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1. Introduction 
 

Plate structures are widely used as important structural 

components in many engineering fields, including civil, 

mechanical, aerospace, and automotive engineering. 

Structural condition assessments of in-service plate 

structures play a critical role in global structural health 

monitoring. In recent years, the research community has 

paid particular attention to vibration-based structural 

damage detection techniques that can be used to perform 

damage diagnosis based on modal parameters (e.g., 

Doebling et al. 1996, Salawu 1997, Caicedo 2003, Giraldo 

2006).  

Among studies on vibration-based structural damage 

detection methods, those that focus on their application to 

2D plate-type structures are relatively limited. Cawley and 

Adams (1979) were probably the first to detect damage on a 

rectangular plate using frequency shifts. Many other 

methods for detecting damage in plate-like structures have 

also been proposed based on finite element models (e.g., 

Dos Santos et al. 2005, Ge and Lui 2005, Fu et al. 2013).  

However, a number of proposed vibration-based 

methods are capable of detecting damage to plate-like 

structures without requiring any information from a finite 

element model. For instance, to locate the damaged area of 

a plate, Cornwell et al. (1999) used a damage index based 

on the fractional strain energy calculated from measured 

mode shapes with many points. Moreover, Bayissa and 

Haritos (2007) proposed using the spectral strain energy 
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derived from a moment-curvature response to detect 

damage to a plate-like structure. Thus, damage locations 

can be identified using non-mass-normalized mode shapes 

and natural frequencies, without requiring a finite element 

model.  

Fan and Qiao (2009) applied a 2D continuous wavelet 

transform algorithm on mode shapes with dense grids that 

were identified with a roving excitation test. They 

compared the proposed algorithm against the 2D gapped 

smoothing method and the 2D strain energy method, and 

concluded that the proposed method outperformed its 

counterparts. Zhang et al. (2013) applied a modal-

frequency-based method to a steel plate by using the 2D 

gapped smoothing method to calculate the residual values. 

To detect and localize damage in plate-like structures 

through vibration testing, the method employs variations of 

modal frequency data as a roving mass traverses to various 

locations on a plate. 

Ng (2015) proposed using a dual-stage imaging 

approach for quantitative damage inspection in metallic 

plates by using the fundamental antisymmetric mode of the 

Lamb wave. He employed a number of transducers to 

transmit and receive Lamb wave pulses, thereby 

sequentially scanning the plate structures before and after 

the occurrence of damage. Torkzadeh et al. (2016) proposed 

a novel two-stage methodology for damage detection to 

flexural plates by using an optimized artificial neural 

network. Their study investigated the location of damaged 

areas in the plates by using curvature-moment and 

curvature-moment derivative concepts in the first stage. 

Afterward, using a properly trained cascade feed-forward 

neural network as a surrogate model, they evaluated an 

index of the multiple-damage location assurance criterion 

based on the frequency change vector of the structures. 

Reynders and De Roeck (2010) recently developed the 

local flexibility method (LFM); its theoretical foundations 
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are robust, and the method can be used to determine not 

only the damage location but also the extent of damage 

sustained. The general procedure of the LFM involves using 

flexibility matrices and designated virtual forces that 

generate locally restricted stress fields in the structure to 

perform damage localization and quantification.  

The structural modal parameters identified from the 

ambient vibration signals both before and after damage can 

be used to construct the flexibility matrices, and are key 

data for the LFM. Thus, the LFM does not require a finite 

element model of the structure. The general theory of the 

LFM has been applied to beam structures for damage 

detection, and few modes are typically necessary.  

Especially for simple cases such as those involving a 

simply supported beam, there are conditions where the first 

mode alone suffices. However, for a hyperstatic beam or 

other, more complex structures, the number of modes 

required for damage estimation can increase significantly. 

This reduces the feasibility of the LFM because, in practice, 

only the first few modes can be identified accurately using 

ambient vibration signals.  

Moreover, application of the LFM to other structures 

has not been achieved, mainly because of the difficulty in 

identifying virtual forces guaranteed to limit the existence 

of the induced stress to the local region of another structure 

(e.g., a plate structure). 

