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Abstract. An enhanced and efficient methodology is proposed for evaluating the robustness of an
uncertain structure with passive dampers. Although the structural performance for seismic loads is an
important design criterion in earthquake-prone countries, the structural parameters such as storey
stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources,
e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust
building design under such uncertain structural-parameter environment may be one of the most
challenging issues to be tackled recently. By applying the proposed method of interval analysis and
robustness evaluation for predicting the response variability accurately, the robustness of a passively
controlled structure can be evaluated efficiently in terms of the so-called robustness function. An
application is presented of the robustness function to the design and evaluation of passive damper
systems.

Keywords: robustness; earthquake response; passive damper; uncertain parameter; interval analysis;
structural control

1. Introduction

In the usual seismic structural design procedure, the maximum dynamic responses have to be

evaluated in a structure subjected to wind or earthquake excitation in order to quantify its structural

safety. For suppressing structural dynamic responses to a lower level to satisfy performance criteria,

various vibration control systems, e.g. passive or active dampers and base-isolation systems, have

been developed and applied to buildings so far. However, it is well known that there exist a lot of

uncertainties in structural parameters caused by various sources, e.g. material-property variability,

initial manufacturing errors, aging deterioration of performance. These uncertainties may lead to

various unexpected situations where the structural response may exceed the performance limit. For

this reason, it is needed to evaluate the degree of uncertainty of structural responses more accurately

and efficiently for the sake of the robust and reliable design under various uncertain environments

of structural parameters.

A number of studies on uncertainty analysis methods have been accumulated which can be used
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to investigate the upper bound of the structural responses considering the uncertainties of structural

parameters (for example see Ben-Haim and Elishakoff 1990, Ben-Haim 2001, 2006, Takewaki and

Ben-Haim 2005, Takewaki 2006, Kanno and Takewaki 2006, Elishakoff and Ohsaki 2010). The

interval analysis is well known as a representative of the reliable uncertainty analysis methods. The

concept of interval analysis was introduced by Moore (1966). Alefeld and Herzberger (1983) have

then done the pioneering work. They treated linear interval equations, nonlinear interval equations

and interval eigenvalue analysis by developing interval arithmetic. Since their innovative

achievements, various interval analysis techniques based on the interval arithmetic algorithm have

been proposed by many researchers (for example Dong and Shah 1987, Koyluoglu and Elishakoff

1998, Qiu 2003).

More recently, some interval analyses using Taylor series expansion have been proposed by Chen

et al. (2003), Chen and Wu (2004), Chen et al. (2009) and Fujita and Takewaki (2011). In the early

stage of the interval analysis using Taylor series expansion, first-order Taylor series expansion was

investigated for the problems of static response and eigenvalue. Chen et al. (2009) developed a

matrix perturbation method using second-order Taylor series expansion and obtained an

approximation of the bounds of the objective function without interval arithmetic. They pointed out

that the computational effort can be reduced from the number of calculation 2N (N: number of

interval parameters) to 2N by neglecting the non-diagonal elements of the Hessian matrix of the

objective function with respect to interval parameters. Furthermore, Fujita and Takewaki (2011)

have proposed the so-called Updated Reference-Point (URP) method where the critical uncertain

structural parameters can be obtained by the approximation of second-order Taylor series expansion

and the upper bound of the structural responses can be evaluated by reanalyzing the structural

response using critical uncertain structural parameters.

In the structural design procedure, the robustness of building structures should be taken into

account under various uncertainties of structural parameters and inputs. Ben-Haim (2001) has

proposed an index, called the robustness function, for measuring the robustness based on the info-

gap decision theory. In the info-gap model, the uncertainty of structural parameters is assumed to be

given by a non-probabilistic model, e.g. an interval model used in the interval analysis. According

to the definition of the robustness function, it can be regarded as a quantitative index of the

robustness of the building structure (Takewaki and Ben-Haim 2008).

In this paper, an efficient evaluation method using the robustness function with respect to the

constraint on seismic performance is presented by taking advantage of the proposed uncertainty

analysis method called the URP method. A planar shear building model with passive viscous

dampers is used for the robustness analysis. By comparing the robustness functions for various

damper distributions, a preferable damper distribution is investigated to enhance the robustness

under various uncertainties of structural parameters.

