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Abstract. We modify the formulation of a recently developed absorbing boundary condition (ABC), the
perfectly matched discrete layers (PMDL), to incorporate the excitation coming from the exterior such as
earthquake waves. The modified formulation indicates that the effect of the exterior excitation can be
incorporated into PMDL ABCs (traditionally designed to treat only interior excitation) simply by applying
appropriate forces on the nodes connected to the first PMDL layer. Numerical results are presented to
clearly illustrate the effectiveness of the proposed method.

Keywords: perfectly matched discrete layer; absorbing boundary; soil-structure interaction; seismic
domain truncation

1. Introduction

Simulation of dynamic interaction between a structure and the surrounding soil is of significant

importance in predicting the response of large structures under earthquake loading. The basic

procedure of solving such a soil-structure interaction (SSI) problem is to split the analysis domain

into (a) an interior, which is the structure and a small region of the soil surrounding the structure

and (b) an exterior, which is the rest of the unbounded soil. The interior is typically approximated

using standard finite element discretization. On the other hand, the exterior is not explicitly

discretized, but its effect is captured with the help of special boundary conditions called absorbing

boundary conditions (ABC), which are designed to mimic the wave absorption characteristics of the

unbounded exterior. ABCs are typically designed for problems where the excitation is in the

interior; this paper is focused on problems where the excitation comes from the exterior, such as

earthquake loading.

An approach to utilize ABCs with the energy input coming from the exterior is the generalized

substructure method (see e.g. Kausel et al. 1978 and references therein); the method is based on the

concept of elimination of the exterior degrees of freedom, resulting in the dynamic stiffness of the

exterior along with an effective force vector. The effective application of the force vector is treated

by, e.g. (Kausel et al. 1978, Nuray 1993, Bielak et al. 2003, Yoshimura et al. 2003) and
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predecessors. In this paper, we develop a method similar to generalized substructure method, which

builds on the concept of perfectly matched discrete layers (PMDL), an effective ABC developed in

the recent years by the authors. Specifically, we show that the approach developed around PMDL

accurately, efficiently and seamlessly captures the effect of exterior excitation.

The outline of the paper is as follows. Section 2 presents the model problem motivated by seismic

soil-structure interaction. Section 3 contains a summary of PMDL. Section 4 outlines the approach

to treat exterior excitations, followed by specific formulation and implementation details pertaining

to PMDL. This section also contains some discussion on how the formulation readily extends to

time-domain and/or nonlinear soil-structure interaction analyses. Section 5 contains the numerical

examples that clearly illustrate the effectiveness of the proposed method, while final remarks are

made in Section 6.

2. Model problem

We start by considering a standard soil-structure interaction problem, where a structure is partially

embedded in an unbounded soil represented by half-space (see Fig. 1(a) for a schematic). The

response of the (heterogeneous) structure and the nearby soil can be nonlinear, while the soil away

from the structure is expected to behave linearly and is homogeneous. The loads can come from the

structure, or in the form of earthquake excitation coming from the far field. Such a system is

typically analyzed by limiting the soil domain around the region of nonlinearity/heterogeneity, and

replacing the rest of the (unbounded and linear) domain by special conditions on the truncation or

computational boundary (Fig. 1(b)).

Since the main focus of the paper is to develop techniques for domain truncation, we simplify the

above problem by assuming that the interior domain is linear - such a simplification does not reduce

the complexity of the exterior or the associated domain truncation technique. Furthermore, the

interior soil-structure system can be abstractly considered as an inhomogeneous solid as shown in

Fig. 2. Such interior domain is represented by Ωi. The rest of the domain, i.e., the exterior, is

represented by Ωe. The interface between the interior and exterior is represented by the

computational boundary Γc. The physical boundaries of the interior and the exterior are represented

by Γi and Γe respectively. Note that Γi can be of arbitrary shape, while Γe is regular in shape,

Fig. 1 Setup of typical soil-structure interaction problem: (a) original problem and (b) reduced problem
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typically a flat surface. The loading can be coming from the interior, or in the form of external

excitation by prescribed far field incident wave field u(x, y, t).