Hsu et al. (2014) developed the pseudo local flexibility 

method (PLFM), which successfully detects damage to 

hyperstatic beam structures using fewer modes. The PLFM 

eliminates the limitation of virtual forces inducing stress 

only to the local part of a structure, as is the case with the 

LFM.  

In this manner, the non-local virtual forces that generate 

concentrated stresses in a local part, and relatively small 

stresses in other parts of a structure, can be employed. Most 

importantly, removing this limitation enables the 

identification of suitable virtual forces for plate structures.  

Therefore, this study proposes employing the PLFM for 

damage detection in plate structures. First, we lay out the 

theoretical basis for the PLFM (using non-local virtual 

forces for plate structures). We then investigate the effects 

of the number of modes, the damage location, multiple 

damage locations, and the noise in the modal parameters on 

the damage detection results for the numerical plates. Both 

lateral and rotational degree of freedom (DOF) 

measurements are considered separately. The results 

indicate that both the damage locations and the extent of the 

damage sustained can be estimated using a few modal 

parameters identified from the measured vibration signals.  

 

 

2. Pseudo local flexıbılıty method for thın plates 
 

The PLFM considers a structure with volume, 𝛺, and 
boundary, 𝛤, that is subjected to Dirichlet boundary 
conditions along a part of the boundary. A first load 
configuration, 𝑓1, is applied at a limited number of r 
DOFs, where the response can be measured. The first load 
configuration for the PLFM is chosen such that the induced 
stress field, 𝜎1, consists of concentrated stresses in the 
local volume, 𝛺p, and a small stress outside 𝛺p (i.e., 𝛺q), as  

q

p

0σ

0σ

x x

1f f

 
Fig. 1 Structure subjected to the first load configuration, f

1
, 

causing concentrated stress within the local region 𝛺p, and 

relatively small stress outside the local region 

 

 

shown in Fig. 1. The first load configuration 𝑓1 is assumed 

to only cause non-zero stress within 𝛺p for the LFM. Based 

on the virtual work principle with the body force neglected 

∫        ∫ 𝜎    𝛺
  

 (1) 

where t is the vector with applied tractions,  represents the 

corresponding stress vector, x is a virtual displacement 

field that obeys the Dirichlet boundary conditions, and  
depicts the corresponding virtual strain vector. If the virtual 

displacement field is chosen as that induced by 𝑓1, but the 

forces and stresses are due to the second load configuration, 

𝑓2, which obeys the boundary conditions of the system, 

then we derive the following 

∑𝑓 
2  

1  ∫  𝜎 
2    

1 𝛺  ∫  𝜎 
2    

1 𝛺 
    

 

  1

 (2) 

where   
1 is the displacement at DOF j corresponding to 

𝑓1. Assume that the structure is linearly elastic, and that 𝜎1 

is proportional to  1 , with stiffness constant 𝐾 . If the 

virtual work is calculated both before and after the damage 

has occurred, we obtain the following 

∑ 𝑓 
2  

1 
  1
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1 
  1
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∫  𝜎  
2  

   
 

      
 𝛺  ∫  𝜎  

2  
   

 

      
 𝛺     

 

(3) 

where subscript d represents the parameter of the structure 

in a damaged state. Assume that stresses 𝜎1 and 𝜎2 are 

concentrated within the local volume 𝛺p, and 𝜎1 and 𝜎2 

outside the local volume are small; hence, the strain energy 

outside the local volume is much smaller than that within 

the local volume. We can neglect the strain energy outside 

the local volume, and obtain 

∑ 𝑓 
2  

1 
  1

∑ 𝑓 
2   

1 
  1

 
∫  𝜎 

2  
  

 

  
 𝛺   

∫  𝜎  
2  

   
 

      
 𝛺   

 (4) 

Assume that K and 𝛥K are constant within 𝛺p, which 

means that only the lump estimation of K and 𝛥K within 𝛺p 

can be achieved. They can then be moved outside the 
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integration, to obtain 