2. Robustness function for seismic performance

In the structural design of buildings in earthquake-prone countries, the design constraints on

dynamic responses for earthquake loadings should be taken into account. In these design constraints,

the dynamic responses such as maximum horizontal displacement and member stress evaluated by a

reliable time history response analysis are required to check the satisfaction of the performance

criteria. Even if all the design constraints are satisfied at the initial construction stage, some
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responses to external loadings during service life may violate such constraints due to various factors

resulting from randomness, material deterioration, temperature dependence etc. To overcome such

difficulty, the introduction of the robustness function which represents the degree of robustness of

the objective building structure may be one of effective solutions for the design of more robust

building structures under uncertainties.

In this section, a definition of the robustness of building structures for the seismic performance is

introduced based on the info-gap model (Ben-Haim 2001). According to the info-gap model, the

uncertainty of structural parameters is defined as a non-probabilistic model. In this paper, uncertain

structural parameters are assumed to be given by an interval model. The interval parameter XI is

defined by

(1)

In Eq. (1), ( )I and [a, b] denote the definition of an interval parameter where a and b are the

lower and upper bounds of the interval parameter, respectively. Furthermore, ( )c, ∆( ) and N denote

the nominal value of an interval parameter, half the varied range of the interval parameter and the

number of interval parameters respectively. When the uncertainty of structural parameters is given

by the interval vector, it means that the feasible domain of interval parameters is constrained into an

N-dimensional rectangle.

In the info-gap model, the level of uncertainty is defined by a single uncertain parameter α. Based

on the definition of an uncertain parameter α in the info-gap model, the feasible domain of the

interval parameter XI can be regarded as an uncertainty set XI(α)∈R described by 

(2)

In Eq. (2), ∆Xi is regarded as a prescribed value of half the varied range of the interval

parameters. Therefore, it can be mentioned that the uncertainty level of the uncertainty set XI(α)

varies according to the variation of uncertain parameter α. Fig. 1 shows the variation of 2-

dimensional interval model with an uncertain parameter α. When α = 0, the uncertainty set XI(0)

corresponds to a nominal vector of structural parameters. 

The robustness function  for the design constraint of the seismic performance can be defined as

(3)

where f, fc and U(Xc, α) denote the objective function, the performance criterion value and the set of

the possible structural responses in the domain of the uncertainty set XI(α). In Eq. (3), the

robustness function  is the maximum value of the uncertain parameter α which satisfies the

performance criterion. If the nominal value f (Xc) of the objective function violates fc or just

coincides with fc without considering a safety factor, the robustness function  is regarded as zero,

which means that no variability due to the uncertainty of structural parameters can be allowed. In

the case of , a design more robust than  can be achieved by . 

Fig. 2 illustrates the relationship between the robustness function and the allowable domain of

structural design to satisfy the performance criterion fc for 2-dimensional interval parameters. The

robustness function  is derived as the worst case of the objective function, i.e., the upper bound of

the objective function f in . However, when the number of the combinations of uncertain
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parameters is huge, it may be a hard task to evaluate the worst case of the objective function

reliably. For this reason, an efficient uncertainty analysis method is desired which can evaluate the

upper bound of the objective function considering the uncertainty of the structural parameters

accurately and reliably.

3. Efficient uncertainty analysis based on interval analysis 

In this section, the URP (Updated Reference-Point) method proposed by Fujita and Takewaki

(2011) originally for stochastic input is explained which can be used as an efficient uncertainty

analysis to obtain the robustness function . Since the URP method is based on the interval analysis

using an approximation of first- and second-order Taylor series expansion (Fujita and Takewaki

2011), the formulation of Taylor series expansion in the interval analysis and the achievement of

second-order Taylor series expansion proposed by Chen et al. (2009) are explained briefly.

3.1 Interval analysis using taylor series expansion

An approximate objective function f * using first- and second-order Taylor series expansion can be

expressed as

α̂

Fig. 1 Variation of uncertainty set of interval model

Fig. 2 Robustness function for performance criterion
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(4)

where ( ),Xi and ( ),XiXj denote first-order differentiation  and second-order

differentiation  of the objective function at the nominal value. Therefore,

f,Xi
 and f,XiXj

 correspond to a gradient of f and to a component of the Hessian matrix of f for the

nominal model, respectively.

