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Abstract.    In recent decades, it has been realized that increasing the lateral stiffness of structure subjected to 
lateral loads is not the only parameter enhancing safety or reducing damage. Factors such as ductility and 
damping govern the structural response due to lateral loads. Despite the significant contribution of damping 
in resisting lateral loads, especially at resonance, there is no accurate mathematical representation for it. The 
main objective of this study is to develop a damping identification procedure for linear systems based on a 
mixed numerical-experimental approach, assuming viscous damping. The proposed procedure has been 
applied to a laboratory experiment associated with a numerical model, where a hollow rectangular steel 
cantilever column, having three lumped masses, has been fixed on a shaking table subjected to different 
exciting waves. The modal damping ratio has been identified; in addition, the effect of adding filling 
material to the hollow specimen has been studied in relation to damping enhancement. The results have 
revealed that the numerically computed response based on the identified damping is in a good fitting with 
the measured response. Moreover, the filling material has a significant effect in increasing the modal 
damping. 
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1. Introduction 
 

System identification (SI) techniques play an important role in investigating and reducing gaps 
between the constructed structural systems and their structural design models, and in structural 
health monitoring for damage detection. A great amount of research has been conducted in SI 
(Inman 1989, Gawronski 2004, Adams 2007, Takewaki 2009, Takewaki et al. 2011). Modal-
parameter SI and physical-parameter SI are two major branches in SI. The former is appropriate 
for identifying the overall mechanical properties of a structural system and exhibits stable 
characteristics in implementation. While the latter is important from different viewpoints, such as 
enhancement of reliability in active controlled structures or base-isolated structures, and its 
development is limited due to the requirement of multiple measurements or the necessity for 
complicated manipulation (Gawronski 2004, Takewaki 2009). A mixed approach is often used in 
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which physical parameters are identified from the modal parameters obtained by the modal-
parameter SI. However, a sufficient number of modal parameters must be obtained for the unique 
and accurate identification of the physical parameters. 

Damage of building structures during sever earthquake ground motions results mainly from the 
resonance of the fundamental natural frequency of the building structures with the predominant 
frequency of the input motions. Although the damping has a significant contribution in mitigating 
the damage through controlling the structural response, yet there is no accurate mathematical 
representation for it. Moreover, it does not appear that damping identification techniques have 
been developed sufficiently. The difficulty in identifying the damping arises from the fact that 
energy is dissipated in the system through various mechanisms such as: viscous, friction, material, 
particle and hysteretic damping. Therefore, it might be useful to determine the damping 
experimentally or from pre-measured response for existing structures.   

Takewaki and Nakamura (2000) adopted a new method of physical-parameter SI for shear 
building models. The story stiffness, the linear hysteretic damping ratio and the viscous damping 
coefficient in a specific story have been identified uniquely and simultaneously in a unified 
manner when the acceleration records at the floor just above and below the target story are 
available. Nilson et al. (2004) utilized procedures based on results of computational simulations of 
finite element models and experimental procedures based on modal analysis. Adams (2007) 
identified the changes in stiffness and damping forces as a function of frequency and damage level. 
The time domain model was introduced assuming that all of the mass, damping and stiffness 
parameters were known beforehand. Only then can the model be used to study the free and forced 
response to enable health monitoring of the component and to identify loading or damage. 
Curadelli et al. (2008) introduced a scheme to detect structural damage by means of the 
instantaneous damping coefficient identification using a wavelet transform. Parameters that 
characterize structural damping are used as damage-sensitive system properties. George and 
Dimitri (2009) extended their modal damping identification model for classically damped linear 
building frames to the non-classically damped case. Marco et al. (2009) introduced a method for 
estimating the elastic and dissipative parameters of composite plates through a mixed numerical-
experimental identification procedure. Hann et al. (2009) combined the low resolution 
displacement measured by a GPS device and the high resolution acceleration measured by 
accelerometers to determine the stiffness of nonlinear single degree of freedom structures. Rajab 
and Okabayashi (2011) applied the subspace stochastic realization theories to a real bridge for 
estimating its dynamic characteristics under ambient vibration. A numerical simulation was carried 
out using a white noise excitation. The estimates obtained from this simulation are compared with 
those obtained from the finite element analysis, demonstrating good agreement. Moustafa (2011) 
developed a new framework for modeling design earthquake loads for inelastic structures. The 
ground acceleration is expressed as a Fourier series, with unknown amplitude and phase angle, 
modulated by an envelope function. An inverse dynamic problem is solved to obtain the ground 
acceleration, so that the structure performance is minimized. 
 
