for example, the Fourier transform providing the solution in the frequency domain 
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Although to obtain an exhaustive realistic response a large number of coefficients (n, m>>1) 
should be used, for the purpose of the present paper, the basic Maxwell model is adopted, which is 
characterized by only two parameters.  
In Figs. 3a and 3b, the experimental data obtained in the tests conducted at Berkeley, (Blondet 
1994), for a particular viscoelastic damper produced by the 3M Company, are compared with the 
ones derived froma Kelvin and Maxwell model respectively, calibrated to match as well as 
possible the experimental results, for a frequency of 2 Hz. 

In particular, while the Kelvin model exhibits a constant stiffness and a dissipation capability 
that increases linearly with the frequency, the Maxwell model shows a better agreement with the 
experimental results, in a wide range of frequencies, especially for frequencies lower than those 
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Fig. 3 (a) Storage modulus v/s Frequency and (b) Loss modulus v/s Frequency 
 
 
used for the calibration (2 Hz). In fact, the stiffness increases with the frequency, with a mean 
deviation of 8% with respect to the experimental results; the loss modulus shows a maximum at 2 
Hz after an initial increasing and presents a better agreement with the experimental results, at least 
in the frequency range 0-2 Hz. This suggests that reliable results may be expected also for 
structures, which in case of plasticization, change their frequencies during the motion. 

Although there are other models based on different mathematical operators, (e.g fractional 
operators), capable, with few parameters, to reproduce very accurately the response of viscoelastic 
devices (Shen and Soong 1995), we will refer only to the previous models, leaving to future 
developments the use of more sophisticated ones. 

 
2.2 Stationary response to harmonic input 
 
Let us consider now the model of Fig. 1a, subjected to a base harmonic acceleration. The 

equation of motion normalized with respect to mass and maximum ground acceleration is 

ti
d e)(F    22

                                                 (5) 

The solution of Eq. (5) in the time-domain assumes the form (t)=0cos(t). The amplitude 
0 and the phase angle  are respectively the modulus and the argument of the complex compliance 
of the system; their expressions are 
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with  = /. The non-dimensional parameters eq and eq take into account the presence of 
the device and are defined as: eq=Kd’/K e eq=deq/(2). It is clear from Eqs. (6) and (7) that 
the system of Fig. 1 may be considered as a Kelvin-Voigt oscillator in which stiffness and 
damping are variable with the oscillation frequency of the motion. The loss factor is practically 
constant, at least in the range of frequencies considered, so that the parametric analysis is governed 
by one parameter only, related usually to the stiffness of the device.  

224



 
 
 
 
 
 

An energy-based design for seismic resistant structures with viscoelastic dampers 

2.3 Stationary response to white noise 
 
A closed-form of the response is still possible by using a white noise base motion. The 

stationary response of a linear viscoelastic oscillator to a white noise is a zero-mean Gaussian 
process, characterized only by its variance. The variance  of a generic response quantity with 
transfer function H(i) is related to the power spectral density of white noise S0 by the well-known 
relation 

 
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2
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2                                                               (9) 

Since, the transfer function modulus is the oscillation amplitude of the stationary response, 
given by the solution of Eq. (5), the variance of both displacement and absolute acceleration of the 
oscillator of Fig. 1 is given by the following relations 
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where S0 is the power spectral density of the white noise. 
If the behaviour of the control device were simulated with simple models, the integrals Eqs. 

