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1. Introduction 
 

The evaluation of existing masonry arch bridges 

represents an important task, related with human safety, 

social and economic issues but also with the conservation of 

architectural heritage. The oldest bridges still in service on 

vehicular, railways or pedestrian networks dated back to the 

medieval age or even earlier, while most of the worldwide 

current bridge stock was constructed in the 18
th

 and the 19
th
 

century when no specific provisions were engaged for 

earthquake actions. Nevertheless, many of these bridges are 

located within seismic zones. Thus, it can be inferred that 

the assessment of these structures cannot be accomplished 

neglecting their vulnerability to in-plane and out-of-plane 

seismic actions. 

In this paper, an analytical procedure based on the Limit 

Analysis (LA) is proposed in order to carry out fast 

evaluations of the in-plane seismic capacity of masonry 

arch bridges. In the context of definition of an intervention 

scale priority on the existing masonry bridge stock, these 

kinds of models could be used in order to achieve a rational 

funds management. The procedure aims at the determination 

of the in-plane seismic load multiplier and the 

corresponding collapse mechanism according to Heyman’s 

hypotheses (1969). Thus no-tensile strength, infinite 

compressive strength and pure rotational failure mechanism 
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are assumed for masonry. The arch is considered subjected 

to its self-weight, to the weight of the backfill and to the 

inertial loads induced by seismic action. The effects related 

to the presence of the backfill are considered in the calculus 

with the application of the active pressure, the seismic 

increment on the side from which the earthquake acts and 

the pressure exerted by the backfill on the opposite side as a 

consequence of the mechanism development. In particular, 

special attention has been deserved to the determination of 

this latter pressure, introducing a new model for the 

description of such effect that takes into account the shape 

of the collapse mechanism produced by the horizontal 

seismic action. For this reason, in the following, the effect 

related to this resistance will be called “mechanism thrust”. 

A parametric investigation has been carried out on 

arches with different rise/span ratios by using both the 

proposed procedure and a numerical Finite Element 

approach, in order to compare the results in terms of 

collapse load and kinematic mechanism. The FE model 

consists of the bridge structural parts and the surrounding 

soil, each of them characterized by non-linear constitutive 

materials, able to describe the structural response obtaining 

a consistent estimation of the collapse conditions. 

 

 

2. Literature review 
 

In the last decades the research effort to set up 

analytical, numerical and experimental procedures to assess 

the aging masonry arch bridges still in service along the 

existing road and railway networks increased continuously 

and a recent literature review has been published by 

Sarhosis et al. (2016). Among the analytical procedures 

several major contributions can be cited. De Santis and de 

Felice (2014) proposed a fiber beam-based methodology to 

study the dynamic behaviour of masonry arches and arch 

bridges capable of describing both the non-linear material 

properties and the seismic action. Da Porto et al. (2016)  
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carried out a parametric study on the seismic capacity of 

masonry arch railway bridges through a procedure based on 

limit analysis, providing the limit horizontal acceleration 

associated to the longitudinal and transversal collapse as 

function of the bridge geometry. Several methodologies 

based on limit analysis have been also proposed to take into 

account the increased load carrying capacity of masonry 

road bridges, associated to strengthening interventions with 

fiber reinforced composites (D’Ambrisi et al. 2015, 

Bertolesi et al. 2018), or the effects related to settlements at 

springings (Di Carlo et al. 2018, Galassi et al. 2018, 

Zampieri et al. 2018). 

Finite elements models have been also frequently used. 

Drosopoulos et al. (2006) proposed a method based on 

finite element analysis having interfaces with unilateral 

contact with friction. The method allows evaluating the 

collapse load using a path-following technique and 

considering the occurrence of cracking produced by the 

opening or sliding of some interfaces. Nonlinear analyses 

based on the FE method have been also performed by 

several authors, in order to assess the capacity of masonry 

bridges under seismic loads (Pelà et al. 2009, Pelà et al. 

2013, Zampieri et al. 2015, Rovithis and Pitilakis 2016, 

Sayin 2016, Zampieri et al. 2017) or eccentric vertical 

loads, by investigating different 3D shapes (e.g., skew 

arches) and comparing the results with other codes based on 

limit analysis approach (Milani and Lourenço 2012). 

The evaluation of masonry arch bridges by means of 

experimental investigations is definitely more complex and 

expensive and very few references can be found in the 

literature on real scale bridge tests (Page 1987, Brencich et 

al. 2016). Conversely, there exist several investigations 

carried out on reduced scale specimens of masonry arches 

with no fill (Huges et al. 1998, Krajewski and Hojdys 2015) 

or on very small scale models of arches with fill (Burroughs 

et al. 2002, Callaway et al. 2012). 

As far as the seismic action is concerned, several studies 

exist for isolated masonry arches, both in static and 

dynamic field (Franciosi 1986, Oppenheim 1992, Clemente 

1998, De Lorenzis et al. 2007, DeJong et al. 2008, Alexakis 

and Makris 2014, Calderini and Lagomarsino 2015, 

Cavalagli et al. 2016, Cavalagli et al. 2017, Severini et al. 