 
2. Problem statement 

 
In this study, a damping identification procedure has been proposed based on a mixed 

numerical-experimental approach. The analytical and measured dynamic responses are compared 
in order to identify the damping ratio through minimizing an objective function (Sayed 1998). The 
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focus, in this paper, is directed towards testing the proposed procedure to identify the viscous 
damping behavior which is usually one of the unknown properties of the material and structures. 
Consequently, a linear system has been adopted to decouple the material damping, associated with 
the hysteretic behavior, from the viscous damping. 

In order to examine the proposed procedure, a laboratory experiment has been conducted in 
association with a numerical model. A specimen of hollow rectangular steel cantilever column, 
having three lumped masses, has been considered. In order to enhance the system damping, 
different types of filling material can be added to the hollow specimen (Karunarathne 2001, Tu 
and Wang 2010). In this study, damping enhancement is based on filling the hollow specimen with 
a mixture of both sand and oil (300 ml oil per 1000 ml sand). This mixture is appropriate for the 
scale of specimen used in this study (tube profile in mm: 100 x 40 x 1). It is anticipated that 
viscosity and friction of this mixture shall be activated during specimen vibration, dissipating 
portions of the applied energy. It is worth noting that using concrete as a filling material 
(composite specimen) can be a valid option; however, an appropriate scaling for the specimen 
should be adopted and the modified stiffness should also be identified. 

Beyond the scope of this paper, the same identification procedure shall be applied to a 
nonlinear system, including the hysteretic damping. A kinematic hardening with Von Mises yield 
criterion shall be adopted for steel material and Draker Prager yield criterion with multi-yield-
surface shall be adopted for the sand-oil mixture. Hence, a damage index can then be correlated 
with the identified damping. 
 
 
3. Proposed damping identification procedure 

 
Herein, the system identification technique shall utilize: numerical model, measured excitation 

and measured response in order to identify the modal damping ratios for the used frequencies.  The 
numerical model is made of two modules; the first is to solve the forward problem and the second 
is to solve the inverse problem. The forward problem obtains the structure response knowing the 
input excitation and the dynamic properties of the model. The inverse problem utilizes an 
optimization technique to search for the required dynamic properties that reduce the differences 
between the measured and computed response. In this study, a mixed numerical-experimental 
approach is used to identify the damping characteristics. The procedure can be summarized as 
follows: 
1. Executing an experiment to measure the structural response for a given input excitation. The 
measured response is then digitized, filtered and analyzed 
2. Applying Fast Fourier Transform (FFT) to the measured response in order to obtain the natural 
frequencies of the system. This will help in validating the numerical model. 
3. Applying the decay of motion technique to the measured response to estimate the modal 
damping value that can be used as initial assumption in solving the inverse problem. 
4. Applying the numerical model (Sayed 2002) to obtain the required damping properties using the 
estimated values from 2 and 3 as initial values. 
 

3.1 Experiment setup 
 

In this study, a shaking table (MTS 2011) is used to generate and apply the input excitation 
wave.  
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(a)

(b)

 
Fig. 1 Shaking table components: (a) Uniaxial actuator and (b) fixation table 

Station-1

Station-2

Station-3

 
Fig. 2 The model specimen (cantilever steel tube) fixed on the shaking table, it has three lumped 

masses and data acquisition system installed at the target stations 
 
 

Fig. 1 shows the components of the device. The table has a surface area of 1.5 m x 1.5 m and 
applies uniaxial excitation with a frequency range of 0-25 Hz. 

Fig. 2 shows a real shot for the model specimen, which is a hollow rectangular (tube) steel 
section of 0.1 m x 0.04 m x 0.001 m (length x width x thickness). The steel grade is ST-37/2 with 
an ultimate strength of 3.6 t/cm2 and a yield strength of 2.4 t/cm2. The steel tube has been designed 
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as a cantilever column with a total height of 2 m. Three plates, associated with three rods, have 
been welded at the levels: +0.66 m, +1.33 m and +1.98 m from the base level, namely: station-1, 2 
and 3. These stations represent the locations where lumped masses are added and vibration 
responses are recorded. Hence, the specimen is almost representing a three-degree-of-freedom 
system. The lumped masses have been designed so that the natural frequencies of, at least, the first 
and second modes of vibration are within the frequency range of the shaking table (0-25 Hz). The 
three masses at the three stations, from station-1 to station-3, are: 4 kg, 34 kg and 12 kg, 
respectively, including the mass of all associated devices at the station. Damping of the specimen 
is enhanced through filling the tube with the sand-oil mixture. 