(10) and (11) would be calculated in closed-form or alternatively, for more sophisticated models, 
approximate methods could be used. For example, using Maxwell model with stiffness Kd and 
damping coefficient Cd, Eq. (10) turns into the following 
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2.4 The energy balance of viscoelastically damped systems 
 
For a generic dynamic system, subjected to a base motion W(t), the energy balance equation 

can be written as follows 
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where the terms on the left hand side represent respectively the kinetic energy and the energy 
associated with the restoring force FR(t), while on the right hand side, the energy EVE associated 
with the control force FC(t) is subtracted from the input energy. The effect of energy dissipation 
appears as a reduction of the input energy of the system, which depends in general, not only on the 
external action, but also on the dynamic characteristics of the system. In Eq. (13),  is a unit vector, 
y is the displacement vector and M the mass matrix, whereas, the first integral on the right hand 
side is the relative input energy EI. The energy of the devicesis also subdivided into two 
contributions, one elastic EVE,E and the other that represents the irreversible energy EVE,D. The latter 
is given by the following relationship 
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From the application point of view it is useful to evaluate the increment of EVE,D in a stationary 
cycle. For the oscillator of Fig. 1, using Eq. (14) for t=2/, we get the simple expression 
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which shows that the dissipation capability of the damper is related to the loss modulus, while for 
a given amplitude of the displacement, it also depends on the frequency of the base motion.  

As well known, the stationary response of a viscoelastically damped oscillator to a White Noise 
is a zero mean Gaussian process. This implies that, within the stationary response, it is possible to 
identify an average cycle, similar to that of Fig. 1, with an average period equal to the natural 
period of the oscillator, whose maximum amplitude, x0, may be replaced with the standard 
deviation of the displacement. The expected values of the several energy termsin a stationary cycle 
are functions of the mean square values of the kinematic quantities only, in particular displacement 
and velocity. As an example, for a Kelvin oscillator with frequency 0 and damping coefficient  
the expected values of the energies indicated in Eq. (13), for stationary conditions, have the 
following expressions, (Spanos 1978, Clough and Penzien 1975) 

E[EK]= E [ 2y ]/2=S0/(40)                                                (16) 

E[ED]= 20
2E[y2]t=S0 t                                                  (17) 

E[EE]= 0
2E[y2]/2=S0/(40)                                                (18) 

where EK, ED, EE are respectively, kinetic, dissipated and elastic energy of the system, while S0 is 
the power spectral density of the White Noise and t is time. The mean value of the dissipated 
energy is therefore independent of the characteristics of the oscillator and the value, indicated in 
Eq. (17), is valid for all SDOF systems, (Inaudi et al. 1993, Karnopp 1970). Moreover, if we try to 
estimate the dissipated energy using Eq. (15), its average value would be double the exact value 
obtained with expression 17. Therefore, in the case of random excitation, it is necessary, to 
evaluate the dissipated energy on the basis of its general definition Eq. (15), as already shown for 
more complex structural situations (Inaudi et al. 1993).  

In summary, for a generic viscoelastically damped system, subjected to White Noise excitation, 
it is possible to express in closed form the mean values of the energies in the balance Eq. (13) by 
using mean square values of displacements and velocities, the mechanical characteristics of the 
system, and by adopting as dominant vibration period of the system the average period of the 
oscillations. 
 
 

Fig. 4 Harmonic input - Stationary semi-cycle 
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3. Optimal design of passive control systems 
 
As already pointed out in the introduction, the problem of the passive control of systems can be 

effectively formulated as optimization problem by using as objective index a functional of both 
dissipated and input energies. This choice is justified considering that control effectiveness does 
not depend only on the artificial increment of structural damping, but also on the characteristics of 
the external action and controlled system. In the past, an interesting design criterion based on 
maximization of an Energy Dissipation Index (EDI) was proposed (Ciampi and De Angelis 1996). 
This is defined, in case of stationary response to a harmonic excitation, as the ratio between the 
maximum increment of the energy dissipated by the control devices in a half-period, ED

max, (Fig. 
4), and the corresponding maximum increment of the input energy in the same interval of time 
Ei

max 

maxmax
IDEDI EE                                                           (19) 

In a general case of non-harmonic response, Eq. (19) is no longer applicable. However, it is 
always possible to observe an oscillating behaviour of the response quantities variable with period 
and amplitude. This has suggested a more general definition of the index EDI, obtained by a 
weighted average of the ratios of the energy increments E, by using the following expression 
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An equivalent definition may be derived for the case of stationary Gaussian response to white 
noise excitation, by using the average values of the individual energy terms 
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The single terms in Eq. (21) are referred to an average equivalent half-cycle, whose maximum 
amplitude, (Fig. 1), is identified with the standard deviation of the displacement; moreover, as 
already noted, they are functions of the mean square values of displacements and velocities. The 
ratio between the two maximum increments in Eq. (19) is then replaced by the ratio of a proper 
measurement of their expected values, obtaining Eq. (21).  