2018, Stockdale et al. 2018), while other studies assume the 

presence of the backfill applying the seismic action to the 

external live load (Caporale et al. 2006). Within this 

context, the definition of a consistent model of the backfill 

 

 

effect on the masonry arch due to seismic load requires 

further investigations. 

 

 

3. Description of the limit analysis based procedure 
 

Let us consider a masonry arch bridge of circular shape 

with abutments. The problem considers the interaction 

between the structure and the surrounding backfill, typically 

constituted by granular material, under the action of the 

self-weight and the seismic loads. 

The following parameters, shown in Fig. 1, define the 

geometry of the structure: span l, arch thickness s, rise f of 

the arch, height h and width g of the abutment, height hc of 

the backfill at the crown. Moreover, a horizontal upper 

surface of the backfill and an out-of-plane depth d have 

been assumed. 

 

3.1 Analytical development 
 

The failure condition of a masonry arch bridge in 

presence of its self-weight, the weight of the backfill and 

the seismic action has been investigated by referring to the 

classical limit analysis procedure established by Heyman 

(1969). Thus, the following hypotheses have been assumed 

for the masonry: no-tensile strength, infinite compressive 

strength and no-sliding between the voussoirs. Three 

conditions are assumed to be verified at collapse: i) 

resistance criterion, ii) equilibrium and iii) mechanism 

condition. The first and second condition correspond to the 

existence of a line of thrust everywhere contained inside the 

boundary of the arch thickness and satisfying the 

equilibrium with the acting loads. In general, when seismic 

action is considered, the third condition requires the 

activation of a four-hinges mechanism. An iterative 

procedure, developed in MATLAB environment and briefly 

described below, has been used to determine the collapse 

mechanism and the corresponding seismic load multiplier. 

The masonry arch bridge has been analyzed considering 

the presence of the circular arch, the abutments and the 

backfill, which has an horizontal overall dimension of l+2g, 

with the geometrical parameters introduced in the previous 

section. Since the backfill is taken into account uniquely as 

a load, the bearing structure is composed of the arch and the 

abutments. The analysis has been carried out as a 2D 

problem in the plane of the bridge. The arch and the  

 
Fig. 1 Nomenclature and geometry of the masonry arch bridge 
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abutments are discretized into n voussoirs, numbered from 

left to right (Fig. 2). The resulting n+1 joints are obtained 

for the arch and the abutments by radial and horizontal cuts 

respectively. The four collapse hinges and the 

corresponding joints have been denoted by M, Q, T, U and 

by m, q, t, u. 

After the definition of the geometrical parameters, the 

coordinates of the following points are determined by 

referring to the Cartesian reference system (z, y) of Fig. 2: 

center of gravity Gvi of the i
th

 voussoir, intrados Ij, extrados 

Ej and geometric center Pj of the j
th

 joint. The backfill is 

discretized into r elements obtained by intersecting the 

horizontal top line and the extrados with vertical lines 

starting from the points Ej, as shown in Fig. 2. The 

coordinates of the center of gravity Gbk of the k
th

 backfill 

element are then evaluated. 

Still referring to Fig. 2, the structure is subjected to the 

action of the self-weight of the voussoirs Fvi, the backfill 

elements weight Fbk, the active Sa and mechanism Sm 

backfill pressure acting on the arch and abutments, the 

seismic increment of the active pressure P
aE

-S
a
 and the 

seismic actions related to the mass of the voussoirs 
S

viF  

and backfill 
S

bkF . The resultant loading system consists of 

vertical and horizontal loads applied at the centers of 

gravity of the voussoirs and backfill. 

The self-weight of the i
th

 voussoir and of the k
th

 backfill 

element, applied at the corresponding centers of gravity Gvi 

and Gbk, can be evaluated as follows 

vi v viF A d                   (1) 

bk b bkF A d                  (2) 

where γv and γb represent the masonry and backfill specific 

weight respectively, Avi the area of the i
th

 voussoir, Abk the 

area of the k
th
 backfill element, with i=1 to n and k=1 to r. 

The seismic action is modelled through a system of 

horizontal forces proportional to the vertical weights of the 

voussoirs and the backfill through a multiplier μ; these 

forces are directed, without loss of generality, from left to 

right. The seismic force related to the i
th

 element of the arch 

or abutments is applied at the centre of gravity Gvi 

S

vi viF F                    (3) 

with i=1 to n. Based on the contents of the next paragraph, 

the seismic force associated with the mass of the backfill  

 

 

has been determined by considering only the masses placed 

on the left side of the bridge, thus resulting 

S

bk bkF F                  (4) 

with k=1 to r/2, being each force applied at the center of 

gravity of the underneath voussoir (Fig. 2). This assumption 
relies on the fact that the seismic action on the backfill 
placed on the right side of the arch is mainly transmitted to 
the neighboring material by horizontal axial stresses, rather 
than transmitted by shear stresses to the underneath 
material. 
 