∑ 𝑓 
2  

1 
  1

∑ 𝑓 
2   

1 
  1

 

1

  
∫  𝜎 

2  𝜎 
1 𝛺   

1

      
∫  𝜎  

2  𝜎  
1 𝛺   

 (5) 

Further, we assume that the stress does not change 

significantly once the plate sustains damage; therefore, the 

integration of both the numerator and the denominator are 

similar, and cancel each other out. Eq. (5) thus becomes 

∑ 𝑓 
2  

1 
  1

∑ 𝑓 
2   

1 
  1

 
𝐾  Δ𝐾 

𝐾 

 (6) 

Although this general theory is applicable to many 

elastic structures, in this study, we applied the theory only 

to thin-plate structures. For an isotropic quasistatic 

Kirchhoff-Love plate (Timoshenko 1959), the stress-strain 

relations are expressed as follows 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

]  
𝐸

1 − 𝜈2
[
1 𝜈 0
𝜈 1 0
0 0 1 − 𝜈

] [

𝜖𝑥𝑥

𝜖𝑦𝑦

𝜖𝑥𝑦

] (7) 

The moment 𝑀𝑥𝑥 can be derived as 

𝑀𝑥𝑥  ∫ 𝑧𝜎𝑥𝑥 𝑧
ℎ/2

−ℎ/2

 ∫
𝐸

1 − 𝜐2
 𝜖𝑥𝑥  𝜈𝜖𝑦𝑦 𝑧 𝑧

ℎ/2

−ℎ/2

 (8) 

where 
𝐸ℎ3

12 1−𝜈2 
 is typically denoted as D, the flexural 

rigidity in plate theory, and h is the thickness of the plate. 

Because 𝐾𝑥𝑥  −
𝜕2𝑤

𝜕𝑥2  and 𝐾𝑦𝑦  −
𝜕2𝑤

𝜕𝑦2 ,  (8) can be 

simplified as 

𝑀𝑥𝑥  𝐷 𝐾𝑥𝑥  𝜈𝐾𝑦𝑦  (9) 

In a similar manner, 𝑀𝑥𝑦  and 𝑀𝑦𝑦  can be obtained 

with 

𝑀𝑦𝑦  𝐷 𝜈𝐾𝑥𝑥  𝐾𝑦𝑦  (10) 

𝑀𝑥𝑦   1 − 𝜈 𝐷𝐾𝑥𝑦 (11) 

From (9) to (11), we can derive the curvatures 𝐾𝑥𝑥 , 

𝐾𝑦𝑦, and 𝐾𝑥𝑦 , as follows 

𝐾𝑥𝑥  
1

𝐷 1 − 𝜈2 
 𝑀𝑥𝑥 − 𝜈𝑀𝑦𝑦   

𝐾𝑦𝑦  
1

𝐷 1 − 𝜈2 
 𝑀𝑦𝑦 − 𝜈𝑀𝑥𝑥  (12) 

𝐾𝑥𝑦  
𝑀𝑥𝑦

𝐷 1 − 𝜈2 
  

If the shear strain energy is small enough to be 

negligible, the strain energy of the plates can be derived 

using (12) 

𝑈  ∬𝑀𝑋𝑋 [
1

𝐷 1 − 𝜈2 
(𝑀𝑥𝑥 − 𝜈𝑀𝑦𝑦)] 

 𝑀𝑦𝑦 [
1

𝐷 1 − 𝜈2 
(𝑀𝑦𝑦 − 𝜈𝑀𝑥𝑥)] 

 2𝑀𝑥𝑦 [
𝑀𝑥𝑦

𝐷 1 − 𝜈2 
]    𝑦 

(13) 

If D and Poisson’s ratio are constant, the strain energy 

can be derived as follows 

𝑈  
1

𝐷 1 − 𝜈2 
∬𝑀𝑋𝑋(𝑀𝑥𝑥 − 𝜈𝑀𝑦𝑦) 