Single-axis accelerometers of FBA ES-U (kinematics 2011) are used to record the input 
excitation and the response of the specimen. Generally, four accelerometers have been employed: 
three of them have been fixed at the three stations, and the fourth has been fixed on the shaking 
table itself to record the input excitation. For each input excitation, the experiment has been 
conducted twice with: (1) hollow specimen and (2) filled specimen. 

 
3.2 Numerical model 
 
Modal models of structures are the numerical models expressed in modal coordinates 

(Gawronski 2004). A modal matrix is used to introduce a new variable called modal displacement, 
z. The purpose of the numerical model is to define the modal damping ratio knowing the modal 
dynamic characteristics of the specimen (mass and stiffness) and the measured response against 
base excitation. 

The forward problem is governed by the following classical equation of motion 

fuuu  KCM                                                        (1) 

where K and C ,M are mass, damping and stiffness matrices respectively, f  and u  are 
excitation and displacement response vectors respectively, and ) (  denotes differentiation with 
respect to elapsed time. Herein, modal damping is used by decoupling the system using a pre-
determined number of mode shapes. The matrix of mode shapes, modal matrix, (Φ ) is used to 
decouple the system as follows 

pzzz  kcm                                                         (2) 

where   Mm T  is the modal mass matrix,   Cc T

 
is the modal damping matrix, 

  Kk T  is the modal stiffness matrix, fp T is the load vector, and z  is the generalized 
degrees of freedom, modal displacement, where zu  Φ . Given the modal mass and stiffness 
and the initial conditions for the structure together with initially estimated (assumed) modal 
damping, Eq. (2) can then be solved for an excitation using Newmark method of integration. 

The modal damping ratios are then the model parameters to be determined through the 
proposed system identification procedure. The model parameters can be identified using the set of 
measurements for the structure response against base excitations. Consequently the model 
parameters ])[( cdiagonali  can be identified by minimizing the error function (objective 
function) G(ρi) that is stemmed from the least square approach by summing the square of the 
errors between measured and identified structure deformations as follows (Sayed 2002) 
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where the superscript (m) denotes measured values of deformation, NOST denotes the total number 
of stations at which the structure deformation are measured, and T is the total number of discrete 
time steps. In order to minimize the objective function, nonlinear unconstrained optimization 
technique is usually used. Consequently, gradients of the objective function with respect to the 
model parameters are required. Differentiating Eq. (3), the following expressions can be obtained 
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where ijkkijikjki zandz ,,   are the first and second derivatives of the modal generalized 
response ( jz ) with respect to the model parameters ( i  or j ). 

The convergence is achieved when the updated values of the parameters differ from the 
previous values by a predetermined error margin. The unconstrained optimization reveals the 
optimal values of the parameters that give minimal value for the objective function. 

In order to determine the structure modal dynamic characteristics: mass and stiffness, a general 
purpose finite element program (SAP 2000) is used. Moreover, the same program is used to 
determine the structure frequencies and mode shapes ( ) required in the analysis. The generated 
finite element model uses frame elements to model a hollow rectangular steel cantilever column 
fixed at the base, inheriting the geometry, material and boundary conditions of the specimen. A 
mass element has been utilized to represent the lumped masses at the three stations along specimen 
height. The boundary conditions have been defined using a base excitation as acceleration time 
history function equal to that recorded by the accelerometer fixed on the shaking table. The 
resulted natural frequencies are 2.9 Hz and 17 Hz for the first and second modes of vibration, 
respectively. The third mode of vibration has a frequency of 77.9 Hz, which is out of the frequency 
range of the shaking table. 