3.1 Backfill horizontal pressure 
 

In the evaluation of the seismic load multiplier μ, the 

pressure of the backfill on the arch and on the abutments 

cannot be neglected. Although in some papers the effect of 

the lateral active and passive pressure has been included 

(Ng and Fairfield 2004, Miriano et al. 2016), the role of the 

backfill in the in-plane seismic load bearing capacity of 

masonry arches still need to be further investigated. 

The essential role played by the backfill in the stability 

of arched structures subjected to vertical loads is well 

known. It can be considered as composed by three different 

effects: 

1) the stabilizing effect of the backfill self-weight; 

2) the horizontal pressure produced by the backfill in 

static conditions on the lateral sides of the abutments; 

3) the stabilizing effect of the backfill stiffness that 

produces a pressure distribution that opposes to the arch 

deformation. 

Whereas the stabilizing effect of the backfill self-weight 

has been always considered in the assessment of masonry 

arches, only in the last decades the advantages arising from 

including its stiffness in the analysis have started to be 

taken into account. This effect is well documented, for 

instance, by Gago et al. (2011) who showed that loading 

distributions similar to that of the backfill self-weight in 

circular arches produce quasi circumferential lines of thrust. 

They also highlighted two favourable effects: the restriction 

of the lateral movement of the loaded voussoirs, giving rise 

to a smaller effective span of the arched structure, and the 

distribution over a wider length of the arch of any 

concentrated load applied to the top of the backfill. Molins 

and Roca (1998) were among the first to take into account 

the backfill stiffness, by means of its discretization into a  

 

Fig. 2 Weight of voussoirs and backfill and inertial forces acting on the four-hinge arch 
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system of equivalent linear elements. Their analysis showed 

that only when the active contribution of the spandrel infill 

was included, satisfactory agreement could be obtained 

between the numerical simulation and the corresponding 

experimental measurements. Recently, the effect of the 

backfill has been modelled by means of lateral springs 

(Callaway et al. 2012) or by means of horizontal pressures 

just behind the abutments. In this last case, the passive 

pressures have been derived from the general theories such 

as those stated by Rankine, Coulomb, Mononobe and 

Okabe. As well known, in these theories the equilibrium of 

a volume of soil that moves as a rigid body without internal 

deformations is analyzed taking into account the soil 

internal friction and the friction between the wall and the 

soil. 

Nevertheless, very different assumptions on the value 

and the distribution of the passive pressures can be found in 

literature, as shown in Fig. 3. A constant value of the 

passive pressure coefficient Kp=0.5 has been proposed by 

 

 

 

Gelfi and Capretti (2001) in studying the stability of arches 

and vaults. Burroughs et al. (2002) proposed a modified 

lateral pressure coefficient Ke function of K0 and Kp as 

 0 0e pK K e K K   
 

(5) 

in which e is an empirical parameter, calibrated through 

experimental tests, equal to 1/3.  

Ng and Fairfield (2004) assumed a bi-linear backfill 

pressure distribution model, obtained using Rankine’s 

theory with values of the coefficient of the horizontal 

pressure between the at rest value K0 and the passive one 

KP. Smith et al. (2004) adopted the model proposed by 

Burroughs et al. (2002) but with values for the coefficient e 

in the range 0.25÷0.45 and with a reduction in the lateral 

stress toward the hinge U as shown in Fig. 3. Gago et al. 

(2011) assumed the contribution of the backfill in the global 

equilibrium of the mechanism only between the two hinges 

T and U shown in Fig. 3. Da Porto et al. (2016) assumed a 

complete distribution of the active and of the passive 

 

Fig. 3 Comparison of different passive pressure distributions used by different researchers 

 
(a) 

 
(b) 

Fig. 4 (a) Kinematic mechanism and corresponding displacements of the masonry arch under vertical and horizontal loads. (b) 

Active pressures and mechanism thrust distributions at collapse used in LA method 
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pressures behind the abutments for the entire height of the 

backfill. 

It can be observed that no agreement exists on the 

modelling of passive pressures in the analytical studies of 

the collapse mechanism of masonry arch bridges. 

Moreover, it seems that no one of the above mentioned 

analytical models can be generally adopted to describe the 

pressures generated by the effective collapse mechanism. 

This lack of agreement can be probably ascribed to the fact 

that the mentioned theories (Rankine, Coulomb, …) 

describe quite well the condition encountered in the case of 

retaining structures, but they cannot match the collapse 

mechanism occurring in the case of masonry arch bridges 

that differs significantly from a solid translation of a soil 

volume. 