 𝑀𝑦𝑦(𝑀𝑦𝑦 − 𝜈𝑀𝑥𝑥)  2𝑀𝑥𝑦
2   𝑦 

 
12

𝐸ℎ3
∬𝑀𝑋𝑋

2  2𝜈𝑀𝑋𝑋𝑀𝑦𝑦  𝑀𝑦𝑦
2  2𝑀𝑥𝑦

2   𝑦 

(14) 

If we denote 𝑠  𝐸ℎ3 12⁄ ,  which represents the 

flexural rigidity of a unit width of the plate structure, then 

𝑈  
1

𝑆
∬𝑀𝑋𝑋

2  2𝜈𝑀𝑋𝑋𝑀𝑦𝑦  𝑀𝑦𝑦
2  2𝑀𝑥𝑦

2   𝑦 (15) 

Because the virtual strain energy of a plate structure can 

be represented with this equation, following the process 

from (1) to (6), based on the PLFM concept, the damage 

detection equation for the isotropic quasistatic Kirchhoff-

Love plate can be derived as 

∑ 𝑓 
2  

1𝑙
  1

∑ 𝑓 
2   

1𝑙
  1

 
 S  ∆S  

S 

≡ R (16) 

where R represents the lumped rigidity ratio of the local 

region of a plate structure. 

The virtual displacement vector,  1, under 𝑓1, can be 

obtained with 

 1  𝐻𝑓1 (17) 

where 𝐻 represents the flexibility matrix. The flexibility 

matrix 𝐻  can be obtained directly from a static load-

deflection test, or by conducting a forced vibration test. 

Under the assumption of a lumped and approximately equal 

mass distribution, the flexibility matrix can also be 

estimated using the identified modal parameters, as follows 

(Reynders and De Roeck 2010) 

𝐻  𝐻𝑛  −ΦΛ𝑐
−1 Λ𝑐

𝐻Φ𝐻ΦΛ𝑐  Φ𝐻Φ −1Λ𝑐
𝐻Φ𝐻 (18) 

where Φ is the matrix of the mode shapes, Λ𝑐  represents 

the diagonal matrix of the system poles, and 
H
 is the 

Hermitian transpose. If only the first n modes are available, 

then the flexibility matrix is truncated, and denoted as 𝐻𝑛. 

In this study, all the flexibility matrices were estimated 

using (18). Contrary to the stiffness matrix, the contribution 

of the modes in the flexibility matrix are proportional to the 

inverse of the square of the system poles. The higher modes 

on the flexibility matrix have a much smaller influence 

compared to the lower modes. Consequently, fewer 

truncated modes are required to approximate a non- 

truncated flexibility matrix than to approximate a non-

truncated stiffness matrix. This benefits practical cases 

where only a limited number of lower modes can be 

identified with an acceptable level of accuracy, a situation 

that is prevalent when using ambient vibration signals. 

The first virtual force, 𝑓1, for the proposed PLFM was 

assumed to cause only concentrated stress within 𝛺p. For 

plate structures, if the transverse DOFs are being measured, 

the virtual force configuration displayed in Fig. 2 is a good 

option because it is simple and symmetric. However, if the 

rotational DOFs are being measured, then the virtual force 

configuration consists of the moment, and could be even 

simpler (Fig. 3). 
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The calculation of the PLFM includes the use of the 

identified modal parameters to construct the truncated 

flexibility matrix with (18); afterward, the truncated 

flexibility matrix is multiplied by the first load 

configuration to obtain the virtual displacement, as shown 

in (17); finally, the virtual displacement is multiplied by the 

second load configuration both before and after the 

occurrence of damage, as shown in (16). The first and 

 

 

 

second virtual load configurations can be identical, and 

were used in this study. 