The simplified problem in Fig. 2 can be further reduced by limiting the analysis to time-harmonic

problems. Thus the excitation in the interior, the external excitation, as well as the response of the

system is harmonic in time. The limitation to linear time-harmonic problem is mainly for the sake

of simplicity in presenting the proposed approach. We emphasize that the presented ideas easily

extend to transient problems with nonlinear interiors shown in Figs. 1 and 2; appropriate remarks

related to such an extension can be found throughout this paper.

In light of the above discussion, we focus on developing a robust and efficient methodology for

solving the problem presented in Fig. 3. For the case of anti-plane shear, the mathematical definition

of the problem includes

a. The governing differential equation

, (1)

, (2)

where u = uz is the anti-plane displacement, G is the shear modulus, ρ is the density and ω is the

temporal frequency. f is the body force, which is limited to the interior; the only loading in the

 

 

Fig. 2 An idealization of soil-structure interaction problem; note that the loading in the interior can also be
inside the domain

Fig. 3 The model problem: (a) original problem and (b) reduced problem
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exterior comes from the incident harmonic waves. Note that the interior can be nonlinear and

heterogeneous, indicating that, in Eq. (1), G can be spatially varying and be a function of stress/

strain levels. The exterior, on the other hand, is assumed to be linear, with constant G. 

b. Nonhomogeneous Neumann boundary condition is applicable at interior physical boundary Γi.

For anti-plane shear, the boundary condition takes the form

on Γi, (3)

where n is the normal direction and φi is the applied traction.

c. Homogeneous Neumann boundary condition on Γe, i.e.,

on Γe, (4)

d. Radiation condition is applicable in the absence of exterior loading, which indicates that the

waves can only travel outwards. For homogeneous half-space in anti-plane shear, the radiation

condition takes the form

, (5)

where wavenumber k = ω/c, and wave velocity . In the presence of exterior excitation,

the scattered wave field, i.e., the difference between the total and incident wave fields, satisfies the

radiation condition

, (6)

where u0 is the displacement associated with incident wave field.

Eqs. (1)-(4) along with Eq. (5) or (6) constitute a complete and precise definition of the full

model problem shown in Fig. 3(a).

Our goal is to solve the full model problem by limiting the region of analysis to the interior, thus

Eqs. (1) and (3) remain the same, while Eqs. (2), (4) and (5) are replaced by a condition that is

written in the form

Tc = Keuc, (7)

where  is the traction on the interior at Γc, uc is the corresponding displacement, and

Ke is the dynamic stiffness of the exterior. Clearly, Eq. (7) does not model the exterior, but only its

effect on the interior. Since this condition has the effect of wave absorption into the exterior, Eq. (7)

is often referred to as an absorbing boundary condition (ABC). 

Eq. (1), coupled with Eqs. (3) and (7) can be solved using standard finite element method,

provided that Ke is available and amenable to numerical computation. Unfortunately exact Ke is

often not possible to compute. Even when if it is feasible to obtain exact Ke, it renders the

G
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computation expensive as the exact Ke is nonlocal in space, thus resulting in dense matrices; in the

case of time-domain simulations, in addition to dense matrices, the computation involves

convolution in time. A standard way to reduce the computational cost is to approximate Ke by a

local operator that renders the computation efficient. Several techniques are developed to this end;

further details can be found in Section 3. In this paper, we focus on the ABC developed by the

authors - the perfectly matched discrete layers (PMDL) − which is also summarized in Section 3.
While the above discussion is focused on anti-plane shear, the same procedure is applicable for

in-plane waves, but slightly more complicated. Specifically, the governing equation is given by

(8)

where u = {ux, uy}
T is the displacement vector containing x and y components, coefficient matrices

Gαβ are functions of the elastic moduli and f is the body force vector. The boundary and radiation

conditions in Eqs. (3)-(6) take corresponding vector forms, resulting in the final ABC given by Eq.