In the present work, the distribution and the entity of the 

passive pressure, called in the following “mechanism 

thrust”, have been evaluated taking into account the shape 

of the mechanism at collapse. The idea, as shown in Fig. 4, 

is that the collapse mechanism produces a passive 

increment of horizontal pressure only in the volume of the 

backfill material interested by outwards displacements of 

the arch and abutments. It is assumed that the entity of the 

mechanism thrust is proportional to the horizontal 

deformation imposed to the backfill material by the 

horizontal displacement of the voussoirs at the collapse 

(Fig. 4(a)). This mechanism pressure distribution is then 

summed up to the active pressure distribution to obtain the 

total horizontal pressure distribution at collapse on the right 

side. The value of the maximum increment produced by the 

resistance of the backfill has been assumed equal to the 

value of the passive pressure calculated with the classical 

theories at the depth at which the maximum horizontal 

displacement is caused by the collapse mechanism. 

Thus, a bi-linear distribution of the mechanism thrust 

has been applied to the portion of the arch that moves into 

the backfill, as shown in Fig. 4(b). Null values of pressure 

have been considered at the top backfill level and at the 

extreme right hinge U, while the maximum value of the 

passive pressure has been assumed in correspondence of the 

extrados point at joint t where hinge T takes place. The 

slope of the upper branch of the triangular diagram has been 

obtained from the Rankine passive pressure coefficient KP 

1 sin '

1 sin '
pK









                (6) 

being ϕ′
 
the friction angle of the backfill. Hence, the slope 

of both the upper and the lower branches of the diagram can 

be uniquely evaluated. This assumption agrees with the 

indications found in the literature (LimitState 2014) to take 

into account the improbable mobilization of the total 

passive pressure that would occur only in presence of high 

displacements of the structure. Hence, the total mechanism 

thrust is equal to 

21 1
( ) ( )

2 2T

m

b p c E c U b p cS K f s h y f s h y d K h d             

21 1
( ) ( )

2 2T

m

b p c E c U b p cS K f s h y f s h y d K h d             (7) 

being yET
 the coordinate of the extrados point Et of the joint 

corresponding to the hinge T and yU the coordinate of the 

hinge U (Fig. 4(b)). 

Finally, the active horizontal pressure of the backfill has 

been evaluated according to the Rankine theory, assuming 

planar failure surfaces and level backslope of the backfill. 

Hence, the active pressure coefficient is 

1 sin '

1 sin '
aK









                (8) 

and the total active thrust is equal to 

2 21 1
( )

2 2

a

b a c b a cS K h f s h d K h d            (9) 

It is clear that the proposed model for backfill pressures 

is approximated, since it ignores the stiffness and the 

resistance of the material placed at a level higher than that 

of the arch crown extrados, which opposes to the arch 

deformation. 

According to (CEN 2008), masonry arch bridges 

subjected to in-plane seismic action can be considered as 

structures which essentially follow the horizontal seismic 

motion of the ground (“locked-in” structures). Thus, these 

structures do not experience significant amplification of the 

horizontal ground acceleration. Following the Mononobe-

Okabe pseudo-static approach, the resultant active thrust in 

seismic condition P
aE

, including the contribution of the 

static active pressure S
a
, is equal to 

2 21 1
( ) (1 ) (1 )

2 2

aE

b aE c v b aE c vP K h f s h k d K h k d            

2 21 1
( ) (1 ) (1 )

2 2

aE

b aE c v b aE c vP K h f s h k d K h k d            (10) 

where KaE is the Mononobe-Okabe active pressure 

coefficient 
2

2

2

cos ( ' )

sin ( ') sin ( ' )
cos cos cos( ) 1

cos( ) cos( )

aEK
  

    
    

    

 


   
     

   

 
2

2

2

cos ( ' )

sin ( ') sin ( ' )
cos cos cos( ) 1

cos( ) cos( )

aEK
  

    
    

    

 


   
     

     

 (11) 

arctan
1

h

v

k

k
 


              (12) 

The coefficient kh is the horizontal ground acceleration 

due to the earthquake, while kv=0.5 kh is the vertical one. 

The parameter δ is the friction angle between the abutment 

and the backfill, ζ is the inclination angle of the abutment 

surface respect to the vertical direction and β is the 

inclination angle of the top line of the backfill respect to the 

horizontal direction. The configuration of the adopted 

backfill pressures is shown in Fig. 4(b). 

Moreover, it must be emphasized that the correct 

evaluation of the active and passive pressures is not a 

simple task for the impossibility of knowing, with the 

necessary accuracy, the geotechnical and mechanical 

properties of the backfill material, sometimes non-

homogeneous, employed for the construction of masonry 

bridges. 
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3.3 Evaluation of the collapse condition 
 

The collapse mechanism of the structure and the 

corresponding seismic load multiplier μ are attained by the 

following iterative procedure. A first trial configuration of 

the hinges position is assumed and the equilibrium imposed. 

If the resulting line of thrust, i.e., the line linking the centres 

of pressure of the normal force at each joint, is everywhere 

inside the arch thickness, the resistance criterion is satisfied 

and the solution is found. On the contrary, if the line of 

thrust falls outside the arch, the position of the hinges must 

be changed and the equilibrium imposed again. In order to 

get the right solution, each hinge is shifted toward the joint 

where the distance between the centre line of the arch and 

the line of thrust is maximum. 