 

 

3. Numerıcal studıes 
 

For this study, we constructed a thin-plate model using 

ANSYS software to verify the proposed approach. The  

  

Fig. 2 Potential virtual force configuration for a thin-plate 

structure if the lateral DOFs are measured 

Fig. 3 Potential virtual force configuration for a thin-plate 

structure if the rotational DOFs are measured 

   
(a) Mode 1 (b) Mode 2 (c) Mode 3 

   
(d) Mode 4 (e) Mode 5 (f) Mode 6 

 

  

 

 (g) Mode 7 (h) Mode 8  

 

  

 

 (i) Mode 9 (j) Mode 10  

Fig. 4 The first 10 mode shapes of the plate structure 
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Fig. 5 Thirty points of the numerical model with vertical 

and rotational response measurements 

 

 

Fig. 6 Twenty zones for estimating the rigidity ratios of the 

plate structure by using the virtual force configuration 

shown in Fig. 2 

 

 

plate dimensions were 1500 mm×1200 mm×5 mm, and the 

shell elements along the two edges both measured 5 mm 

during soft mesh sizing. The elastic modulus, Poisson’s 

ratio, and the density of the finite element model were 

2.0×10
11

 N/m
2
, 0.33, and 7.8×10

3
 kg/m

3
, respectively. The 

plate was supported by hinges along the four boundaries, 

resulting in a first fundamental frequency of 1 Hz. The first 

10 mode shapes are displayed in Fig. 4. The vertical and 

rotational responses were measured at 30 points (Fig. 5).  

Four damage scenarios were considered for this study: 

1) Varying the extent of damage. The elastic modulus of the 

eighth region was reduced to 10%, 25%, 50%, 75%, and 

90%; 2) Varying the location of damage. Considering the 

symmetry of the plate, the elastic moduli of the first, 

second, third, sixth, seventh, and eighth regions were 

reduced to 50%. We also studied the effect on the damage 

detection results obtained by varying the numbers of modes; 

3) Damage to both the first and eighth regions with a 50% 

reduction in elastic modulus to simulate multiple damage 

locations; and 4) The effect of the measurement noise by 

adding a normal distributed error with a 2% standard 

deviation in the modal parameters when the elastic modulus 

of the eighth region was reduced to 50%. 

 

3.1 PLFM using rotational DOFs 
 

First, we used the rotational DOFs of the mode shapes 

to construct the flexibility matrices; hence, the 

corresponding virtual moments were employed. The force 

configuration shown in Fig. 3 was applied as both 𝑓1 and 

 

Fig. 7 Equivalent tensile stress distribution of the plate 

induced by the virtual force configuration shown in Fig. 3 

around Zone 8 

 

 
Fig. 8 Rigidity ratio of the plate structure estimated using 

the first 10 modes when the elastic modulus of Zone 8 was 

reduced to 10%, 25%, 50%, 75%, and 90% using rotational 

DOF mode shapes 

 

 

𝑓2. The plate was divided into 20 zones, according to the 

measurement setup and virtual force configuration shown in 

Fig. 6. For example, if the force configuration displayed in 

Fig. 3 was applied at Points 9, 10, 15, and 16, the estimated 

results were chiefly representative of the rigidity ratio 

within the eighth zone.  

The equivalent tensile stress distribution of the plate 

induced by the virtual force configuration applied at this set 

of points is shown in Fig. 7. We observed that stress was 

concentrated within the eighth zone; hence, based on the 

theoretical basis of the PLFM, the rigidity ratio of the 

eighth zone could be estimated. By applying the virtual 

force configuration at different sets of points, the rigidity 

ratio within each of the 20 zones could be estimated. The 

corresponding displacements,  1, for each of the measured 

DOFs could thus be calculated using the truncated 

flexibility matrices constructed with a different number of 

modes and 𝑓1 by solving for (18). 

Fig. 8 shows the estimated rigidity ratio, R, when the 

elastic modulus of Zone 8 was reduced to 10%, 25%, 50%, 

75%, and 90% using the first 10 modes. The location of the 

damage could be identified clearly with the estimated R 

using the PLFM with rotational DOF mode shapes. 

However, the extent of damage in Zone 8 was somewhat 

underestimated for all five levels of damage.  