 
3.3 Input excitation 
 
Four waves have been selected for excitation: Sweep1, Sweep2, Kobe earthquake and Loma 

Prieta earthquake. Table 1 lists the earthquake record information. The selection criterion is to 
examine the excitation of both the artificial time history and the real earthquake time history. The 
artificial time history can be chosen to have a specific frequency content that can excite a specific 
vibration mode of the system. The real earthquake time history, however, has its own inherited 
frequency content. The selected records for Kobe and Loma Prieta earthquakes are sample records 
which afford the same frequency content that is capable to excite the system in its modes of 
vibration. The PGA of both records has been scaled up and down in order to apply appropriate 
excitation to the specimen, maintaining its behavior within the linear elastic range. 

The acceleration time history for earthquakes is used as given in the official web site of the 
Pacific Earthquake Engineering Research center (PEER 2011). The main characteristics of Kobe  

208



 
 
 
 
 
 

Damping identification procedure for linear systems: mixed numerical-experimental approach 

Table 1 Earthquake record information (PEER 2012) 

Earthquake Station Record/Component
Magnitude 

(M) 

Epicentral 
distance 

(km) 

HP 
(Hz)

LP (Hz) PGA (g) 
PGV 

(cm/s)
PGD 
(cm)

Kobe 
1995/01/16 

20:46 
0 KJMA KOBE/KJM-UP 6.90 18.27 0.05 null 0.343 38.3 10.29

Loma Prieta 
1989/10/18 

00:05 

1678 
Golden 

Gate 
Bridge 

LOMAP/GGB-UP 6.93 100.19 0.2 30 0.056 11.3 3.81

 
 
earthquake are: peak ground acceleration (PGA) of 0.343 g, time increment of 0.02 sec and wave 
duration of 48 sec. The acceleration time history has been scaled to 70% in order to keep the 
behavior of the system in the elastic range. The main characteristics of Loma Prieta earthquake 
are: peak ground acceleration (PGA) of 0.056 g, time increment of 0.005 sec and wave duration of 
40 sec. The acceleration time history has been scaled to 500% in order to have a significant 
excitation to the system within the elastic range. 

The Sweep excitation is a wave that includes a certain range of frequencies. The test starts with 
an initial frequency that increases with a constant rate to an end frequency within a period of time. 
Sweep1 test starts with a frequency 1 Hz that increases with a constant rate to 10 Hz within 60 sec. 
Sweep2 test starts with a frequency 10 Hz that increases with a constant rate to 20 Hz within 20 
sec. It is worth noting that the frequency range of Sweep1 and Sweep2 tests has been selected so 
that it spans the numerically obtained first mode frequency (2.9 Hz) and the second mode 
frequency (17 Hz), respectively. 

Fig. 3 shows the acceleration time history and the frequency content of the four selected waves. 
For Sweep1 and Sweep2 tests the amplitude of the acceleration increases with time. The reason for 
this pattern is that for low frequencies the displacement corresponding to the input acceleration is 
relatively large as compared to the displacements determined at large frequencies. In order to 
guarantee elastic behavior of the system at low frequencies and at the same time achieve 
significant displacement values that can be applied to the shaking table at high frequencies, a 
pattern of increasing acceleration amplitude has been employed. 
 
 
4. Results and discussion 
 

The proposed identification procedure and the associated results have been summarized as 
follows: 

 
4.1  Data filtering 
 
Filtering has been applied to the recorded raw data in order to remove both the DC shift and 

noise. The noise has been removed through Hanning filter. Fig. 4 shows a filtration sample for an 
acceleration record at Station-3 during Sweep1 test. 
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Fig. 3 Acceleration time history and frequency content for four selected input excitations: (a) Sweep1, 
(b) Sweep2, (c) Kobe earthquake and (d) Loma Prieta earthquake 
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Fig. 4 A filtration sample for an acceleration record at station-3 during Sweep1 test: (a) Raw data and 
(b) filtered data 

 
 

4.2 Fast Fourier Transformation (FFT) 
 
Upon filtering the recorded data, Fast Fourier Transformation (FFT) has been performed to 

transform results from the time domain to the frequency domain. The purpose of FFT is to identify 
the natural frequencies of the system, based on the experimental records, in order to validate the 
numerical finite element model. 