Let us denote by VU and HU the vertical and horizontal 

reactions at the hinge U (Fig. 2), by Rvi the resultant 

horizontal backfill pressure acting on the i
th

 voussoir and by 

yRvi
 its application point coordinate, having assumed the 

resultant horizontal backfill pressure acting from left to 

right for the voussoirs with i=1 to n/2 and from right to left 

for the voussoirs with i=n/2+1 to n. Assuming that hinges M 

and Q take place at the left side of the structure, while T and 

U at the right one, the moment equilibrium about the hinges 

M, Q and T gives 

 
1 1

1 1

( ) ( ) ( )

                                                                          + ( ) ( ) 0

( ) ( )

tu

vi bk

tu tu

vi vi

rn
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(13) 

where n and r refer respectively to the number of voussoirs 

and the backfill elements, with the associated subscripts that 

identify the delimiting joints. In detail: ntu, nqu and nmu 

represent respectively the number of voussoirs between the 

joints t-u, q-u and m-u; nqc (nmc) is the number of voussoirs 

between the joint q (m) and the joint at the crown c= n/2+1, 

while ncu is the number of voussoirs between the joint at the 

crown c and u. Relatively to the backfill: rωξ, rεξ and rδξ 

represent respectively the number of backfill elements 

placed above the voussoirs included between the joints ω, ε, 

δ and ξ; rεc and rδc represent respectively the number of 

backfill elements placed above the voussoirs included 

between the joints ε, δ and c, being: ω=t or b if the hinge T 

is placed respectively on the arch or on the right abutment, 

ξ=u or b if the hinge U is placed respectively on the arch or 

on the right abutment, ε=q or a if the hinge Q is placed 

respectively on the arch or on the left abutment, δ=m or a if 

the hinge M is placed respectively on the arch or on the left 

abutment (Fig. 2). The system of equations (13) can be 

solved in order to provide the reactions at hinge U and the 

seismic load multiplier μ. The complete knowing of the 

loading system allows the determination of the eccentricity 

of the normal force at each joint and the drawing of the line 

of thrust. In order to verify if the line of thrust, obtained by 

linking the centres of pressure, is anywhere inside the 

masonry, the following conditions must be satisfied at each 

joint of the arch and abutment respectively 

2 2
j

s s
e                    (14) 

2 2
j

g g
e                   (15) 

for j=1 to n+1. It should be noticed that the sign of equality 

holds only in correspondence of the joints m, q, t and u. If 

the resistance criterion is satisfied, then the position of 

hinges identifies the actual failure mechanism and the 

corresponding seismic load multiplier. Otherwise, 

necessarily the hinges have to be moved and the procedure 

repeated. Further details about the iterative procedure can 

be found in (Cavalagli et al. 2016). 

As an example, in Fig. 5 is reported the application of 

the proposed analytical procedure to the case of a masonry 

arch having the following geometrical properties: l=10.0 m, 

s=0.8 m, f=4.0 m, h=3.0 m, g=1.4 m, hc=1.0 m, and d=1.0 

m. The yellow line inside the arch represents the thrust line 

at the collapse, which is tangent to the four hinges 

highlighted with green circles. On the left and on the right 

of the bridge scheme, the pressure diagrams related to the 

backfill effect are plotted. In particular, the red diagrams 

indicate the active pressure distributions, the green diagram 

represents the seismic increment contribution and the 

magenta distribution describes the mechanism thrust related 

to the four-hinges mechanism. The blue diagrams show the 

total pressure distributions on the left and right side of the 

bridge. In all the analyses the structures have been  

 

 

 
Fig. 5 Collapse condition of a generic masonry arch bridge, 

having f/l=0.4, with active pressure diagrams (red lines), 

seismic pressure increment (green line), distribution of the 

mechanism thrust (magenta line) and total pressure 

distributions (blue lines) on the left and right sides (stress 

values expressed in kN/m
2
) 
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Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis 

 

Table 1 Mechanical and geotechnical parameters assumed 

in the LA method 

γv [kN/m3] γb [kN/m3] ϕ′ [deg] ζ [deg] δ [deg] β [deg] 

20 20 35 0 0 0 

 

Table 2 Geometrical parameters of the four bridges 

analyzed (lengths expressed in m). 

Case f/l l s f h g hc d 

1 0.2 10.0 0.8 2.0 3.0 1.4 1.0 1.0 

2 0.3 10.0 0.8 3.0 3.0 1.4 1.0 1.0 

3 0.4 10.0 0.8 4.0 3.0 1.4 1.0 1.0 

4 0.5 10.0 0.8 5.0 3.0 1.4 1.0 1.0 

 

 

discretized in a sufficient number of vossuoirs (n=100) in 

order to obtain results as much as possible closed to a 

continuous solution. This aspect has been just clarified in a 

previous work; the interested reader is invited to see 

(Cavalagli et al. 2016). In Table 1 the structure and backfill 

parameters used in the analysis are summarized. 