Fig. 9(f) shows R when the elastic modulus of Zone 8 

was reduced to 50% using the first one, three, five, seven, 

and ten modes. The results evidently improved as more 

modes were used. Even the results obtained using only the 

first mode already indicated the damage location clearly,  

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Zone 9

Zone 10

Zone 11

Zone 12

Zone 13

Zone 14

Zone 15

Zone 16

Zone 17

Zone 18

Zone 19

Zone 20
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Fig. 10 Rigidity ratio estimated when both Zones 1 and 8 

were damaged, with a 50% reduction in elastic modulus 

using rotational DOF mode shapes 

 

 

and the estimated extent of damage to Zone 8 was quite 

close to that found using the first 10 modes.  

Another noteworthy finding is that the estimated rigidity 

ratios of the zones adjacent to the damaged eighth 

zone (i.e., Zones 3, 7, 9, and 13)
 
were somewhat affected by 

the damaged zone. This could be due to the non-zero stress 

within the damaged zone when the virtual force 

configuration was applied to these adjacent zones. Hence, 

the virtual work within the adjacent zones before and after 

sustaining damage also changed due to the nearby damaged 

zone. When different zones were subjected to the same 

extent of damage, and the same number of modes were 

used, we observed a similar phenomenon to that shown in 

the images in Fig. 9.  

When both Zones 1 and 8
 
were damaged with a 50% 

reduction in elastic modulus, the results shown in Fig. 10 

were obtained using the first 10 modes. Clearly, both 

damage zones were identified, and even the results obtained 

using only the first mode already identified the damage 

locations and severity with an acceptable level of accuracy.  

The estimated rigidity ratio was relatively similar to that 

obtained when only one zone was damaged to the same 

extent. In other words, the damage detection results for the 

two damage locations were similar to those obtained if both 

the damage results of the individual damage locations were 

 

 

Fig. 11 Estimated rigidity ratio with 2% random noise in 

modal parameters when the elastic modulus of Zone 8 was 

reduced by 50% using rotational DOF mode shapes 

 

 

simultaneously considered. This phenomenon implies that 

the damage detection results may not be seriously affected 

by multiple damage locations. 

In the final scenario, both the modal frequencies and 

mode shapes of the first 10 modes were contaminated with 

2% random noise, within one standard deviation. The 

damage results obtained when the elastic modulus of Zone 

8 was reduced by 50% are shown in Fig. 11. We conducted 

100 trials and calculated the mean value as well as the mean 

value plus or minus one standard deviation of the rigidity 

ratios. The maximum and minimum of the standard 

deviation of all the estimated rigidity ratios in the different 

zones were 4.54% and 2.90%, respectively. The amount of 

the standard deviation is acceptable compared to the 

estimated reduction in the rigidity ratio, which was 

approximately 33%. 

 

3.2 PLFM using lateral DOFs 
 

In most cases, the lateral acceleration vibration records 

are measured for plate-like structures. Therefore, the lateral 

DOF mode shapes are also considered, and can be used to 

construct the flexibility matrices to estimate the rigidity 

ratio.  

The force configuration shown in Fig. 2 was applied as  

   
(a) Zone 1 (b) Zone 2 (c) Zone 3 

   
(d) Zone 6 (e) Zone 7 (f) Zone 8 

Fig. 9 Rigidity ratios estimated using the first one, three, five, seven, and ten modes when the elastic modulus of (a) Zone 1, 

(b) Zone 2, (c) Zone 3, (d) Zone 6, (e) Zone 7, and (f) Zone 8 was reduced to 50% using rotational DOF mode shapes 
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Fig. 12 Twelve zone combinations for estimating the 

rigidity ratios of the plate structure using the virtual force 

configuration shown in Fig. 3 

 

 

Fig. 13 Equivalent tensile stress distribution of the plate 

induced by the virtual force configuration shown in Fig. 3 

around the second zone combination 

 

 

both 𝑓1 and 𝑓2. According to the measurement setup and 

virtual force configuration, we can estimate the average 

rigidity ratio of 12 zone combinations (ZC) of the 

mentioned 20 zones (Fig. 12). For example, if the force 

configuration were to be applied at Points 2, 3, 4, 8, 9, 10, 

14, 15, and 16, then the estimated results would be 

representative of the rigidity ratio within the second zone 

combination (i.e., ZC2).  