Fig. 5 shows the response at Station-3 in the frequency domain. It compares the response for 
the four exciting waves for the cases of hollow and filled specimen. The peaks shown in Fig. 5. 
indicate the natural frequencies of the system. The frequency content for Sweep1 test (1-10 Hz) 
affords only one peak at the first mode of vibration (see Fig. 5(a)); similarly, the frequency content 
for Sweep2 test (10-20 Hz) affords also one peak, however, at the second mode of vibration (see 
Fig. 5(b)). For Kobe and Loma Prieta earthquakes (see Figs. 5(c) and 5(d)), the frequency content 
includes both modes of vibration; hence, two peaks are observed. It is obvious from Figs. 5c and 
5d that the contribution of the second mode of vibration is almost negligible compared with the 
first mode. Hence, the dynamic properties identified by these two earthquakes shall be considered 
representative for the first mode only. Table 2 summarizes the numerically and experimentally 
obtained natural frequencies of the system. 
 

4.3 Damping initial estimation based on the decay of motion 
 
The Decay of motion technique focuses on the free vibration phase of the displacement 

response. At this phase, the displacement decays exponentially; and hence, the damping ratio can 
be calculated. Table 3 summarizes the initially estimated damping ratio of the system by applying 
the decay of motion technique to the measured displacement response at Station-3. The damping 
ratio has been calculated for the four exciting waves based on two cases of specimen: hollow and 
filled tubes. It is worth noting that the identification based on Sweep1, Kobe and Loma Prieta shall 
be considered representative for the first mode of vibration; meanwhile, the identification based on 
Sweep 2 shall be considered representative for the second mode of vibration. The damping ratio 
associated with the first mode of vibration can be calculated as the average of the results obtained  
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Fig. 5 Acceleration response at station-3 in the frequency domain: (a) Sweep1 Hollow test; (b) Sweep1 
Filled test; (c) Sweep2 Hollow test; (d) Sweep2 Filled test; (e) Kobe Hollow test; (f) Kobe Filled 
test; (g) Loma Prieta Hollow test and (h) Loma Prieta Filled test 
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Table 2 Analytically and experimentally obtained natural frequencies (Hz.) of model specimen 

Test 
Hollow tube Filled tube 

Mode 1 Mode 2 Mode 1 Mode 2 

Sweep1 2.86 N.A. 2.69 N.A. 

Sweep2 N.A. 17.90 N.A. 16.85 

Kobe 2.85 N.A. 2.69 N.A. 

Loma Prieta 2.84 N.A. 2.69 N.A. 

FEM Model 2.86 17.91 2.7 16.9 

 
Table 3 Initially estimated damping ratio of the model specimen based on the decay of motion technique 

Test 
Vibration  

mode 
Hollow tube Filled tube 

Ui Ui+j j ξ% Ui Ui+j j ξ% 

Sweep1 1 4.26 4.78 10 0.185 4.38 5.03 10 0.218

Sweep2 2 0.031 0.036 10 0.247 0.013 0.017 10 0.422

Kobe 1 7.83 8.98 10 0.219 7.06 8.30 10 0.258

Loma Prieta 1 4.24 4.78 10 0.19 6.92 8.14 10 0.258

 
Table 4 Identified damping ratio (%) 

Test Vibration mode Hollow tube Filled tube 

Sweep1 1 0.154 0.219 

Sweep2 2 0.350 0.600 

Kobe 1 0.153 0.202 

Loma Prieta 1 0.156 0.202 

 
Table 5 Modal damping enhancement upon adding the filling material 

Modal damping Hollow tube Filled tube Damping enhancement

ξ1 average (%) 0.155 0.210 35.5% 

ξ2 average (%) 0.350 0.600 74.4% 

 
 
from Sweep1 test and Kobe and Loma Prieta earthquakes. It equals 0.198% and 0.245% for 
hollow and filled specimens, respectively. On the other hand, the damping ratio associated with the 
second mode of vibration is calculated from Sweep2 test. It equals 0.247% and 0.422% for hollow 
and filled specimens, respectively. 
 

