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1. Introduction 
 

The availability of a reliable formulation for floor 

response spectra is a critical issue for the seismic 

verification of different kinds of elements, such as: non-

structural components in masonry, reinforced concrete or 

steel buildings; portions in masonry walls subjected to local 

mechanisms (out-of-plane response). These elements are 

very common both in new and in existing constructions and 

both in ordinary and monumental ones. They include 

parapets, gables, chimneys, mechanical appendages and 

equipment, curtain walls, partitions, battlements, among 

others (Fig. 1). Past earthquakes highlighted their 

significant vulnerability, which often results in severe 

damage or even collapse, with consequent economic loss or 

risk for fatal injury to the occupants. 

In most cases, secondary elements turn out to be more 

vulnerable when located in the upper parts of the main 

structure, due to the dynamic amplification of the motion 

from the ground level to the base of the secondary element 

(Villaverde 1997). In §2 this physical phenomenon is 

explained with its potential evolution in both the linear and 

nonlinear fields of the main structural response, through the 

evidences of some experimental data available in literature. 

Traditionally, it is possible to quantify the variation of 
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Fig. 1 Examples of: secondary elements like as (a) 

battlements and (b) parapets and spires; local mechanism in 

a masonry building (c); non-structural elements like as (d) 

false ceilings 

 

 

the seismic input at different levels of a structure by 

following two different approaches (Villaverde 1997; 

Muscolino 1991; Chen and Soong 1988): 

i) the Combined Primary-Secondary System (P-S system) 

approach, which explicitly studies the whole system 

formed by the main structure and the secondary element;  

ii) the Floor Response Spectrum Approach, which is 

based on the hypothesis to neglect the dynamic 

interactions between the two systems and works then by 

sub-structuring. In this case, the problem is “just limited” 
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to the correct definition of the floor spectrum. 

The Floor Response Spectrum Approach (ii) allows 

obtaining the floor spectrum through a step-by-step 

integration of the filtered acceleration time history recorded 

at the floor where the secondary system is placed. However, 

this approach is barely attainable in engineering practice, 

since it requires lengthy numerical integrations. For this 

reason, some Authors soon after proposed several methods 

to generate floor response spectra directly from the ground 

response spectrum and by knowing the dynamic properties 

of the main structure as illustrated more in detail in §3. 

Starting from these proposals, various formulations have 

been derived and adopted in Standards as well.  

Between the two aforementioned approaches, the 

formulation proposed in this paper (§4) belongs to the Floor 

Response Spectrum Approach. It aims to combine a robust 

theoretical basis and the capability to capture the main 

features of the actual phenomenon with a practice-oriented 

approach, useful in particular at engineering level. As 

documented in §5 and §6, the proposal has been validated 

through both experimental data available in literature and 

the results of numerical analyses performed ad hoc. In §7 

its limits of application are discussed, with particular 

reference to neglect the dynamic interaction between the 

main and secondary systems. To this aim, a corrective factor 

is proposed that allows referring once again to the Floor 

Response Spectrum Approach even when the decoupling 

assumption is not completely legitimate. Finally, in §8 a 

code-oriented implementation of the proposed expression is 

presented.  

 

 

2. Outcomes from laboratory and in-situ 
measurements   
 

The seismic input on an element placed at a certain level 
of the building is a function of both the ground motion and 
the dynamic response of the primary structure, which may 
be affected by the evolution of the latter in the nonlinear 
range as well. Due to the complexity of the phenomenon, 
in-situ measurements on existing buildings or laboratory 
experimental tests are very useful: on one hand, to better 
understand its physics; on the other hand, to support the 
validation of analytical formulations.  

In this section, the data acquired during a shake-table 

experimental campaign on a half-scale building are 

analyzed. As described below, such data are very useful to 

explore the role of filtering effect with the progressing of 

structural response from linear to nonlinear. The same data 

are then adopted in §5 to validate the proposed expression.  

The campaign was developed by the École 

Polytechnique Fédérale de Lausanne (EPFL, Switzerland) 

at the TREES laboratory of the European Centre for 

Training and Research in Earthquake Engineering 

(EUCENTRE) in Pavia (Italy) (Beyer et al. 2015). The 

mock-up consisted in a half-scale four-story building, built 

with reinforced concrete (RC) and unreinforced masonry 

(URM) walls, as bearing system, connected by RC slabs 

(Fig. 2(a)). The input motion was the EW-component of the 

ground motion recorded at the Ulcinj-Hotel Albatross 

station during the April 15th, 1979, Montenegro earthquake.  