The maximum increment of the energy dissipated by the control devices, (EVE,D), can be 

approximately determined applying definition Eq. (19), whereas max
IE  can be computed using 

the square root of the sum of the square of the recoverable energy (EK+EE) and of the dissipated 
energy (ED

*); this last includes all sources of dissipation, such as conventional structural damping 
and the energy dissipation of the VED.  

For example, for a Kelvin oscillator subjected to a white noise excitation, the EDI index 
assumes the simple expression 

)(
EDI

14

2
22 





                                                              (22) 

Fig. 5 depicts the variation of Eq. (22) versus damping ratio ; it shows a rapid increase of EDI, 
followed by an asymptotic behaviour whereby, after >0.4, EDI may be considered practically 
constant. Eq. (22) also appears to be in good agreement with the results obtained by using a Monte  
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Fig. 5 White noise: Kelvin oscillator Fig. 6 Model of frame equipped with VED 
 
 
Carlo simulation based on Eq. (20). The same figure illustrates the reduction of displacement 
(/0) and total force (/0); both these quantities have been normalized to the response computed 
for the case in which only a conventional damping, (2%), is present. 

The optimal value of  corresponds to the elbow of the EDI curve, (20%), where the total 
force shows its maximum reduction, after whichthe displacement shows no further significant 
decrease. A similar behaviour, which has been already shown in deterministic cases and for much 
more complex structural situations, confirms the multi-objective character of the EDI index, 
(Basili and De Angelis 2007).  
 
 
4. Design of structures equipped with VED 

 
One application of the proposed methodology is the evaluation of design graphs for structure 

equipped with VEDinstalled in special bracing systems, (Chang et al. 1996, Kasai and Munshi 
1994, Lee et al. 2005). In the following, using a simple SDOF system and the EDI maximization 
criterion, design curves of structure equipped with VED inserted in traditional bracings are here 
proposed. In particular, both the cases of new and existing structures are here considered. 

 
4.1 Definition of numerical model and response parameters 
 
In order to define the optimal characteristics of viscoelastic dampers, the seismic dynamic 

response of the SDOF model illustrated in Fig. 6, is used. The reaction of the structure is assumed 
to be elasto-plastic with stiffness Kf=f 

2mand yielding strength Ffy. The control device is modelled 
as a Maxwell unit with stiffness Kd and damping coefficient Cd. For the dissipative bracing system, 
the conventional braces are assumed to be infinitely stiff, so that only the stiffness of the 
dissipation device needs to be taken into account. In the case of deformable braces it is sufficient 
to consider Kd as the entire elastic stiffness of the damper + brace ensemble. 

The equation of motion, normalized with respect to the mass of the system, provides the 
significant parameters of the dissipation system 

=Kd/Kf =(Cd/Kd)/( 2/f )                                       (23) 
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The control device shows dissipative characteristics that are related to the loss factor Tan=2 
f(,), where f(Kd,Cd)=b/f is the ratio between natural frequency of the damped system and the 
frequency of the unbraced frame. Based on the definitions Eq. (23), the parameters eq and eq 

assume the following form 


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222

222

41

4


eq )(eq 22241 




                                            (24) 

Assuming  to be constant, it is clear that if  the damper degenerates into a pure elastic 
element (eq and eq0); moreover for  the viscoelastic element degenerates into a pure 
viscous element (eq and eq<). 