In order to evaluate the upper bound of f *, a basic theorem of “inclusion monotonic” in the

interval analysis is often assumed. The theorem of “inclusion monotonic” is assumed in some of the

previous studies on interval analysis, e.g. Chen et al. (2009). If the natural interval extension f I of f

is inclusion monotonic, the objective function f satisfies

(5)

The right-hand side of Eq. (5) denotes the interval (range) of the function f determined by the

end-point combinations. From Eq. (5), as long as the arguments of f are constrained between

intervals (the lower and upper bounds a and b in [a, b] are also called ‘intervals’), the variation of f

for any interval parameter value within the intervals should be included in the range of values for

the intervals. Based on the theorem of “inclusion monotonic”, we can derive the upper bound of f

by iterative calculations with all end-point combinations, i.e., the upper and lower bounds of interval

parameters. However, when the number N of interval parameters is extremely large, this primitive

approach needs much computational time caused by a large combination number of interval

parameters. Although the computational effort can be reduced by the approximation of Taylor series

expansion in Eq. (4), the number of iterative calculations with all end-point combinations is the

same with the interval analysis method based on the theorem of “inclusion monotonic”, e.g. Dong

and Shah (1987).

By using the approximation of Taylor series expansion, iterative response analyses such as time-

history analysis for evaluating the objective function can be avoided. However, the computation of

full elements of the Hessian matrix requires hard computational load when N is large, especially for

numerical sensitivity analysis, i.e., the finite difference analysis using gradient vectors. For this

reason, a simpler approach has been proposed by Chen et al. (2009) where the non-diagonal

elements of the Hessian matrix are neglected.

An approximate objective function f ** using second-order Taylor series expansion with only

diagonal elements can be rewritten from Eq. (6) as

(6)

From Eq. (6), we can evaluate the increment of the objective function by using first- and second-

order Taylor series expansion as the sum of the increments of the objective function in each one-

dimensional domain. The perturbation ∆fi(X) of the objective function by the variation of the i-th

interval parameter Xi can be described as

(7)
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The validity of the neglect of cross terms has been demonstrated in the reference (Fujita and

Takewaki 2011). In Eq. (7), the interval extension of the one-dimensional perturbation can be

derived as

(8)

From Eq. (8), the upper bound  of Eq. (7) can be derived by the comparison of ∆fi with

structural parameter sets  and . Since Eq. (7) is a

function of X, it is natural to define an upper bound of that function. Finally, substituting

(i = 1,...,N) into Eq. (6), the interval extension of the approximate objective function f ** can be

obtained as

(9)

It is remarkable that the number of calculations in Eq. (9) is reduced to 2N from 2N in Eq. (6).

However, it should be mentioned that, because of the approximation by Taylor series expansion, the

deterioration of accuracy can not be avoided when the level of uncertainties of interval parameters

is large.

3.2 Proposed search algorithm for critical combination of interval parameters

The approximation using Taylor series expansion can reduce computational load dramatically in

the interval analysis. However, we should take into account that the result by such approximation

may include errors. Furthermore, although some of the interval analysis methods are based on

“inclusion monotonic”, it is not necessarily appropriate to assume the monotonic variation of the

objective function for dynamic responses. When the objective function has a non-monotonic

property in U(Xc, α), the extreme value of the objective function may occur not on the bound of

interval parameters but in an inner feasible domain of interval parameters. Even in such a case, we

can achieve the robustness evaluation by reanalyzing the structural response via a reliable response

analysis for the estimated critical combination of interval parameters (worst case). In this section, an

efficient search algorithm for the critical combination of interval parameters is presented which

makes the approximate objective function maximum by using first- and second-order Taylor series

expansion.

Consider Eq. (7) again. When the perturbation  of the structural parameter in Eq. (7) is

denoted by ∆Xi, Eq. (7) can be transformed into

(10)
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This transformation is just a simple mathematical transformation. From Eq. (10), it can be seen

that the increment of the objective function with respect to Xi is parabolic in the one-dimensional

domain. By using Eq. (10), we can search the target position of the uncertain structural parameter

X1 which maximizes the objective function based on the second-order Taylor series expansion. For

instance, when f,XiXi
<0, the target position  of the i-th interval parameter Xi which maximizes Eq.

(10) can be derived explicitly as

(11)

The first case of Eq. (11) indicates that the critical value occurs in the inner domain. On the other

hand, the second and third cases mean that the critical value occurs at the boundaries.

 The target positions of the other interval parameters can be obtained successively in a similar

way. The feature of this proposed methodology is that we consider a possibility of occurrence of the

extreme value in an inner range of interval parameters and that only the first- and second-order

sensitivities of the objective function are needed.