The equivalent tensile stress distribution of the plate 

induced by the virtual force configuration applied at this set 

of points is shown in Fig. 13. We observed the stress to be 

concentrated within the ZC2; hence, according to the 

theoretical basis of the PLFM, the rigidity ratio of ZC2 

could be estimated. In a similar manner, by applying the 

virtual force configuration at different sets of points, the 

rigidity ratio within all 12 ZCs could be estimated. The 

corresponding displacements x
1
 for each of the measured 

DOFs could be calculated with (18) by using the truncated 

flexibility matrices constructed with a different number of 

modes and 𝑓1.  

Fig. 14 shows the estimated rigidity ratio, R, when the 

elastic modulus of Zone 8 was reduced to 10%, 25%, 50%, 

75%, and 90% using the first 10 modes. The ZCs of ZC2, 

ZC3, ZC6, and ZC7 were identified clearly as damaged 

regions with the estimated R by using the PLFM with lateral 

DOF mode shapes. The estimated reduction of the rigidity 

ratios in these ZCs was smaller than the value estimated 

using the rotational DOFs. Because only Zone 8 sustained 

damage, this result was deemed reasonable since the 

 
Fig. 14 The rigidity ratio of the plate structure estimated 

using the first 10 modes when the elastic modulus of Zone 8 

was reduced to 10%, 25%, 50%, 75%, and 90% using 

lateral DOF mode shapes 

 

 

estimated rigidity ratios were actually lump values of one 

and four zones when using the rotational DOFs and lateral 

DOFs, respectively.  

Accordingly, the results of damage localization obtained 

using the lateral DOFs are somewhat confusing. Based on 

the results, one possible extreme condition was that all the 

zones belonging to the four ZCs (i.e., Zones 2, 3, 4, 7, 8, 9, 

12, 13, and 14) suffered a similar extent of damage. The 

other extreme condition was that only the intersection (i.e., 

Zone 8) incurred damage, and to a greater extent. Moreover, 

any condition that comprised a linear combination of these 

two extreme conditions also provided a potential 

explanation. Nevertheless, the results of the rigidity ratios 

yielded useful information pertaining to the approximate 

locations and the extent of possible damage. 

Fig. 15 shows the estimated rigidity ratio, R, when the 

elastic modulus of the six zones was reduced to 50% using 

the first one, three, five, seven, and ten modes. For example, 

regarding the results shown in Fig. 15(d), the elastic 

modulus of Zone 6 was reduced to 50%. The results 

indicated that the EI ratio was reduced at both ZC1 and 

ZC5. This is because the damaged Zone 6 was located 

within their ZCs with concentrated stress only when the 

force configuration was applied at ZC1 and ZC5. Fig. 15 

thus shows improvements in the results when an increasing 

number of modes was used.  

As mentioned, even the results obtained using only the 

first mode had already indicated the damage location 

clearly, and the estimated extent of damage in the damaged 

zone was quite close to that found using the first 10 modes. 

However, unlike the results obtained using the rotational 

DOFs, the estimated rigidity ratios of the zones adjacent to 

the damaged zones remained unaffected. This could be due 

to the greater concentration of stress induced by the virtual 

force configuration compared to that induced by the 

moment. 

When both Zones 1 and 8 were damaged with a 50% 

reduction in elastic modulus, we obtained the results with 

the first 10 modes (Fig. 16). ZC1, ZC2, ZC3, ZC6, and ZC7 

were identified clearly as the damaged regions, even when 

only the first mode was used. Again, the fact that multiple 

damage locations existed did not influence the damage 

detection results seriously. However, as discussed for the 

first damage scenario, many potential damage parameter 

combinations could lead to the same results, which  
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Fig. 16 Estimated rigidity ratio when both Zones 1 and 8 

were damaged with a 50% reduction in elastic modulus 

using the lateral DOF of mode shapes 

 

 

complicates the data even further. Nevertheless, the 

resulting rigidity ratios provided useful information 

regarding the approximate locations and the extent of 

possible damage. 