The significant non dimensional response parameters are, besides EDI and the maximum 
displacement normalized to the corresponding value of the unbraced frame =y/y0, the following 
other quantities 

µf=/y Structural ductility                                        (25) 

II=(Ff+Fd)/(m x G,max) Total force (base shear)                (26) 

f=Ff / (m x G,max)<fy =Ffy / (m x G,max) Force in the frame                     (27) 

where Ff and Fd are respectively the force in the frame and damper and x G,max is the peak  
 
 

 
 

Fig. 7 Harmonic input: Frequency response function 
(=1, =0.00) 

Fig. 8 Artificial accelerograms: EDI contour lines 

 
Fig. 9 (a) One of the 5 artificial accelerograms and (b) Design spectrum for the generation of the 

accelerograms 
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ground acceleration. 
It has already been shown that it is possible to establish a priori an optimal value for the 

parameter Tan, independently of the input (Paolacci and De Angelis 1999). For the harmonic 
input case, Fig. 7 shows the amplification curves of the displacement as a function of the 
normalized frequency , for =1 and three different values of Tan. Moreover, the conventional 
damping  is assumed to be zero. It is possible to observe that the control action is not always 
favourable. In particular a limit value lim() exists, exceeding which, the response is worse than 
the unbraced case (NCS). The frequency lim is insensitive to the loss factor and corresponds 
exactly, for Tan =1, to the minimum value among all maxima of all the curves within the 
considered range of the loss factor. This suggests that a unit loss factor could be considered an 
optimal value. If 0 the previous conclusions donot change, with the only difference that the 
envelope of the maxima is no longer the decreasing branch of the unbraced frame. In addition, a 
limit value of  exists also for the acceleration; however for 0 this value is always greater than 
lim.  

An interesting alternative way to prove the previous conclusion is to use the maximization 
criterion of the EDI index. Fig. 8 shows the contour lines, in the plane -, of the function EDI, 
computed for a set of 5 artificially generated accelerograms compatible with EC8 spectra (C soil 
profile, 5% damping, see Figs. 9a and 9b). 

The period of the frame is Tf= 0.6 sec. It is possible to note that the curve for Tan=1 is the 
locus of the relative maxima of the function EDI (bold line). Actually this behaviour occurs for all 
the periods Tf (0.31.5 sec) considered, which suggests once again unity as optimal loss factor. To 
complete this investigation, on the same graph the curves for Tan=0.8 and Tan=1.4 are also 
drawn.  

These considerations show that  can be considered as the main design parameter, while  is 
constrained to obtaining a constant value for Tan.  

According to the frequency-temperature equivalence principle and using Eq. (23), it is clear 
that a variation of external temperature affects both  and Tan. In particular, being the shifting 
factor decreasing with temperature, atemperature increasing would decrease  and increase Tan. 
In what follows a reference temperature Tref=20°C and a unitary loss factor (Tan=1) will be 
assumed. Considering a realistic temperature variation of 10°C, the loss factor is considered 
oscillating between 0.8 (T=30°C) and 1.4 (T=10°C). Therefore the range of variation of Tan 
adopted in Fig. 8 already accounts forthe possibility that temperature mayvary within a realistic 
range. 

 
4.2 Design of new structures equipped with VED 
 
Because in designing new structure equipped with a special protection system the choice to 

keep the structure in the elastic range is usually adopted, in the following the dynamic behaviour 
of the SDOF of Fig. 6 with Fy= is studied. 

 
4.2.1 Analysis of the response: Harmonic and white noise input 
In the case of harmonic input the resonance phenomenon is very important and its effects can 

be reduced by changing damping and frequency of the system. But very often the frequency is not 
known and it is necessary to find a solution that reduces the response over the entire range of  
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Fig. 10 (a) Harmonic base motion (=2, Tan =1) and (b) Harmonic base motion (=2, Tan =1) 

 
 
frequencies. Concerning this subject, Fig. 10a shows for =2, =0.05 and Tan=1, the different 
response quantities; it is clear that the presence of VED is effective in the entire range of .  