 Eq. (11) indicates that the target position of Xi can be derived by first- and second-order

sensitivities f,Xi
, f,XiXi

 of the objective function with respect to Xi. For evaluating these sensitivities,

we need to define a reference point. From the general point of view, it may be natural that first- and

second-order sensitivities with diagonal elements only are calculated at the reference point of the

nominal model. However, it is difficult to consider the influence of the interaction between the

interval parameters in this approach. The authors have proposed the updated reference-point method

(URP method) where the different computational procedure for the evaluation of first- and second-

order sensitivities is applied. A detailed flow of the computation procedure of the URP method is

explained below. The conceptual diagram of the URP method for 2-dimensional interval parameters

is shown in Fig. 3.

X̂i

Fig. 3 Conceptual diagram of the URP method
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Step 1 Calculate the first-order sensitivities f,Xi(i = 1,...,N) of the objective function for the nominal

model.

Step 2 Sort the absolute values | f,Xi|(i = 1,...,N) of the first-order sensitivities in descending order to

give the priority to the parameter with the largest sensitivity. Sort also the interval

parameters as XA = {XA1,...,XAN} corresponding to this.

Step 3 Calculate the second-order sensitivity of the objective function with respect to the interval

parameter XAk. The second-order sensitivity  can be derived as a scalar value.

When k ≥ 2, i.e., the reference point of the objective function has been updated, the first-

order sensitivity of the objective function with respect to the interval parameter XAk should

be calculated again.

Step 4 Derive the target position  of the interval parameter where the approximate objective

function f **(X) is maximized. The problem in this step can be stated as

(12)

Step 5 Update the set of interval parameters from current one XAk  to .

Step 6 Update the corresponding system structural matrices such as C and K at the new

reference point.

Step 7 Update k to k+1. Repeat Step 2 through Step 6 until k becomes N.

4. Application to building structure with passive dampers

Any structural properties or responses, such as eigenvalue, static and dynamic responses, can be

employed as the objective function in the proposed URP methods. From the view point of seismic

structural design, the applicability of the URP method to building structures with passive dampers is

investigated as an example where the objective function is defined as maximum interstorey drift for

a set of recorded ground motions.

4.1 Structural model with passive dampers and selection of uncertain parameters

Consider an N-storey planar shear building model, as shown in Fig. 4, with viscous dampers and

their supporting members. Let Mi, kfi, cfi, cdi and kbi (i = 1,...,N) denote the floor mass, the storey

stiffness of the frame, the structural damping coefficient, the damping coefficient of the passive

damper and the supporting member stiffness of the damper in the i-th storey, respectively. It has

been shown that the supporting member stiffness of dampers plays an important role in the optimal

distribution of dampers (Fujita et al. 2010a). The frame stiffness distribution in the nominal model

is shown in Fig. 5 (N = 20). The properties of structural parameter of the nominal model are shown

in Table 1.

The equations of motion of the building with viscous dampers subjected to the horizontal ground

motion can be expressed in time domain by 

∂2
f ∂XAk

2⁄

X̂Ak

Find X̂Ak

so as to maximize or minimize f
**

X( )

subject to XAk XAk( )I∈ XAl:current value l k≠( ), ⎭
⎪
⎬
⎪
⎫

X̂Ak
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(13)

where M, C, CD, K and Kb are the system mass, structural damping, damper damping, structural

stiffness and supporting member stiffness matrices, respectively. Furthermore r = {1,...,1}T is the

influence coefficient vector. By assuming that a viscous damper connected in series with its

supporting member is treated as a detailed model in which a small lumped mass is allocated

between the components of the dashpot and the spring, the components of the K, Kb and CD can be

given by a linear combination of structural parameters kfi, cdi, kdi (i = 1,...,N). The Newmark-β

method (β = 1/4) has been employed to evaluate the maximum interstorey drift.

The structural parameters  and  are dealt with as interval

parameters. The interval parameters of these uncertain structural parameters are described with

uncertain parameter α by

Mu·· t( ) C CD+( )u· t( ) K Kb+( )u t( )+ + Mru··g t( )–=

cd cd
i

{ } kb kb
i

{ }=,= kf kf
i

{ }=

Fig. 4 Structural model with passive damper Fig. 5 Storey stiffness distribution

Table I Structural parameters of main frame

20-storey building

Floor mass [kg] 1024×103

Total damper capacity [Ns/mm] 6.000×108

Supporting member stiffness [N/mm] Ratio 1.0 to frame storey stiffness

Structural damping ratio
(stiffness-proportional damping)

0.02

Fundamental natural circular frequency* 
with damper [rad/s]

3.927

*Complex eigenvalue analysis without dampers
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(14a,b,c)

The uncertainties of interval parameters  are given by (i = 1,...,3N)

defined by

(15)

Eq. (15) assumes that the degrees of uncertainties of interval parameters is constant for all storeys

on the same structural properties in the following numerical examples. 