(7) also taking a vector form.

In cases where the excitation is not limited to the interiors, the absorbing boundary condition must

be modified in an appropriate way to capture the effect of exterior excitation. The basic idea in

developing such modified boundary condition, along with specific formulation using the PMDL can

be found in Section 4 − this is the main contribution of this paper.

3. Perfectly matched discrete layers

Most ABCs developed to date can be categorized into global and local ABCs. Global ABCs can

be highly accurate but contain nonlocal spatial and/or temporal operators requiring significant

computational cost. An example of a successful global ABC is the consistent transmitting boundary

developed by Waas and successors (see e.g. Lysmer et al. 1974, Kausel et al. 1981). Local ABCs

on the other hand are comparatively less accurate but extremely efficient and are thus suitable for

large scale problems. The most popular local ABCs currently available are rational approximation

based ABCs (rational ABCs) and perfectly matched layers (PML). Rational ABCs approximate the

exact stiffness of the exterior with rational functions and were initially introduced by (Lindman

1975, Engquist and Majda 1977, 1979), with generalized forms later found by (Higdon 1986, 1987,

1990). While early implementations of rational ABCs were limited to low-order approximations,

current auxiliary variable formulations (Givoli 2004) are implementable to an arbitrarily high order

of accuracy. In contrast with rational ABCs, the PML is specially designed absorbing medium that

dampens propagating waves without creating artificial reflections at the computational boundary;

PML was initially introduced by Bérenger (1994), later enhanced by Chew and coworkers (see e.g.

Chew and Weedon 1994, Chew et al. 1997) and many other researchers.

Though rational ABCs and PML were developed through entirely disparate ideas, recent

developments have unearthed underlying links between the two and shown that certain rational

ABCs can be viewed as efficient versions of PML (Asvadurov et al. 2003). One such ABC is the

perfectly matched discrete layer (PMDL) formerly called continued fraction ABC (CFABC) (Guddati

and Lim 2006, Guddati et al. 2008). PMDL inherits the straightforward and efficient approximation

properties of rational ABCs along with the versatility of PML and are thus used for the present

∂
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study. More specifically, PMDL can be viewed as a particularly efficient form of PML that

approximates the exterior stiffness without any discretization error. PMDL has several desirable

properties (for further details, see Guddati and Lim 2006, Guddati 2006): (a) it is applicable

whenever exterior governing equation is second order in space (equations with both scalar and

vector wavefields), (b) it can absorb both propagating and evanescent waves, (c) it lends itself to an

explicit error expression in the form of a simple reflection coefficient and (d) it is applicable to

convex polygonal corners. PMDL’s applicability is limited to polygonal computational boundaries

with straight edges. Also, like other existing ABCs, PMDL is limited to linear exteriors that are

homogeneous in the direction of unboundedness. In what follows, we give a brief summary of the

PMDL formulation.

PMDL approximates the stiffness of the unbounded exterior using mid-point integrated linear

finite elements. Mid-point integration is used here with a purpose entirely different from the

traditional use of numerical integration in finite elements and needs to be clarified. As stated before,

we can conceptually divide the given analysis domain into an interior and an exterior. The interior

can be approximated using traditional finite elements, while we need special treatment of the

exterior. Without any loss of generality, we consider interior discretization with bilinear elements to

illustrate the treatment of the exterior. Dynamic stiffness of such bilinear elements is evaluated using

2 × 2 Gauss quadrature. Thus, Ωi can be replaced by an assembly of bilinear elements with 2 × 2

integration, as illustrated in Fig. 4. 

On the other hand an assembly of complex-length finite elements with just one integration point

in the direction of unboundedness, can be shown to efficiently approximate the effect of the exterior

at the computational boundary. The basic idea is illustrated in Fig. 5, while the details of the

validity of the approach can be found in (Guddati and Lim 2006, Guddati 2006). The resulting

mesh that approximates the dynamic stiffness of the exterior is termed the perfectly matched

discrete layers (PMDL). Note that the mesh in Fig. 5(e) approximates the continuous half-space

only with respect to the stiffness at the left most node; the remaining nodal displacements within the

exterior (right half-space), subsequently denoted by , do not have any direct physical meaning.