In order to evaluate the optimal value of , the criterion of EDI maximization is used. In 
particular, it is possible to plot the maxima of the response, corresponding to lim, versus , 
obtaining graphs like that illustrated in Fig. 10b. All quantities are normalized to the corresponding 
values of the unbraced system. After a rapid increase, the EDI index shows an asymptotic 
behaviour, remaining substantially unvaried for >2.  

The same figure shows the behaviour of the dissipated (EVE,D) and recoverable (ER) energies. 
Thelatter has been obtained as a sum of kinetic and elastic energy. It is observed that a criterion, 
based on the dissipated energy only, fails toproduce acceptable results. In fact, it indicates as 
optimal relative stiffness =0.5, corresponding to a reduction of the response quantities of less 
than 25% with respect to the indication provided by the EDI index (>1). 

On the contrary the reduction of the recoverable energy (ER/ER0) confirms the conclusions 
suggested by the proposed energy criterion. 

The application of Eq. (21) permits determination of the optimal value of  also in the random 
vibration case, where the average values of the energies, in the equivalent half-cycle, now assume 
the following expressions 

E[Ed]=CdE[ )( d  2 ]/b                                                   (28) 

E[Ed
* ]=CE[ 2 ]/b+ E[Ed]                                                   (29) 

E[EK]= E[2]/2                                                            (30) 

E[EE]=2Kf E[2]/2                                                         (31) 

in which y and )( d   are respectively displacement and relative velocity of the Maxwell unit.  

The contour level of EDI in the space of the variables - is illustrated in Fig. 11a. The 
comparison with the results of Fig. 7, even if only for a particular period, once more shows as 
optimal of the loss factor the unity.  

Fig. 11b shows the variation of EDI versus  for unit loss factor. A comparison with the results 
of a Monte Carlo simulation shows that expression Eq. (21) gives indications similar to those 
obtained numerically by using definition Eq. (20); in fact, in the field of the significant  values, 
(04), both curves are quantitatively comparable, even though Eq. (9) underestimate the EDI  

231



 
 
 
 
 
 

F. Paolacci 

 
Fig. 11 (a) White noise contour line (=0.05) and (b) White noise (=0.05) 

Fig. 12 Artificial accelerograms: EDI v/s stiffness ratio  (=0.05) 

 
Fig. 13 Artificial accelerograms:  (a) Displacement reduction and (b) Accelerograms: force reduction 

 
 
values for > 4. Moreover the analytical curve has a maximum that coincides with the elbow of 
the numerical curve, where, the minimum or a stationary point of the relevant response quantities 
also occurs. 
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As a matter of fact, for >2, the displacement of the system no longer shows substantial 
reductions, while the total force presents an absolute minimum at =2, which might be considered 
an optimal value. 

This same Fig. 11b shows reduction of the expected value of recoverable energy (ER/ER0), 
normalized to the corresponding value of the uncontrolled case. Observation confirms that, in the 
linear case and with constant power input (white noise), recoverable energy might be an alternative 
index to EDI for singling out optimal passive devices, since it attains minimum values, in the 
space of design variables, where EDI attains its maximum. 

 
4.2.2 Analysis of the response: Accelerograms 
In presence of a more realistic base motion, represented here by the set of the 5 synthetic 