 
(a) 

 
(b) 

Fig. 2 (a) Sketch of the mock-up (total height equal to 6.2 

m) and configuration of accelerometers; (b) Plan layout, 

dimensions in mm (Beyer et al. 2015) 

 

 

The direction of motion was aligned with the longitudinal 

axis of the structure (Fig. 2(b)).  

In the experimental campaign, the seismic input was 

scaled to match Peak Ground Acceleration (PGA) values 

ranging from 0.05 g to 0.9 g, up to inducing a significant 

damage state in the mock-up. From the test results (Beyer et 

al. 2015), it was possible to observe that the first three runs 

with a nominal PGA of the input (named PGAnom) of 0.05-

0.1-0.2 g induced only very limited damage to the structure; 

then, after runs 4 (PGAnom=0.3 g) and 5 (PGAnom=0.4 g), the 

first cracks appeared. During test 6 (PGAnom=0.6 g), the 

damage to the structure was increased significantly. Then, 

test 7 (PGAnom=0.4 g) was performed with a lower level of 

intensity than test 6 in order to simulate a possible 

aftershock, leading to a very little additional damage with 

maximum residual crack widths practically unaltered. 

Finally, tests 8 and 9 induced a severe damage to the 

structure.  

Fig. 3(a) shows the floor response spectra generated 

from the acceleration time histories measured by the sensors 

at the fourth level and normalized to the value of PGAnom. 

The figure compares the floor spectra of runs 1 and 6, when 

the mock-up was not damaged yet and significantly 

damaged, respectively. Furthermore, it illustrates the 

ground response spectrum obtained from the sensors placed 

on the shaking table (dashed line in Fig. 3(a)). It is worth 

noting that the actual movement of the shaking table is 

never exactly equal to the input record, due to the feedback 

of the equipment. Hence, the actual values of PGA at the 

shaking table are slightly different from the PGAnom. For 

this reason, in Fig. 3(a) the shaking table response spectra 

normalized to PGAnom do not start from 1. 

Furthermore, Fig. 3 shows: 

a) North-East View b) South-East View
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(a) (b) 

 
(c) 

Fig. 3 (a) Comparison between floor (continuous lines) and 

ground (dashed line) response spectra obtained in the linear 

(test 1) and nonlinear field (test 6); (b) First period T1 for 

different values of the PGAnom; (c) Amplification factor 

(Sa(T1)/PFA) with the consecutive runs and for each level 

 

 

• the evolution of the equivalent fundamental period (T1) 

of the structure for increasing values of the PGAnom (Fig. 

3(b)): such values were determined respectively as the 

period with the largest dynamic amplification (rhombus 

indicator) or from the structural dynamic identification 

performed after each run test (triangle indicator, as 

illustrated in Beyer et al. 2015). These latter are 

generally shorter than the actual period obtained during 

the shaking; 

• the variation of the amplification factor for consecutive 

runs (Fig. 3(c)). The amplification factor has been 

evaluated as the ratio between the spectral acceleration 

peak at the fundamental period of the structure (Sa(T1)) 

and the Peak Floor Acceleration (PFA).  

As it is possible to observe (Fig. 3(a)-(c)), as long as the 

response of the building is in the linear phase, significant 

amplifications can be observed both in terms PFA and 

spectral peak in correspondence of the fundamental period 

of the structure. Furthermore, the spectral accelerations are 

higher at the upper levels reaching the maximum 

amplification factor at the fourth story (Fig. 3(c)). Then, as 

the structure was increasingly damaged, the fundamental 

period of the structure lengthened (Fig. 3(a)-(b)), a 

significant reduction in the peak values of floor response 

spectra occurred (Fig. 3(a) and Fig. 3(c)) and, at the same 

time, the amplification peak tends to be smoother and wider 

(Fig. 3(a)). 

The same effects have been testified by in-situ 

measurements on existing buildings. For example, in Italy, 

from the ‟90s, many structures (mostly ordinary buildings) 

are permanently monitored by the Osservatorio Sismico 

delle Strutture (OSS) of the Italian Department of Civil 

Protection (Dolce et al. 2017). This permanent monitoring  

 
(a) 

 
(b) 

Fig. 4 (a) Floor spectra obtained from the recordings of 

sensors placed by OSS in the school of Visso (MC, Italy) 

after the consecutive shocks of the 2016 earthquake in the 

centre of Italy; (b) Example of damage level reached on the 

building after the last shock 

 

 

program allowed to collect very precious data that support 

the evidence of a seismic amplification in the upper levels 

of actual buildings and of its evolution with the progressing 

of the main structure nonlinear response. For example, Fig. 