 

 

4. Performance of the proposed limit analysis 
procedure 

 

In order to evaluate the effectiveness of the proposed 

LA procedure, a Finite Element (FE) numerical model has 

been developed, by referring to the geometrical parameters 

introduced in Section 3 for the bridge description, and 

including a significant portion of the surrounding soil to 

study the pressure effects acting on the structure (Fig. 6(a)). 

A parametric investigation has been performed 

considering different values of the arch rise/span ratio to  

 

 

analyze the role of the arch shape, from shallow to round 

arches, on the structure seismic capacity and to evaluate the 

performance of the LA method comparing the results with 

those obtained by the FE method. The following ratios of f/l 

have been assumed: 0.2, 0.3, 0.4 and 0.5. It should be noted 

that the values of rise and span are referred to the intrados 

profile of the bridge (see Fig. 1). The geometrical 

parameters of the investigated arch bridges are summarized 

in Table 2. 

 

4.1 Finite element modelling 
 

The numerical model, made up of four- and three-node 

elements with reduced integration, has been implemented 

with the commercial code ABAQUS v6.14 (2014). More in 

detail, a structured mesh has been adopted in the arch and in 

the lower soil layer, while a free mesh type has been used in 

the backfill (Fig. 6(b)). In order to better represent the 

horizontal pressure, a large portion of the soil around the 

bridge has been considered. Non-linear analyses have been 

performed in plane strain condition. 

Particular attention has been devoted to the boundary 

conditions in order to represent a consistent response of the 

structural model. A soil layer has been included at the base 

of the arch to avoid stress concentrations related to the 

direct application of the restraint conditions to the backfill 

and to the abutments. Moreover, in order to obtain a better 

distribution of the vertical loads under the abutments, an 

expansion of the bridge footprint with the same mechanical 

properties of masonry has been introduced, to simulate the 

presence of a foundation. In the lateral right side of the 

model, only the horizontal displacements have been 

prevented. In the left side, a rigid bound has been included 

with a unilateral contact between the two surfaces, in order  

 

 
 

 
(a) 

 
(b) 

Fig. 6 FE model of the investigated masonry arches with f =2.0, 3.0, 4.0 and 5.0 m. (lengths expressed in m) 
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Table 3 Mechanical and geotechnical parameters used in the 

FE method 

Material Property u.m. value 

Masonry 

Mass density kg/m3 2e+0.3 

Elastic modulus kN/m2 1.5e+07 

Poisson’s ratio - 0.2 

Compression strength kN/m2 4500 

Tensile strength kN/m2 150 

Backfill 

Mass density kg/m3 2e+0.3 

Elastic modulus kN/m2 3e+05 

Poisson’s ratio - 0.2 

Friction angle deg 35 

Dilation angle deg 20 

Cohesion kN/m2 2 

 

 

to allow their separation in presence of the seismic loads 

acting from left to right. The contact condition between the 

backfill and the structural arch has been modelled with a 

classical node-to-surface formulation. In this case, the 

application of a friction coefficient in the unilateral contact 

law allowed describing the pressure effects on the 

abutments and the arch in a more consistent way. 

An isotropic behaviour has been considered for the 

materials in the elastic range, while the classical Mohr-

Coulomb criterion and the Concrete Damaged Plasticity 

model have been used for the description of the backfill and 

the masonry respectively beyond the elastic limit. 

Regarding the first, a good agreement exists in the literature 

on the assumption adopted for the backfill modelling in 

numerical analyses carried out by FE methods. In fact, the 

Mohr-Coulomb criterion has been used in almost all 

investigations for both cohesive (Cavicchi and Gambarotta 

2005, Drosopoulos et al. 2006) and cohesionless (Gago et 

al. 2001) soils. Concerning the latter, the Concrete 

Damaged Plasticity model is suitable to describe the 

nonlinear behaviour, both in tension and compression, and 

the possible damage development in masonry materials 

(Cavalagli and Gusella 2015, Tiberti et al. 2016, Bertolesi 

et al. 2017). Tension stiffening with softening behaviour 

has been considered, taking from the literature the data for 

 

 

the path description of both the post-peak phases. The 

mechanical and geotechnical parameters used in the FE 

analyses are summarised in Table 3. 

The gravitational and the seismic loads have been 

applied in two different steps to investigate the related 

effects of the backfill in terms of horizontal pressures on the 

structure. In the first step the gravitational acceleration has 

been applied, while in the latter a linear increasing 

horizontal acceleration has been introduced. Force-

controlled numerical analyses have been performed up to 

the achievement of the convergence limit. 

As an example, in Fig. 7 the results obtained for the case 

with f/l=0.4 are shown in terms of the horizontal stress 

distribution developed inside the backfill. At the sides of the 

image, the diagrams of the horizontal pressures behind the 

abutments have been reported at a distance equal to the 

abutments thickness (1.4 m), in order to avoid the local 

stress concentrations at the arch springing due to the 

geometrical changes. The red graphs are related to the 

application of the gravitational loads, while the blue ones 

describe the total horizontal pressure produced by the 

application of the gravitational and seismic loads. 