accelerograms previously used, it is also possible to obtain design spectra by making a section 
along the curve for Tan=1 illustrated in Fig. 7. The results are illustrated in Figs.12-14. Fig. 12 
shows for different periods Tf the index EDI normalized with respect to the maximum, EDImax. It 
can be observed that the normalized curves are almost insensitive to the period Tf; moreover, its 
maximum is reached for very high values of  and all the curves show a very pronounced elbow, 
so that the values of  of interest appear to range between 0 and 4. In the Fig. 12 the corresponding 
equivalent damping b and the ratio between the period of the braced and unbraced structure 
b=1/(,) are also shown. It is possible to note that for <4 the equivalent damping and the 
period reduction areless than 38% and 50%, respectively. Using these results design graphs can be 
built by selecting the ratio EDI/EDImax around the observed elbow of the EDI curves of Fig. 12. 
Values =1 or 2 may represent a good compromise between high values of EDI and acceptable 
stiffness ratios ; the corresponding values of EDI/EDImax are  0.75 or 0.85, respectively; the 
equivalent damping is of the order of 20%30%, whilst the maximum reduction of displacements 
and base shear is about 65-75% (Fig. 13a) and 30-40% (Fig. 13b). 

Fig. 14a shows the design spectrum of the base shear II computed for the above selected 
values of ; for increasing values of period the effect of dissipation is maximum in the flat part of 
the elastic spectrum and decreases thereafter. Comparison with the elastic force spectrum shows a 
maximum reduction of the base shear of the order of 40% for EDI/EDImax=0.85. Finally, Fig. 14b 
shows the maximum values of frame (f) and dissipative brace (d) forces. Of course, they do not 
occur at the same time because of the presence of a purely viscous element in the Maxwell model 
that implies a difference in phase angle between the reaction of the damper and of the main 
structure. 

The force spectra illustrated permit the design a new building, including the definition of the 
structural details of the dissipative bracing, depending on the corresponding maximum force d. 

The previous observations confirm the results already obtained with simpler inputs like 
harmonic or white noise base motion. Thus the EDI maximization criterion has the important 
advantage of being applied independently of excitation. This makes it possible to obtain 
indications on the optimal design parameters, even in closed-form, by using simple external 
excitations and, without resorting to the many numerical analyses necessary for more complex 
inputs.  
The effect of temperature variation in terms of displacement and total base shear is shown in Fig. 
15. As stated before, the temperature is considered variable in the range 10-30°C, with Tref=20°C, 
which correspond to Tan variable between 1.40.8, with the assumption that Tan (Tref)=1.  

 

233



 
 
 
 
 
 

F. Paolacci 

 
Fig. 14 Artificial accelerograms: (a) II versus Tf and (b) Accelerograms: f and d versus Tf 
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Fig. 15 Artificial accelerograms: displacements and base shear reduction versus  for different ambient 
temperatures (Tf=0.6 sec) 
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Fig. 16 El Centro record:  (a) Displacement reduction and (b) Accelerograms: force reduction 
 
 

A temperature decreasing (10°C) entails a decreasing of displacements (30%) and an 
increasing of base shear (15%). The opposite behaviour is shown when temperature increases, 
with a similar variations of displacements and base shear. These results are in good accordance 
with literature results (Chang et al. 1998a). In conclusion, the effectiveness of VED can be 
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considered still high even in presence of important variations of ambient temperature ( 10°C). 
To show the goodness of the proposed method, also in presence of natural seismic events, the 

response of the SDOF system of Fig. 6 to the El-Centro Earthquake (Imperial Valley, May 18 
1940, 270°) is shown in terms of displacement and base shear reduction. For investigating the 
effectiveness of VED for structures with different dynamic properties, three different natural 
periods Tf have been considered: 0.3, 0.6 and 0.9 sec (see Fig. 16). In addition, a unitary loss factor 
has been selected, whereas the relative stiffness of VED, , varies within the range [04]. As for 
the artificial accelerograms the high effectiveness of viscoelastic dampers is clearly shown. For 
=2 the displacement reduction is around 6070%, whereas the base shear can be reduced at 
maximum of about 50% for higher periods (0.6 and 0.9 sec), whereas for lower periods (0.3 sec) 
the effectiveness is reduced to 40%.  