4 shows the floor spectra obtained after the consecutive 

seismic shocks that hit the school of Visso (MC, Italy), 

significantly damaged by the 2016 earthquake and 

subjected to significant damage accumulation phenomena 

(Cattari and Sivori 2019, Reluis-Task 4.1 Workgroup 2017). 

Although these floor spectra have different shapes, because 

they come from different seismic events (while those 

obtained from experimental tests, in Fig. 3(a), are obtained 

by scaling the same record at the base), the same trends are 

evident (Fig. 4). In order to properly interpret the results, it 

has to be underlined that the building exhibited a significant 

damage after the 26
th

 October 2016 second shake, while the 

occurred damage remained almost the same during the one 

of 30
th

 October 2016. 

 

 

3. State-of-the-art   
 

3.1 Formulations in Standards 
 

Many formulations for the floor spectra may be found in 

the Standards, usually in the framework of the seismic 

assessment or design of “non-structural elements”. Only the 

Italian Technical Code, in particular in its related 

Instructions, proposes a different specific formulation for 

the verification of local mechanisms in existing masonry  
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structures. Table 1 compares the different expressions 

provided in the Standards herein considered, that are (in 

bracket the short acronym adopted is indicated): Eurocode 8 

(CEN04 2004), Italian Building Technical Code (NTC08 

2008) and related Instructions (MIT09 2009), New Zealand 

Code (NZS 1170.5 2006), American Standards (ASCE/SEI 

41-13 2014), and Switzerland Standards (SIA 261 2003).  

As it is possible to see from Table 1, in all Standards the 

floor spectrum is obtained starting from the seismic input at 

ground level (characterized either in terms of peak ground 

acceleration or spectral acceleration) and by accounting for 

the position of the non-structural element (mainly in terms 

of relative structural height Z/H at which the secondary 

element is placed); then, more or less simple analytical 

expressions are adopted. These latter involve the dynamic 

features of the main and secondary structures with a 

different level of accuracy, depending on the expression. 

In fact, in some cases, that is the NZS 1170.5 and the 

ASCE/SEI 41-13, the base input is just amplified through 

coefficients which consider the level where the secondary 

element to be verified is placed or are dependent on the 

period of the secondary element. Conversely, in others, the 

main dynamic features of the structure are involved, too. 

However, it is interesting to point out that only the 

expression suggested in MIT09 involves the modal shape, 

the modal participation coefficient and the fundamental 

period, while in the other Standards (CEN04 and NTC08, 

SIA 261) only the structure fundamental period appears. 

In order to highlight the differences and analogies 

among such formulations, the expressions of Table 1 have 

been applied to two case studies with different dynamic 

properties: a three-story masonry building and a nine-story 

RC one. In particular, the floor spectrum at the topmost 

story has been evaluated. Fig. 5 compares the results 

achieved. In particular, each color refers to a different 

expression, while the black dotted line indicates the value of 

the fundamental period of each building (T1). The latter has 

been evaluated as C1H
3/4

(as proposed in NTC08) by 

assuming C1 equal to 0.05 and 0.075 in the case of the 

masonry and the RC buildings, respectively. The total 

 

 

height H has been obtained (for both structures) assuming 

an inter-story equal to 3.2 m. The resulting values of the 

fundamental period are 0.27 s (for the masonry building) 

and 0.93 s (for the RC one). The input has been defined 

according to CEN04, assuming a soil of type A and then 

normalizing it to 1.  

As evident from Fig. 5, the results are significantly 

scattered. The expressions that do not take into account the 

fundamental period of the structure obviously provide a 

constant floor spectrum amplification. CEN04 and SIA 261 

define a floor spectrum with a peak in correspondence of 

the fundamental period T1, but it depends only on the PGA 

and not on Sa(T1), thus resulting the same for the two case 

study buildings. Hence, they are not able to consider that for 

the RC building (and in general for flexible structures) the 

fundamental period intersects the descending branch of the 

ground response spectrum. MIT09 considers that the 

maximum amplification occurs in correspondence of the 

fundamental period of the structure; however, if compared 

with the other expressions, it determines higher values of 

the maximum amplification. Finally, despite the evidences 

from the experimental results discussed in §2, it is 

interesting to observe that no expression takes into account 

the effects of the nonlinear response of the main structure 

on the floor spectrum (Table 1).  