Instead, they should be considered as auxiliary variables that help approximate the half-space

stiffness. Extending the approach in Fig. 5 to two dimensions, we can replace the exterior with

PMDL mesh as shown in Fig. 6. Note here that the 2-D mesh at the corners is a tensor product of

the 1-D PMDL meshes shown in Fig. 5.

ũe

Fig. 4 Interior model using traditional finite element discretization involving finite elements with linear shape
functions and 2 × 2 numerical integration. Note that higher order shape functions with correspondingly
higher order numerical integration can also be used
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For the governing equation given by Eq. (2), the variational form with the standard Galerkin

approach gives the following dynamic stiffness matrices of the rectangular elements (using linear

shape functions in both x and y and using 2 × 2, 1 × 2, 2 × 1 and 1 × 1 integration rules)

Fig. 5 PMDL approximation: the impedance of the continuous half-space can be approximated by an
assembly of mid-point integrated linear finite elements. Further details can be found in (Guddati and
Lim 2006, Guddati 2006). The concept can be extended to higher dimensions through simple tensor
product ideas, as shown in Fig. 6
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, (9)

, (10)

, (11)

, (12)

In the above, Lx, Ly are the element lengths in x and y directions. The assembly of the elements in

accordance with Figs. 4 and 6, and using the above equations yields the usual linear system

{F} = [K]{u}, where {F},{u} are the global force and displacement vectors and [K] is the global

dynamic stiffness matrix. For convenience, as shown in Fig. 7, we partition the displacement vector

{u} in terms of the degrees of freedom belonging to the interior, computational boundary and the

exterior as {u} = {ui ub }T. With corresponding partitions in the force vector and the dynamic

stiffness matrix, we get

 

 

 

 

ũe

Fig. 6 PMDL approximation of the exterior in 2-D. Note that midpoint integration is performed in the
direction perpendicular to the boundary, while regular 2-point integration is used along the boundary.
Corners require tensor product of 1-D PMDLs, resulting in midpoint integration in both directions
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, (13)

where the separate interior and exterior contributions are written as

, (14)

, (15)

In the above equations, Fi and Fb=  are respectively the tractions on Γi and Γb with nb
being the outward normal of the exterior on Γb (or the inward normal of the interior). Referring to

Eqs. (9)-(12) and Fig. 6 we note that Kii, Kib, Kbi and Kbb are formed by the assembly of 2x2S and

 and  are formed by an appropriate assembly of 1x2S, 2x1S and 1x1S. The zero in the

exterior force vector is in accordance with Eq. (4).

The ‘tilde’ on the exterior displacement dof is used to emphasize the fact that these quantities do

not represent the solution field in the exterior. In fact we can condense out the auxiliary dofs from

Eq. (15) to get

Exterior effect: . (16)

We can now clearly see the reduced problem of Fig. 3 containing just the interior, which is

obtained by combining the interior stiffness relation Eq. (14) combined with the exterior effect in

Eq. (16). Note that by the virtue of the fact that PMDL captures the dynamic stiffness of the

exterior, it automatically captures the effect of the radiation condition in Eq. (5).

While the compact form Eq. (16) clearly illustrates the reduced model concept, the auxiliary

variable form of Eq. (15) is more amenable to subsequent derivations. For later convenience we

rewrite Eq. (15) as

 

 

 

G∂ub ∂⁄ nb

K̃bb K̃be K̃eb, , K̃ee

 

Fig. 7 Partitioning of dofs into interior, boundary end exterior. The exterior dofs are further divided into
exterior dofs adjacent to the boundary (ue

1
) and the rest of the exterior dofs (uerest)
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, (17)

where the exterior dof vector is further partitioned into  and  as shown in Fig. 7.