4.4 Mixed numerical-experimental identified damping 
 
Given the specimen geometry, material, masses and boundary conditions, the finite element 

model is generated and the modal dynamic characteristics are computed: shape of vibration, mass, 
stiffness, participation factor, and vibration frequency. Given the modal dynamic characteristics 
and the assumed modal damping of specimen, the numerical model is then analyzed in Eq. (2) to 
compute the response: acceleration, velocity and displacement for each input excitation. 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Sweep1 
Hollow

Sweep2 
Hollow

Kobe 
Hollow

Lomaprieta
Hollow

Sweep1 
Filled

Sweep2 
Filled

Kobe 
Filled

Lomaprieta
Filled

Fig. 6 Comparison between measured and computed response at station-3: (a) Sweep1 Hollow test; (b) 
Sweep1 Filled test; (c) Sweep2 Hollow test; (d) Sweep2 Filled test; (e) Kobe Hollow test; (f) 
Kobe Filled test; (g) Loma Prieta Hollow test and (h) Loma Prieta Filled test 
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The equation that governs the assumed damping ratio and indicates its accuracy is called the 
objective function G(ρ) as given in Eq. (3), representing the difference between numerical and 
experimental responses. Newton method of optimization has been employed to minimize the 
objective function and to obtain the modal damping ratio of the system. The numerical model is 
then reanalyzed in Eq. (2) using the identified damping to compute the comparable response. 

Fig. 6 shows a comparison between the measured displacement response at Station-3 and the 
numerically computed response, at the same station, based on the identified damping ratio. It is 
obvious that both responses have almost the same pattern; meanwhile, there is a slight difference 
in the amplitude. Table 4 summarizes the identified values of damping ratio. The damping ratio 
associated with the first mode of vibration can be determined as the average of the results obtained 
from Sweep1 test and Kobe and Loma Prieta earthquakes. It equals 0.155% and 0.210% for 
hollow and filled specimens, respectively. On the other hand, the damping ratio associated with the 
second mode of vibration is determined from Sweep2 test. It equals 0.350% and 0.600% for 
hollow and filled specimens, respectively. 
Aside of the damping identification question, the results have also shown that the damping ratio of 
the system has been increased upon filling the tube with the sand-oil mixture. This can be foreseen 
as a passive control device in the system for energy dissipation. Table 5 summarizes the results of 
the damping ratios (ξ) and the enhancement obtained. The damping ratios of the first and second 
modes of vibration have been increased by 35.5% and 74.4%, respectively, upon adding the filling 
material. This increase is anticipated due to energy dissipation in sand friction and oil viscosity. It 
is worth noting that despite the increase in damping ratio of the system the filling material 
increases, in turn, the mass and consequently the seismic forces applied to the system. Therefore, 
the added mass and the increase in damping should be compromised in order to achieve the 
optimum response in presence of such control device. 
 
 
5. Conclusions 

 
In this study, a damping identification procedure has been proposed based on a mixed 

numerical-experimental approach. The analytical and measured dynamic responses are compared 
in order to identify the damping ratio through minimizing an objective function. The focus, in this 
paper, is directed towards testing the proposed procedure to identify the viscous damping behavior 
for a linear system. In order to examine the proposed procedure, a laboratory experiment has been 
conducted in association with a numerical model. A specimen of hollow rectangular steel 
cantilever column, having three lumped masses, has been considered. In addition, the effect of 
adding filling material to the hollow specimen has been studied in relation to damping 
enhancement. 

The proposed procedure can be summarized in four main steps: (1) Filter the measured 
response to eliminate the DC shift and noise, (2) Apply the Fast Fourier Transformation to 
transform the measured response from the time domain to the frequency domain and then obtain 
the natural frequencies of the system, verifying the physical model against the numerical model, 
(3) Apply the decay of motion technique to the measured response to estimate the initial damping 
ratio of the system and (4) Apply the numerical model (Sayed 2002) to obtain the required 
damping properties through minimizing an objective function that represents the difference 
between the numerically and experimentally obtained responses. 

The conclusions are summarized as follows: 
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1. The results have revealed that the computed response based on the proposed damping 
identification procedure is in a good fitting with the measured response. 
2. Aside of damping identification, the results have also revealed that damping of the system 
has been increased upon filling the tube with the sand-oil mixture. This can be foreseen as a 
passive control device for energy dissipation. However, the added mass of filling material and 
the increase in damping should be compromised in order to achieve the optimum response in 
presence of such control device. 
 
Beyond the scope of this paper, the same identification procedure shall be applied to a 

nonlinear system, including the hysteretic damping. A kinematic hardening with Von Mises yield 
criterion shall be adopted for steel material and Draker Prager yield criterion with multi-yield-
surface shall be adopted for the sand-oil mixture. Hence, a damage index can then be correlated 
with the identified damping. 
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