In the final scenario, both the modal frequencies and the 

mode shapes were contaminated with 2% random noise 

within one standard deviation. The damage results obtained 

using the first 10 modes when the elastic modulus of Zone 8 

was reduced by 50% are shown in Fig. 17. We again 

conducted 100 trials, and we calculated the mean value as 

well as the mean value plus or minus one standard deviation 

of the rigidity ratios. The maximum and minimum of the 

standard deviation of all the estimated rigidity ratios in the 

different zones were 5.72% and 2.83%, respectively. A 

moderate standard deviation was achieved compared to the 

estimated reduction in rigidity ratio, which was 

approximately 12%. 

 

 

4. Conclusıons 
 

This study proposed a PLFM to localize and quantify 

damage to a thin-plate structure. The damage detection 

equation, which can be used to estimate the lump flexural 

rigidity ratio of a local region of a thin plate, was devised 

based on isotropic quasistatic Kirchhoff-Love plate theory. 

In addition to the conventional measurement of lateral 

 

 

Fig. 17 Estimated rigidity ratio with 2% random noise in 

modal parameters when the elastic modulus of Zone 8 was 

reduced by 50% using the lateral DOF of mode shapes 

 

 

DOFs, we considered the measurement of rotational DOFs. 

Only the modal parameters of both the intact and damaged 

plate structures are necessary for the damage detection 

equation to estimate the flexural rigidity ratios if the mass 

of the plate structures can be simplified into a uniform 

distribution, and if the mass matrices can be simplified 

diagonally.  

By using reasonable virtual force configurations that 

generate concentrated stress fields in a plate structure, a 

complete set of local flexural rigidity ratios for the entire 

plate can be calculated. Because the stress induced by the 

virtual force configuration is not strictly limited to the 

region enclosed by the virtual forces, the estimated flexural 

rigidity ratios are typically smaller than their real 

counterparts. A notable feature of the proposed method is 

that very few—or even just one of the lowest modes of the 

plate structures—can provide a reliable estimation of 

damage, as supported by the numerical results. Additional 

modes may be required to estimate the extent of damage if 

the proposed method is applied to different types of plates. 

According to the numerical results, compared to the 

conventional lateral DOF measurements, the rotational 

DOF measurements seem to present a number of 

advantages and disadvantages. Because the region of the 

concentrated stress induced by the virtual force 

configuration of the rotational DOFs is much smaller, the 

damage location and extent are more easily interpretable. 

   
(a) Zone 1 (b) Zone 2 (c) Zone 3 

   
(d) Zone 6 (e) Zone 7 (f) Zone 8 

Fig. 15 Rigidity ratio estimated using the first one, three, five, seven, and ten modes when the elastic modulus of (a) Zone 1; 

(b) Zone 2; (c) Zone 3; (d) Zone 6; (e) Zone 7; and (f) Zone 8 was reduced to 50% using lateral DOF mode shapes 
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Only one zone of the major rigidity ratio reduction is 

typically observed if the designated damage is located 

within a single zone when rotational DOFs are used. 

However, because the stress induced by the virtual force 

configuration of the rotational DOFs is not necessarily 

concentrated within the region enclosed by the virtual 

forces, the estimated rigidity ratios of the zones adjacent to 

the damaged zones were affected by the damaged zones, 

which is the main disadvantage of using rotational DOFs.  

Another advantage of using the rotational DOFs is that, 

because the region occupied by the concentrated stress field 

can be much smaller than for lateral DOFs, the estimated 

rigidity ratio could be more sensitive to damage. Therefore, 

with the same level of noise in the identified modal 

parameters, the estimated rigidity ratios would be more 

robust against errors. Nevertheless, in this study, the 

proposed PLFM demonstrated that it can accomplish 

damage detection, localization, and quantification for plate 

structures, irrespective of whether lateral or rotational DOFs 

are used. 
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