4. Incorporation of external excitation

The previous section is focused on the case where there is no excitation from the exterior. When

there is excitation from the exterior, e.g. earthquakes, the total wavefield can be represented as

u = uI + uS where uI is the incident wavefield in the absence of the scatterer, and uS is the scattered

wavefield. In this case only uS satisfies the standard radiation condition in Eq. (5) and thus satisfies

the PMDL approximation in Eq. (16), i.e.,

(18)

Using ui = uIi + uSi, ub = uIb + uSb in the above and rearranging we get

.
(19)

Since uI is known, the left hand side can be explicitly calculated and applied as tractions on the

reduced model to determine uS. This represents the final result of the formulation and is illustrated

in Fig. 8.

The above solution methodology of splitting u into uI, uS and solving for uS separately utilizes

ũe
1

ũe
rest

 

 

Fig. 8 Final algorithm: note that the shaded regions represent the interior with standard finite element
discretization, while the rest of the mesh represents the PMDL mesh. The effective load is applied on
the boundary nodes (represented by stars), and the adjacent nodes in the PMDL mesh (represented by
x’s)
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linear superposition and is not valid for non-linear interiors. In such cases, we have to solve for the

total wavefield u; a methodology for doing this, specifically in the context of PMDL, is the main

contribution of this paper.

Since the goal is to formulate the problem in terms of the total wavefield u, by noting that

uS = u − uI and thus, uSi = ui − uIi and uSb = ub − uIb, Eq. (17) takes the form

.
(20)

Since FSb = G∂(ub − uIb)/∂nb the above equation becomes

.
(21)

Since the right hand side is dependent on the known uI, it can easily be calculated.

Before moving on with numerical examples, few comments are in order with respect to the

proposed formulation:

a. Numerical implementation of the proposed formulation is quite straightforward and requires

minimal modification to an existing FEM/PMDL code. The contribution from the exterior loading is

given by the right hand side of Eq. (21) and takes the form of nodal forces associated with the

boundary nodes and the line of nodes next to the boundary in the exterior. These forces can be

computed and assembled while computing the stiffness contributions of the exterior elements that

are connected to the computational boundary.

b. While we explained the methodology using bilinear finite element discretization of the interior,

the procedure is applicable to general higher order finite element discretizations. In such cases, the

exterior is discretized using a consistent discretization in the direction of the boundary, while in the

direction perpendicular to the boundary, linear interpolation with midpoint integration must be used.

c. The PMDL idea and the extension to exterior excitation is explained with the help of simpler

anti-plane shear wave equation in Eq. (2). However, the ideas described here are readily applicable

to more complex elastic wave equation in Eq. (8). The basic ideas of PMDL for general vector

wave equations can be found in (Guddati 2006), and the application to ABCs for elastic media can

be found in (Guddati et al. 2008, Savadatti and Guddati 2010a, b, 2011a, b).

d. Similarly, the ideas presented here are also applicable to time-domain simulations that are

essential for nonlinear problems. Details of the time-domain formulation of PMDL can be found in

(Guddati and Lim 2006, Guddati et al. 2008). It must however be noted that for more complex

elastic wave equations with exterior heterogeneities and anisotropy, the issues of stability for general

ABCs including PMDL are yet to be fully resolved.

e. Note that the methodology proposed here is different from (Bielak et al. 2003, Yoshimura et al.

2003) and its predecessors in that, the proposed approach is an integrated approach that does not

necessitate the introduction of an additional layer to apply the effective force. It can somewhat be
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viewed as an efficient, accurate and seamless solution of Eq. (10) in (Kausel et al. 1978).