 

3.2 Formulations in literature 
 

A huge number of expressions are proposed in literature 

for the floor spectra definition.  

The first methods date back to the „70s and were aimed 

to calculate the floor spectra for the assessment of 

equipment in power plants, hospitals and factories, due to 

the significant damage occurred after seismic events 

(Alaska 1964, Fernando 1971, Loma Prieta 1989). In that 

case, the main structure must not to be damaged, thus all 

these methods considered it as linear elastic. More recently, 

the floor spectra were introduced for the seismic 

verification of non-structural elements and local 

mechanisms in structures which can exhibit a marked  

Table 1 Comparison among different Standards formulations 

Standard and adopted formulation 

CEN04 

NTC08 
𝑆𝑎,𝑍 = 𝑎𝑔𝑆 [

3 (1 +
𝑍

𝐻
)

1 + (1 −
𝑇

𝑇1
)

2 − 0.5] NZS 1170.5 𝐶𝑠(𝑇𝑠) = 𝐶(0) ∙ 𝐶𝐻𝑖 ∙ 𝐶𝑖(𝑇) 

SIA 261 𝑆𝑎,𝑍 = 2𝛾𝑓

𝑎𝑔

𝑔
𝑆

1

𝑞𝑠

[
(1 +

𝑍

𝐻
)

1 + (1 −
𝑇

𝑇1
)

2] ASCE/SEI 41-13 𝑆𝑎,𝑍 = 0.4 𝑆𝑎 (1 + 2
𝑍

𝐻
) 

MIT09 𝑆𝑑,𝑍 = 𝑆𝑑(𝑇1) ∙ 𝜙1(𝑍) ∙ Γ1

(
𝑇

𝑇1
)

2

√(1 −
𝑇

𝑇1
)

2

+ 0.02
𝑇

𝑇1

 

List of symbols (in alphabetic order): 

ag: Peak Ground Acceleration; C: site hazard coefficient; CHi: floor height coefficient, depending on the relative position of the 

secondary element; Ci(T) secondary element‟s spectral shape factor defined as a tri-linear function; Cs: horizontal design 

coefficient; H: total height of the structure; qs: q-factor of the non-structural element; S: soil amplification factor; Sa: response 

spectrum of ground acceleration; Sa,Z: acceleration floor spectrum; Sd: response spectrum of ground displacement; Sd,Z: 

displacement floor spectrum; T1: first period of the structure; T: natural period of the secondary element; Z: level of the 

secondary element; γf: importance factor; Γ1: coefficient of participation of the first mode; ϕ1: modal shape of the first mode 
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nonlinear response as well, highlighting the relevance of 

including also such aspect.  

Predictive equations in literature have adopted both 

analytical and numerical approaches and developed in a 

deterministic framework or, in few cases, in the 

probabilistic one (i.e., Singh 1975, Der Kiureghian et al. 

1983, Lucchini et al. 2017). Hereafter, the attention is 

focused only on those belonging to a deterministic approach, 

that is the ambit of the new expression proposed in §4, and 

that have been proposed in the last decade. 

Some of them have been mainly numerically calibrated 

through the execution of extensive parametric nonlinear 

dynamic analyses, like as the proposal of Menon and 

Magenes (2011a,b) or Sullivan et al. (2013), Calvi and 

Sullivan (2014). The first mainly investigated SDOF 

systems representative of masonry structures, while the 

second of RC structures varying in both cases the hysteretic 

properties of equivalent systems analyzed. Others, like as 

the formulations of Curti (2007) Lagomarsino (2015), have 

been derived from the original numerical-analytical 

dissertation by Singh (Singh 1975, Singh 1980, Burdisso 

and Singh 1987a,b) developing some more code-oriented 

proposals. In the latter ambit: Petrone et al. (2015) proposed 

a formulation explicitly derived for light non-structural 

components in European RC frame structures, that basically 

represents an extension of the one included in CEN04. The 

formulation was corroborated from the results of dynamic 

nonlinear analysis performed to a set of RC frame structures 

with different number of stories. Instead, Vukobratovic and 

Fajfar (2017), developed a code-oriented method, based on 

principles of structural dynamics and empirically 

determined values for the amplification factors in the 

resonance region. The latter represents a simplified version 

of the work presented in Vukobratovic and Fajfar (2015, 

2016). 