 

4.2 Analysis of results 
 

Several comments can be deduced looking at the results 

of the parametric investigations. First of all, it can be 

observed that the hypothesis on the shape of the pressure 

distribution shown in Fig. 4(b) is confirmed by the data 

shown in the graph of Fig. 7. In fact, it can be observed that, 

neglecting the perturbation of the horizontal pressures in 

correspondence of the transition zone between the abutment 

and the arch vault, the total pressure distribution at the 

vertical section on the right of the arch describes a bi-linear 

relation with maximum values approximately in 

correspondence of the 3
rd

 hinge of the arch mechanism. 

Further evidence of this behaviour can be obtained looking 

at the graphs of Fig. 8, where the increment of the 

horizontal pressure produced by the seismic action is 

plotted for the four investigated cases. In particular the grey 

dashed lines represent the increment of horizontal pressures, 

after the application of the gravitational load, obtained in  

 

Fig. 7 Colour map of the horizontal pressure distribution developed into the backfill and horizontal pressures on two vertical 

sections placed 1.4 m behind the abutments after the application of gravitational (red lines) and the seismic (blu) loads (stress 

values expressed in kN/m
2
) 
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the FE model, at a distance of 1.4 m from the right 

abutment, for increasing values of the seismic acceleration. 

The generic blue line corresponds to the mechanism 

pressures at a value of acceleration equal to the load 

multiplier μ evaluated by the LA procedure; the mechanism 

thrust obtained by limit analysis is represented in red color. 

A good agreement can also be observed in terms of 

distribution shape for the left diagrams of Fig. 7 which 

result very similar to those of the active pressure and of the 

seismic pressure increment used in LA method, shown in 

Fig. 4(b). Some observations can be done also for the 

maximum value of the mobilized mechanism thrust. This 

value depends on the depth below the upper surface of the 

backfill at which the maximum occurs, on the bridge 

displacements caused by the seismic action and on the 

capacity of the arch itself to sustain horizontal 

displacements before the formation of the four- hinges 

mechanism. Again from Fig. 8 it can be observed that the 

maximum value of the horizontal pressure assumed in the 

LA investigations (continuous red line) is quite close to that 

obtained with the FE method (continuous blue line) in 

 

 

correspondence of the same value of the seismic 

acceleration, both in terms of intensity and position. 

Moreover, it can be noticed that LA method gives 

conservative (smaller) values of the mechanism pressures 

for all the analyzed cases. 

Regarding the results obtained through the FE model, 

the detection of the instant that can be assumed as that 

corresponding to the formation of the four-hinge 

mechanism is not straightforward. In the present work it has 

been evaluated from the equilibrium path of a reference 

point (mid thickness of the keystone), which describes the 

horizontal displacement versus the applied seismic load 

intensity. These graphs for the four investigated cases are 

shown in Fig. 9. As expected, a relevant change in the 

stiffness of the masonry arch occurs as consequence of the 

progressive diffusion of plastic deformation. 

Nevertheless, in the FE model the formation of this 

mechanism does not occur instantaneously but it builds up 

for increasing values of the external seismic load. In this 

situation the value of the seismic intensity that produces the 

formation of the collapse mechanism has been evaluated  

  
(a) f/l = 0.2 (b) f/l = 0.3 

  
(c) f/l = 0.4 (d) f/l = 0.5 

Fig. 8 Comparison between the increments of the horizontal pressures under seismic action on the vertical section behind the 

right abutment resulting from the FE model (blue and dashed grey curves) and those assumed in LA method (red curves) for 

the different investigated cases. The blue curves have been obtained in correspondence of acceleration values equal to the 

load multipliers provided by the LA procedure 
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Table 4 Comparison between the collapse conditions 

obtained by LA and FE models in terms of horizontal 

accelerations 

Case 
Seismic acceleration at collapse (m/s2) 

LA FE Difference (%) 

1 5.48 6.66 -17.7 

2 4.12 5.62 -26.7 

3 3.28 4.97 -34.0 

4 2.76 4.67 -40.9 

 

 

with a procedure used in geotechnical engineering (Brinch-

Hansen 1963). The ultimate value of the horizontal 

acceleration alim is the value associated with twice the 

displacement of the reference point as obtained for 90% of 

alim itself. Applying this procedure to the non-linear curves 

obtained by plotting the horizontal displacement of the 

reference point vs the intensity of the seismic action (Fig. 

9), the values of the seismic action that causes the collapse 

listed in Table 4 have been obtained. In the same table are 

listed also the corresponding values of the seismic action 

obtained with the LA method and the difference values in 

percentage related to each case. It should be noted that the 

results obtained by the proposed procedure are more 

conservative with respect to the results given by FE models, 

since a significant level of safety is required for these types 

of analysis. In particular, such a result highlights as this 

method is suitable for large scale applications allowing the 

rapid identification of the most critical situations when 

several structures are analyzed. 