4.2 Recorded ground motions

El Centro NS (1940), Taft EW (1952) and Hachinohe NS (1968) are used as representative

recorded ground motions, whose maximum ground velocities are normalized as 50 cm/s. These

earthquake ground motions are often used for structural design (Level 2 of large earthquake ground

X
I

cd

I
kb

I
kf

I, ,{ }= ε εi{ }=

Fig. 6 Normalized recorded ground motions: (a) El Centro NS (1940), (b) Taft EW (1952) and (c) Hachinohe
NS (1968)
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motion) of high-rise and base-isolated buildings in Japan. Figs. 6(a)-(c) show the normalized

recorded ground motions.

4.3 Robustness function for various damper distributions

In this section, the robustness functions defined by Eq. (3) for various damper distributions are

evaluated by the URP method. Fig. 7 shows the comparison of maximum interstorey drifts of the

building structure without dampers for three recorded ground motions. It could be observed from

Fig. 7 that the interstorey drift is maximized at upper storeys higher than 15-th floor. For enhancing

the seismic performance of the building structure, let us consider three different damper

distributions: (1) uniform distribution, (2) added only from 10-th to 20-th storeys and (3) optimum

distribution. In these various damper distributions, the total quantity of damping coefficients of the

viscous dampers is given by a constant value as shown in Table 1. Fig. 8 shows the comparison of

the maximum interstorey drifts with three different damper distribution shown in Fig. 9. The

optimum damper distribution has been derived by the optimization algorithm developed by Fujita et

al. (2010b) to minimize the maximum amplitude of interstorey drift transfer function.

Figs. 10(a)-(c) show the robustness functions with respect to the constraint on the maximum

interstorey drift for the three representative recorded ground motions. These figures can be obtained

by using the method in Section 3 and evaluating the maximum interstorey drift for various values of

. The maximum interstorey drift of the nominal model without considering uncertainty of the

structural parameters can be seen in Figs. 10(a)-(c) at the uncertainty parameter . By

comparing these nominal values of the objective function for various damper distributions, it is

found that the most preferable response reduction can be obtained by the damper distribution from

11-th to 20-th storey in El Centro NS (1940) and Hachinohe NS (1968). On the other hand, the

most preferable response reduction can be obtained by the optimal damper distribution in Taft EW

(1952). Since the optimal damper distribution aims to suppress the maximum amplitude of

interstorey-drift transfer function at the fundamental natural circular frequency, the response

reduction can be achieved dramatically for the excitation, such as Taft EW (1952), whose

predominant frequency is resonant to the fundamental natural circular frequency of the objective

building structure. From Fig. 10(b), if the performance criterion with respect to the maximum

interstorey drift is given by 0.03 m, the robustness function  is nearly 0.8 for the optimal damper

α̂

α̂ 0=

α̂

Fig. 7 Maximum interstorey drift without dampers Fig. 8 Comparison of maximum interstorey drift with
various damper distributions 
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Fig. 9 Various damper distributions: (a) Uniform, (b) 11-20 storeys and (c) Optimum

Fig. 10 Comparison of robustness functions for various damper distributions: (a) El Centro NS (1940), (b)
Taft EW (1952) and (c) Hachinohe NS (1968) 
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distribution while nearly 0.4 for the 11th-20th storey distribution. From this comparison, it can be

concluded that a large robustness can be obtained by the optimal damper distribution.

From the view point of seismic structural design, the total quantity of added dampers may be a

principal design parameter. In the general design procedure, the total quantity of dampers is

determined based on the condition whether the dynamic responses satisfy the constraints with a

certain safety factor ρ. However, it is often ambiguous whether the values of these safety factors are

appropriate or not. On the other hand, such total damper quantity can be derived in a more logical

manner by using the ‘robustness function’ for the structural uncertainty. Fig. 11(a) shows the

conceptual diagram of the re-design approach for determining the total damper quantity for a robust

building structure, which can be derived by varying the robustness function with respect to the total

damper quantity. The thick curve can be drawn by evaluating the dynamic response for various total

quantities of dampers (nominal parameters). In Fig. 11(a), when the performance criterion fc and the

Fig. 11 Redesign of total quantity of passive dampers for robust structures: (a) total quantity of dampers for
no robustness, small robustness and large robustness for a given performance criterion and (b) total
quantity of dampers for the robustness function representation and the safety factor representation
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robustness function  are given (0, 0.5 and 1.0), an appropriate total damper quantity can be found

(Design 1, 2, 3). If the value of  is assumed to be large, the total damper quantity will increase

and a large robustness can be achieved. Fig. 11(b) illustrates the relation of total quantities of

passive dampers for the robustness function representation and the safety factor representation

(Design 4). It can be observed that the robustness function of Design 4 with a safety factor ρ is

between 0.5 and 1.0. A clear understanding may be possible of the meaning of the safety factor in

terms of the structural robustness.