A synthetic overview of the various aspects of the 

physical phenomenon that such formulations are able to 

account for is illustrated below, by specifying the different 

level of detail adopted to describe each of them. In 

particular: 

- the features of the primary system are considered 

 

 

respectively through: simply the fundamental period in 

Petrone et al. (2015); both the fundamental period and 

the equivalent damping in Calvi and Sullivan (2014) 

Menon and Magenes (2011); two or more modes in 

Curti (2007) Lagomarsino (2015), Vukobratovic and 

Fajfar (2017).  

- The features of the secondary system are considered 

respectively through: simply the fundamental period in 

Menon and Magenes (2011) and by considering also its 

equivalent damping in all other proposal aforementioned.  

- The contribution of higher modes is considered 

indirectly in Menon and Magenes (2011), Petrone et al. 

(2015), while explicitly in all other cases. In Petrone et 

al. (2015) the peaks in the higher modes are included 

considering the maximum envelope.  

- The seismic amplification is considered through 

empirical or numerically calibrated multiplying factors 

in Calvi and Sullivan (2014), Petrone et al. (2015), 

Vukobratovic and Fajfar (2017) or as function of the 

fundamental or natural periods of the main structure as 

in Curti (2007), Magenes and Menon (2011) 

Lagomarsino (2015). 

- The nonlinearity of the primary system is included 

only in few proposals (Calvi and Sullivan 2014, Menon 

and Magenes 2011, Vukobratovic and Fajfar 2017). In 

all these formulations, the effective period of the 

structure assumed as representative of the nonlinear 

response is one of the additional parameters which have 

to be defined. Then, further specific factors are 

introduced to: pass to the inelastic spectrum as in Calvi 

and Sullivan (2014), Vukobratovic and Fajfar (2017); 

account for the reduction of the peak and the widening 

bell in Menon and Magenes (2011).  

- The nonlinearity of the secondary system is included 

only in few proposals and in implicit way by introducing 

the dependence on the equivalent damping 

representative of its response in nonlinear range (Curti 

2007, Lagomarsino 2015, Calvi and Sullivan 2014, 

Vukobratovic and Fajfar 2017). 

Differently from all the Standards examined in §3.1, it 

can be concluded that some literature formulations consider 

 

  

 

 (a) (b)  

 

Fig. 5 Floor spectra at the topmost level for the three-story masonry building (a) and the nine-story RC building (b). The 

dotted line indicates the fundamental period of each building 
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the systems nonlinearities and the contributions of higher 

modes, at least in a simplified way. Furthermore, they 

usually describe both the primary and the secondary 

systems with more details than in the Standards. Despite the 

higher level of detail, on the other hand, they often require 

the need to evaluate more parameters, sometimes 

empirically calibrated from the results of the performed 

analyses and this makes questionable their extrapolation to 

the use in any type of structures.  

 

 
4. The proposed formulation 
 

The proposed formulation allows obtaining the floor 

spectra just knowing the input response spectrum at the 

base of the structure and the dynamic parameters of all the 

relevant modes for the positions in the structure of interest. 

The analytical formulation is theoretically-based (§4.1) and 

conceived to be easily implementable in Standards; to this 

aim, all the involved parameters have a clear mechanical 

meaning (§4.2). Furthermore, the procedure takes into 

account the effects of the main building nonlinearities on 

the floor spectrum (§4.3) and the possibility to consider the 

contribution of different modes (§4.4). 

 

4.1 Theoretical bases 
 

The formulation proposed in this paper starts from the 

rigorous analytical/numerical dissertation originally 

presented by Singh (1975) and later developed in (Singh 

1980, Burdisso and Singh 1987a,b). These studies were 

based on the assumptions that the ground motion is a zero 

mean Gaussian stationary random process and the main 

structure is linear elastic. Even if the first assumption is not 

actually verified for the seismic action, it has been shown 

that no substantial errors derive in the calculation of the 

floor spectra (Singh 1980). Burdisso and Singh‟s method 

allowed to determine the floor spectra only knowing the 

input at the base of the structure and the main dynamic 

features of the considered modes, properly selected as 

representative of the structural response.  