The comparison of the collapse mechanisms obtained 

with the two methods is carried out in Figs. 10 and 11. The 

color maps in Fig. 10 represent the intensities of the plastic 

deformations obtained with the FE method, which are 

localized in the arch sections corresponding to the plastic 

hinges. In the same graphs, the red curves represent the 

lines of thrust obtained with the LA method. The red dots 

indicate the points where the line of thrust is tangent to the 

 

 
(a) f/l = 0.2 

 
(b) f/l = 0.3 

 
(c) f/l = 0.4 

 
(d) f/l = 0.5 

Fig. 10 Comparison between plastic strains (FE) and line of 

thrust (LA) for the different investigated cases 

    
(a) f/l=0.2 (b) f/l=0.3 (c) f/l=0.4 (d) f/l=0.5 

Fig. 9 Equilibrium path of the reference point (blue curves) and collapse conditions (red dots) for the different investigated 

cases 
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arch cross section and represent the hinges positions. It can 

be observed a general good agreement between the results 

of the two methods, especially in consideration of the 

spread damaged zones given by the FE models due to the 

evolution of the mechanisms during the analyses. 

Moreover, it must be considered that the damaged zones 

observed at the springings of the arch for the two bridges 

with f/l=0.2 and f/l=0.3 are related to the application of the 

gravitational loads, so that they cannot be ascribed to the 

horizontal actions, except for the right hinge of the case 

f/l=0.2. 

In Fig. 11 the shapes of the deformed configurations 

obtained by LA and FE models are superimposed to 

compare the collapse mechanisms given by the two 

methods. It should be noted that, in the case of LA model, 

only the position of the hinges is defined. The kinematic 

configuration has been determined by fixing the rigid 

rotation of the first left rigid body over the deformed shape 

of the FE model; then the remaining parts of the structure 

follow the kinematic chain corresponding to the collapse 

mechanism configuration. The figure shows a good 

agreement between the results obtained with LA and FE 

models, highlighting the effectiveness of the proposed 

model also in terms of collapse mechanisms. 

 

 

5. Conclusions 
 

In this paper the problem of the in-plane seismic 

capacity of masonry arch bridges has been studied. A 

procedure, based on limit analysis, has been developed in 

order to achieve a rapid estimation of the horizontal 

collapse condition. The classical Heyman’s assumptions on 

masonry, no-tensile strength, infinite compressive strength 

and pure rotational failure at collapse, have been assumed. 

The solution has been reached by searching the limit 

 

 

equilibrium condition of the structure through an iterative 

algorithm. Attention has been dedicated to the description 

of the inertial effect of the backfill and to the evaluation of 

the lateral backfill pressures. 

The active thrust, evaluated following Rankine theory, 

has been considered to act on the arch and abutments, while 

the seismic increment of active thrust has been taken into 

account by referring to the Mononobe-Okabe approach. 

Regarding the pressures provided by the backfill resistance, 

a novel modelling of the backfill effect has been proposed, 

which considers the structural kinematic configuration at 

collapse for the definition of the so called mechanism 

thrust. 

In order to evaluate the performance of the proposed LA 

procedure, finite element (FE) models have been carried out 

and the results, obtained by the two methods on four 

masonry arch bridges with different values of rise/span 

ratio, have been compared. 

The comparisons have been made in terms of kinematic 

mechanism, collapse multiplier and horizontal pressures 

induced by the backfill on the structure. The kinematic 

mechanisms obtained at the collapse by both methods, LA 

and FE, are in a good agreement, i.e., the positions of the 

hinges in the LA mechanisms fall into the plastic zones of 

the FE models. Concerning the collapse multiplier, the LA 

method seems to be more conservative than the other one, 

even if it has to be noted that the ultimate conditions 

considered in the FE method are related to horizontal 

accelerations at which the plastic deformations have been 

already developed in the structure. The differences between 

the two models increase for higher values of the ratio f/l. 

Regarding the horizontal pressure distributions of the 

backfill on the bridge structure, the comparison highlights a 

good agreement between the two methods, especially for 

the active pressure and the increment of the seismic load. 

The new model proposed for the passive pressure 

 
 

(a) f/l=0.2 (b) f/l=0.3 

 
 

(c) f/l=0.4 (d) f/l=0.5 

Fig. 11 Comparison between deformed configuration of the FE model (dashed orange profile) and collapse mechanism 

obtained by limit analysis (continuous black profile), superimposed to the initial configuration (dashed grey profile) 
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distribution well reproduces the pressure diagrams obtained 

in the FE models showing, at the same time, some 

differences on their peak values, corresponding to the same 

horizontal accelerations. 

Certainly, the LA method provides fast but 

approximated (conservative) evaluations and, therefore, is 

more suitable to be used for large scale analysis, e.g., those 

carried out to manage specific road or railways networks 

when the availability of limited budgets requires the 

definition of a prioritization list of interventions. The FE 

method can give more accurate information regarding the 

structural response of a specific case study, introducing 

material properties in a more consistent way, but it requires 

very skilled engineers to build up reliable FE models. 
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