Figs. 12(a) and (b) show a comparison of variations of the robustness functions with respect to a

varied total quantity of damping coefficient for Taft EW (1952) between (a) uniform distribution

and (b) 11-20 storey distribution. The markers depicted in Figs. 12(a) and (b) have been determined

by the robustness function evaluated by the URP method. The contour plot has been constructed

from these robustness functions by assuming that the variation of the robustness function can be

obtained by the third-order polynomial approximation. As explained in Fig. 11, the total damper

quantity can be obtained by just satisfying the given performance criterion under the uncertainty of

the structural parameters. For instance, when the performance criterion fc on the maximum

interstorey drift is assumed to be 0.03 as shown in Fig. 12, the total damper quantity for the

uniform damper distribution is less than 0.8×109 Ns/m on . On the other hand, the total

damper quantity for the 11-20th storey distribution is about 1.8×109 Ns/m, which is more than twice

that for the uniform distribution. In Fig. 12(b), no response reduction can be observed for the large

damper quantity. This is because the location where the interstorey drift is maximized may be

switched to a lower storey by the addition of dampers to upper storeys (11-20 storeys) and further

introduction of dampers to upper storeys is ineffective.

It is noted that addition of damping to a given system enhances the robustness of the system

response with respect to the variability of the input. As for the variabilities of both the input and

system properties, the uncertainty level of the input possesses a trade-off relation with the

uncertainty level of the system properties under a constant robustness requirement (Takewaki and

Ben-Haim 2005, 2008).

α̂

α̂

α̂ 1.0=

Fig. 12 Variation of robustness functions with respect to varied total quantity of damping coefficient for Taft
EW (1952): (a) Uniform distribution and (b) 11-20 storey distribution
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5. Conclusions

A robustness function for the constraint on dynamic response of building structures with passive

dampers subjected to ground motions has been defined based on the info-gap decision theory. For

evaluating the reliable robustness, an efficient uncertainty analysis methodology for the robustness

evaluation of a damped structure has been proposed which is aimed at finding the upper bound of

dynamic response under uncertainties of structural parameters.

In the proposed uncertainty analysis method, a model of uncertain parameters has been defined by

using an interval model. Although the basic theorem of “inclusion monotonic” is assumed in some

of the interval analyses proposed by many researchers, the critical combination of interval

parameters in a feasible domain, not only on the bounds but also in an inner domain of interval

parameters, has been derived explicitly in the proposed method. By evaluating the extreme value of

the objective function via the approximation of second-order Taylor series expansion, the upper

bound of the objective function can be obtained straightforwardly for the predicted structural

parameter set. To evaluate the upper bound of the objective function more accurately within a

reasonable task, the URP (Updated Reference-Point) method has been proposed where the reference

point to calculate first- and second-order sensitivities has been updated according to the variation of

uncertain structural parameters.

Numerical examples using the robustness function has been presented for a 20-storey planar shear

building including passive viscous dampers with supporting members by applying the proposed

URP method. A detailed comparison of the robustness of the structures where the additional

dampers have been distributed (1) uniformly, (2) from 11-th to 20-th storey and (3) optimally has

been conducted for representative recorded ground motions. The optimum damper distribution has

been derived by the optimization algorithm developed by the present authors to minimize the

maximum amplitude of interstorey-drift transfer function. By comparing the robustness functions

among the various damper distributions, the large robustness can be obtained in the design of

optimal damper distribution especially for the excitation whose predominant frequency is resonant

to the fundamental natural frequency of the building structure.

An approximate contour plot of the robustness function with respect to a varied total damper

quantity has been constructed by using the proposed method. By comparing the contour plots of the

robustness function for various damper distributions, a total damper quantity can be derived which

satisfies the performance criterion under the uncertainty of the structural parameters. It has also

been shown that it is possible to clarify the relation of total quantities of passive dampers for the

robustness function representation and the safety factor representation. It is expected that this leads

to a more robust damper design.
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