5. Numerical experiments

In this section we present two numerical examples that demonstrate the effectiveness of the

proposed method. The first example focuses on anti-plane shear deformation of a cylindrical valley

under incident SH waves, while the second example considers the more complicated in-plane

deformation of a strip footing under incident SV waves. The valley has softer material, i.e., the

impedance is smaller than that of the surrounding half space, while the footing is harder with the

impedance larger than that of the surrounding soil. In both cases, the surrounding half space is

considered linear, homogeneous and isotropic elastic. Note that the current method is applicable,

with some restrictions, to anisotropic and heterogeneous exteriors, but is limited to straight (not

curved) computational boundaries. There is no restriction on the interior though; it can be nonlinear,

anisotropic and heterogeneous.

5.1 Anti-plane deformation of a valley

The 2D model problem considered for modeling anti-plane deformations is shown in Fig. 9(a) and

consists of a semicircular alluvial valley of radius H in a half-space. The interior is a rectangular

region (size 2L×L) surrounding the valley (L>H) and the exterior half-space is modeled by PMDL

ABCs on all sides of the interior except the free top surface. The mass density ρ and the shear

modulus G are sufficient to characterize the material and the ratio of impedances of the material in

the half-space to that of the valley  is assumed to be 4 while the ratio of shear

wave velocities (chs/cv) is assumed to be 16. The incident excitation is assumed to be harmonic of

the form uz-Inc(x, y) = eiω(xsinθ/chs + ycosθ/chs−t) where  is the shear wave velocity in the

ρhsGhs ρvGv⁄( )

chs Ghs ρhs⁄=

Fig. 9 (a) physical model involving a semicircular valley embedded in a half-space and (b) schematic of the
finite element mesh, with the PMDL ABCs simulating the effect of the half-space on the interior at the
computational boundary. Edge PMDLs with midpoint integration only in the x direction (1 × 2
integration) are used to simulate an unbounded domain in the horizontal direction on the right and left
sides of the interior while those with midpoint integration only in the y direction (2 × 1 integration) are
used to simulate an unbounded domain in the vertical direction at the bottom of the interior. Corner
PMDL elements use midpoint integration in both directions (1 × 1 integration)
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half-space, ω is the temporal frequency and θ is the angle of incidence with respect to the vertical.

A representative mesh is shown in Fig. 9(b) with the interior modeled by regular isoparametric

bilinear finite elements using 2 × 2 Gauss quadrature with at least 20 elements per shortest

wavelength. We assume L = 1.5H with the PMDL lengths being lx-pmdl = 2ichs/(ωsinθ) and ly-pmdl
= 2ichs/(ωcosθ) for . The reason for choosing these particular PMDL lengths is because a

PMDL of length 2ichs/ω is known to absorb completely a propagating wavemode travelling with

velocity chs and frequency ω (Guddati and Lim 2006, Guddati 2006) and the incident wavemode in

this case has effective horizontal and vertical velocities of chs/sinθ and chs/cosθ respectively. These

PMDL lengths are used as Lx = lx-pmdl in Eqs. (10) and (12); as Ly = ly-pmdl in Eqs. (11) and (12). The

exact deformation for the physical model in Fig. 9(a), denoted by uz-exact(x, y), is obtained from the

analytical expressions derived in (Trifunac 1971). The response of the computational model using

PMDL ABCs (like the one in Fig. 9(b)) is denoted by uz(x, y). 

Fig. 10 shows the percentage error ||uz(x, 0) − uz−exact(x, 0)||/||uz−exact(x, 0)||×100 in deformations at

the top surface for varying number of PMDL ABC layers and indicates that as few as 2 PMDL

layers are sufficient to achieve engineering accuracy (<1%). It should be noted that while the error

reduces as expected with increasing number of PMDL layers, it plateaus around 6 to 7 layers. This

plateau represents the interior discretization error inherent in the computational model and is

independent of the ABC used; with increasing fineness of the interior discretization, this plateau

tends to zero. In the current case, 6 PMDL layers result in an exterior model that produces an error

in the interior no greater than that introduced by the interior discretization itself, i.e. there is no

appreciable additional error introduced due to the use of PMDL ABCs. We hence use a 6-layer