Two characteristic points of the floor spectrum, in a 

given position of the main structure, are evaluated by a 

closed-form solution (Singh 1980, Burdisso and Singh 

1987a, b) for the generic k
th

 of the N considered modes: 

1. the Peak Floor Acceleration PFAZ,k, which is the 

spectral ordinate in T=0 (SaZ,k(0)); 

2. the spectral ordinate in correspondence of the k
th

 

natural period of the main structure SaZ,k(Tk). 

In particular, the value of PFAZ,k is given by 

   𝑍, =𝑆𝑎(𝑇 ,   )|  𝜙 |√1 + 4  
2 (1) 

where: 

• the natural period Tk, the modal participation 

coefficient Γk and the modal shape ϕk(x,y,z) are the 

modal parameters of the primary structure; 

• Sa(Tk, ξk) is the spectrum at the base of the structure, 

calculated in correspondence of the natural period Tk.  

• ξk is the viscous damping of the main structure. 

Instead, the amplification peak due to the k
th

 mode is 

calculated by multiplying the PFAZ,k by an amplification 

factor (AMPk) which substantially is a function of the 

viscous damping of the main structure ξk and of the 

secondary element ξ (Eq. (3)) 

   , (  ) =          ,  (2) 

where AMPk is defined as 

    =
√ (  )

2  +
  

  (  ) 
(1 + 4 2 −   )

 (  )√1 + 4  
2√1 + 4  

2
 

(3) 

with Am and Ib calculated as 

  =
1 + 4( 2 +   

2 +    ) + 16 2  
2

4  ( +   )
 (4) 

 𝑏
𝑆𝑎(𝑇 )

2
=

1

𝑆1(𝑇 )2

  (𝑇 ) −   (𝑇 )

  (𝑇 ) −   (𝑇 )
 (5) 

being: TB and TD the characteristic period of the response 

spectrum at the ground floor (CEN04); 𝑆𝑎(𝑇 ) the elastic 

acceleration response spectrum at ground level, for 5% 

damping; 𝑆1(𝑇 ) the one normalized to the PGA at ground 

level. 

Elsewhere, for values of period different from T=0 and 

T=Tk, the floor spectrum was defined in each point, by the 

numerical solution of a system of equations, which cannot 

be solved in closed form. Therefore, a practice-oriented 

version of this formulation is proposed in §4.2, §4.3 and 

§4.4. 

 

4.2 The proposed formulation: floor spectra for linear 
structures 
 

The proposed formulation uses the closed-form solution 

by Singh (1980) and Burdisso and Singh (1987a, b) only to 

define the two characteristic points of the floor spectrum in 

T=0 and T=Tk, which can be calculated as 

   𝑍, =𝑆𝑎(𝑇 ) (  )|  𝜙 |√1 + 4  
2 (6) 

   , (  ) =          , =     𝑠     ,  (7) 

where: 

• the PFAZ,k depends on the modal parameters of the 

main structure (Tk, Γk and ϕk(x,y,z)) and its viscous 

damping ξk. Furthermore, it depends on the ground 

spectrum Sa(Tk) calculated in correspondence of the 

structure‟s natural period Tk and properly reduced 

through the damping correction factor, unlike the 

original proposal by Singh (1980) and Burdisso and 

Singh (1987a,b) which prescribed instead Sa(Tk, ξk) in a 

more general way. The damping correction factor of the 

main structure can be calculated for example as (CEN 

2004) 

 (  ) = √
0.1

0.05 +   

 0.55 (8) 

with a reference value equal to 1 for ξk=0.05; 

• the spectral ordinate in correspondence of the k
th
 

natural period SaZ,k(Tk) is obtained as the PFAZ,k  
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amplified through AMPk. This latter directly derives 

from the theoretical one by Singh (1980) and Burdisso 

and Singh (1987a,b), but it has been organized in two 

contributions: fk that depends only on the viscous 

damping of the main structure, and fs that depends only 

on that of the secondary element. The expressions 

proposed to calculate these two contributions are 

  =   
  . 

 (9) 

 𝑠 =  ( ) = √
0.1

0.05 +  
 (10) 

 

Fig. 6 shows the trend of AMPk as obtained by the 

rigorous formulation (Eqs. (3)-(4)-(5), in colored lines) and 

the proposed expressions (black line) for fk and fs. A good 

fitting is highlighted. Referring to soil type A, three 

different situations have been considered for this 

comparison: 1) rigid structure (Tk=TB); 2) intermediate 

structure (Tk=TC); 3) flexible structure (Tk=1 s). In 

particular, Fig. 6 illustrates the results by alternatively 

keeping constant the viscous damping of the main structure 

ξk (ξk=5% and 10%) or the viscous damping of the 

secondary element. 