 
4.3 Retrofitting of existing structures using VED 
 
The design of a seismic protection system for the retrofitting of existing structuresis usually 

based on the limitationof the damage in the main structure.This implies that its inelastic behaviour 
has to be considered. To this end, the structural reaction can be approximately considered elasto-
perfectly plastic with normalized strength y; to quantify the damage level in the structure, in what 
followsthe kinematic ductility of the structure µf will be used, adopting values of µf variable  
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Fig. 19 (a) Relative stiffness  versus Tf and (b) Normalized EDI index versus Tf 
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between 16. In any case, the choice of different parameters for the damage evaluation of the 
structure does not affect the conclusions. 

Since the problem has many constraints, it is reasonable to select the accepted damage level µf 
and verify a posteriori the behaviour of the performance index EDI. Fig. 17 shows, for f=0.3 and 
a vibration period Tf=0.6 sec the contour lines of EDI and µf in the plane -, together with the 
curve Tan=1, obtained using the set of 5 synthetic accelerograms previously used. The curve 
Tan=1 remains substantially unvaried with respect to the elastic case (Fig. 11), because 
practically independent of the frequency.  

Again, the condition Tan=1 appear to select the relative maxima of EDI on the surface. 
Therefore, the contemporarily application of the criteria Tan=1 and µf =cost determines the 
evaluation of the design parameters. In particular the intersection point between the curve Tan=1 
and the curve f=cost identify the optimal values of . For example, imposing a ductility f=4 
themethod provides a value of 2.  

On the basis of this criterion, design spectra of the total force II and the force in the bracings 
d can be drawn. Fig. 18 shows an example of such spectra, where the response quantity (II) is 
function of the elastic period of the unbraced structure Tf, and is depicted for a given level of 
damage µf and for three level of strength fy. The graphs show that a large structural strength fy do 
not necessarily imply a large base shear.  

In Fig. 19a the design spectra of  versus Tf and for different level of the accepted damage 
levels µf are illustrated. For increasing value of periods the values of  decrease almost linearly up 
to 0, corresponding to a limit value of the period, besides which the dissipative bracing is no 
longer necessary. Fig. 19b shows the corresponding behaviour of the index EDI, that is the 
performance of the damper; it decreases with Tf up to 0 for a limit value of the period that depends 
essentially on the level of accepted damage.  

Finally, different values of Tan, and thus of ambient temperature T (see Section 4.1), have 
also been investigated, whose results are not shown here for brevity. As in the case of elastic 
structures, a limited sensitivity to this parameter of the response of structures retrofitted with VED 
has been discovered, with variations of effectiveness similar to those previously discovered for the 
elastic frame case.  
 
 
5. Conclusions 

 
A criterion to determine the optimal characteristics of viscoelastic devices for the seismic 

control of structures has been proposed and an energy-based index, (EDI), has been used as 
objective function. Optimal design of the control system is obtained by maximizing the EDI index. 
It is interesting to note that the multi-objective nature of the index induces a simultaneous 
reduction of both kinematic and static response quantities. Finally, for the case of a white-noise 
input, the design problem has been formulated by using a statistical evaluation of the significant 
energy response quantities and in particular of the EDI index. 

The optimization procedure has been applied to a single degree of freedom system, 
representative of a structureequipped with VED; the behaviour of the latter has been modelled 
using a Maxwell unit. Employing both simple and more realistic inputs (artificial and natural 
accelerograms), it has been shown that is possible to select unity as optimal value of the loss factor.  

The optimal value of the remaining parameter  (the normalized stiffness of the bracing), has 
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been evaluated using again the proposed optimization criterion. Comparison of the response to 
simple inputs, like harmonic and white-noise inputs, with the response to synthetic accelerograms, 
has shown that the optimal design of the viscoelastic devices is practically independent of the input. 
This means that it is possible to obtain preliminary indications on the optimal characteristics of the 
dampers, even in closed form, by using simple inputs and simple models, to check there after in a 
more realistic context, by analysing MDOF models, object of a further publication. These results 
has been used to build design graphs useful to evaluate the global parameters of a viscoelastic 
bracing system both for the design of new structures and the retrofitting of existing ones. 
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