PMDL in plotting Figs. 11 and 12, which show respectively, the variation of normalized displacement

amplitude and phase angle with varying normalized frequency for a particular point on the top

surface namely (x, y) = (0.5H, 0). Normalized displacement amplitude, phase angle and normalized

frequency are defined respectively as |uz(x, y)|/|uz−homog(x, y)|, tan
-1(Imag(uz(x, y))/Real(uz(x, y))) and

ωH/cv. The term uz−homog(x, y) = eiω(xsinθ/chs + ycosθ/chs−t)+eiω(xsinθ/chs − ycosθ/chs−t) represents the total wavefield

in a homogeneous half-space in the absence of the semicircular scatterer and hence the normalized

displacement amplitude over the top surface represents the site amplification due to the presence of

the semi-circular valley. Both Figs. 11 and 12 clearly demonstrate the accuracy of the proposed

θ 0 90
o,≠

Fig. 10 Variation of percentage error in displacement norm at top surface 
||uz(x, 0) − uz−exact (x, 0)||/||uz−exact (x, 0)||×100 with number of PMDL layers for θ = 60o and a normalized
frequency of ωH/cv = 4
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method over the entire range of normalized frequencies.

In the example of Fig. 9, heterogeneities and nonlinearities (if they existed) are assumed to be

restricted to the semi-circular valley. Hence the ABC that is supposed to model the linear

homogeneous half-space can technically be applied right outside the valley − the use of an interior
larger than the semi-circular valley (2L × L rectangular region enclosing the semi-circle) is used

partly for simplicity and partly to overcome the limitation of PMDL ABC that it is only applicable to

straight (not curved) boundaries. Even with this limitation, it should be noted that the interior could

have been restricted to a polygonal region very close to the semicircular valley as shown in Fig. 13;

PMDL elements for such polygonal domains have been developed in (Guddati and Lim 2006). Of

course, if the smallest interior that envelopes all the heterogeneities and nonlinearities has only

Fig. 11 Variation of normalized displacement amplitude |uz(x, y)|/|uz-homog(x,y)| with normalized frequency ωH/cv
for θ = 60o and (x, y) = (0.5H, 0)

Fig. 12 Variation of phase tan-1(Imag(uz(x, y))/Real(uz(x, y))) with normalized frequency for θ = 60o and
(x, y) = (0.5H, 0)
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simple straight edges (as in the case of a rectangular footing for example), PMDL can be placed

right adjacent to the interior and this is demonstrated in the subsequent numerical experiment.

5.2 In-plane response of a strip footing

The 2D model problem considered for modeling in-plane deformations is shown in Fig. 14(a) and

consists of a strip footing of size 4H × H embedded in a half-space. The interior is rectangular with

size 4L × L (L ≥ H) and the effect of the exterior half-space is modeled by PMDL ABCs on all sides

of the interior except the free top surface as shown in Fig. 14(b). Assuming that the footing is made

of concrete and surrounded by a soil half-space, specific gravities of ρc = 2.3 and ρhs = 2.0, Poisson’s

ratios of vc = 0.2 and vhs = 0.33, and shear wave velocities of cc = 3000 m/s and chs = 1000 m/s are used

Fig. 13 Polygonal PMDL elements help reduce the extent of the interior

Fig. 14 (a) physical model involving a rectangular footing embedded in a half-space and (b) finite element
mesh with the PMDL ABCs simulating the effect of the half-space on the interior at the
computational boundary. Edge PMDLs with midpoint integration only in the x direction (1 × 2
integration) are used to simulate an unbounded domain in the horizontal direction on the right and left
sides of the interior while those with midpoint integration only in the y direction (2 × 1 integration)
are used to simulate an unbounded domain in the vertical direction at the bottom of the interior.
Corner PMDL elements use midpoint integration in both directions (1 × 1 integration). Note that in
some of our simulations, PMDL is placed right next to the footing, i.e., L = H
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as the representative material properties for the footing and the half-space respectively. The incident

excitation is assumed to be a harmonic in-plane SV wave of the form uInc(x, y) = {ux−Inc uy−Inc}
T

= ψeiω(xsinθ/chs + ycosθ/chs−t) where ω is the temporal frequency, θ is the angle of incidence with respect to

the vertical and ψ is the eigenvector of the quadratic eigenvalue problem (Gxx sin
2θ +(Gxy + Gyx)sinθ

cosθ + Gyycos
2θ − ρchs

2)ψ = 0. As before, the interior is modeled by regular bilinear finite elements

using 2 × 2 Gauss quadrature with at least 20 elements per shortest wavelength. A representative

mesh is shown in Fig. 14(b) with the PMDL lengths assumed to be lx-pmdl = ly-pmdl = 2(1 + i)chs/ω. It

should be noted that in contrast to the anti-plane shear wave experiment, the lengths of PMDL are

complex. This is because just as a PMDL with purely imaginary lengths (e.g. 2ichs/ω) is known to

be effective in absorbing propagating wavemodes, a PMDL with purely real lengths (e.g. 2chs/ω)

will be effective in absorbing evanescent wavemodes and a PMDL with complex lengths (e.g.

2(1 + i)chs/ω) will be effective in absorbing both propagating and evanescent wavemodes; it is well

known that mode conversion due to reflection of elastic waves can generate both propagating and

evanescent wavemodes, leading us to choose complex element lengths.

The response we wish to study is that of the computational model like the one in Fig. 14(b) with

L = H i.e., one where the interior is restricted to just the footing; this deformation is denoted by

u(x, y) ={ux uy}
T. The reference deformation is denoted by uref(x, y) ={ux-ref uy-ref}

T and is obtained

from a similar computational model with L = 1.5H i.e., with an expanded interior with the

computational boundary away from the actual footing. 

Fig. 15 shows the percentage error ||ux(x, 0) − ux−ref (x, 0)||/||ux−ref (x, 0)||×100 (and similarly for uy)

in deformations at the top surface for varying number of PMDL ABC layers and indicates that 4

PMDL layers are sufficient to achieve engineering accuracy (<1%). The plateau effect discussed

before is evident here too and after 6 to 7 PMDL layers the error reaches that due to interior

discretization. As before, we use a 6-layer PMDL in plotting Figs. 16 and 17 which show

respectively, the variation of normalized displacement amplitude and phase angle with varying

normalized frequency for a particular point on the top surface, (x, y) = (2H, 0). Normalized

displacement amplitude and phase angle are defined as in the case of anti-plane deformation (now

for ux and uy separately) and normalized frequency is defined as ω(2H)/chs. Both figures demonstrate

the accuracy of the proposed method over the entire range of normalized frequencies.

Fig. 15 Variation of percentage error in displacement norm at top surface 
||ux(x, 0) − ux−exact (x, 0)||/||ux−exact (x, 0)||×100 (similarly for uy) with number of PMDL layers for θ = 60o

and a normalized frequency of ω2H/chs = 4
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6. Conclusions

We developed a method to incorporate the exterior excitations in the context of soil-structure

interaction by modifying the formulation of perfectly matched discrete layers (PMDL), an effective

absorbing boundary condition developed recently by the authors. Specifically, it is shown that the

imposition of the exterior excitation is simply achieved by applying consistent forces on the nodes

connected to the first PMDL layer. Given the proven accuracy of PMDL, and as confirmed by

presented numerical experiments, the proposed approach results in an accurate, efficient and

seamless way to analyze soil-structure systems under earthquake excitation.
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Fig. 16 Variation of normalized displacement amplitude |ux(x, y)|/|ux-homog(x, y)| (similarly for uy) with normalized
frequency ωH/cv for θ = 60o and (x, y) = (2H, 0) 

Fig. 17 Variation of phase tan-1(Imag(ux(x, y))/Real(ux(x, y))) (similarly for uy) with normalized frequency for
θ = 60o and (x, y) = (2H, 0)
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