Once defined the two characteristic points of the floor 

spectrum, elsewhere, the contribution to the floor spectrum 

due to the k
th

 mode is given by easy analytical expressions 

that pass through the above-mentioned values in T=0 and 

T=Tk and fit well the numerical solution of the rigorous 

formulation: 

𝑆𝑎𝑍, (𝑇,  ) =

{
 
 

 
 

        𝑍, 

1 +      − 1 (1 −
𝑇

𝑇 
)
1.   𝑇  𝑇 

        𝑍, 

1 +      − 1 (
𝑇

𝑇 
− 1)

1.2   𝑇  𝑇 

 (11) 

Therefore, once properly selected all the interested 

modes and calculated the contribution of each one to the 

floor spectrum, the floor spectrum is obtained by using a 

modal combination rule. In this paper, a SRSS combination 

is proposed. The acceleration response spectrum Sa,Z(T, ξ) 

of the filtered acceleration time history at the level Z of the 

building (floor spectrum at the point in the main structure 

 

 

identified by (x,y,z)), is then calculated as the SRSS 

combination of the contributions provided by the N modes 

considered as relevant for the response 

𝑆𝑎,𝑍(𝑇,  ) = √∑ 𝑆𝑎𝑍, 
2

 

  1

(𝑇,  )  

(  𝑆𝑎(𝑇) ( )    𝑇  𝑇1) 

(12) 

As it is indicated by the condition in brackets, for long 

periods the floor spectrum has to be taken always greater 

than the response spectrum of the ground motion because 

the structure is able to transfer in the upper levels the low-

frequency contents of the ground motion itself (i.e., it 

behaves as “rigid” with respect to them).  

Concerning the proper combination of modes, even 

herein the use of the SRSS modal combination rule is 

proposed. Other rules may be applied as well, for example 

when horizontal diaphragms are not rigid and natural 

periods are little different. 

It is worth noting that, if the floor spectrum is evaluated 
from the response spectrum of ground motion acceleration 
Sa(Tk) of an actual record, there is a strong sensitivity to the 
estimation of the period Tk, due to the presence of peaks and 
valleys in the response spectrum of ground motion. Hence, 

it could be suitable to evaluate the value of Sa(Tk) as an 
average value in a proper range of periods around Tk (e.g., 
Tk±0.06 s). In this way, the formulation allows obtaining 
floor spectra not only starting from a ground motion 
spectrum with a “smooth” shape (like the one of Standards), 
but also when the input consists of a real record, with a 

ground motion response spectrum having an irregular shape. 
 

4.3 Effects of the nonlinear behavior of the main 
structure in the proposed formulation 

 

The proposed formulation considers the nonlinear 

behavior of the building by assuming, as an approximation, 

a linear equivalent structure, by increasing both the period 

Tk and the damping ξk of all the modes for whom the 

nonlinearity occurs. It is worth noting that, for ordinary 

buildings, even when the contribution of higher modes is 

important, the nonlinearity involves only the fundamental 

modes in each direction, while higher modes may be  

 

Fig. 6 Comparison of AMPk according to the rigorous definition (colored lines) and the proposed simplified expressions (in 

black), by keeping constant respectively ξk and ξ 

Proposal Rigid main structure Intermediate main structure Flexible main structure

571



 

Stefania Degli Abbati, Serena Cattari and Sergio Lagomarsino 

 

 

Fig. 7 Proposed analytical floor spectra in the linear and 

nonlinear phase of the structural response 

 

 

considered elastic. In particular, for the former ones, in 

order to properly take into account the elongation of Tk due 

to nonlinearity, the period should be assumed as a mean 

value between the initial elastic period Tke and a secant 

period corresponding to the ultimate displacement √ Tke, 

where μ is the ductility demand on the equivalent SDOF 

representing the building: 

  =    

1 + √ 

2
 (13) 

Coherently, the acceleration response spectrum should 

be calculated as: 

𝑆𝑎(𝑇 ) =
1

(√ − 1)𝑇  

∫ 𝑆𝑎(𝑇) 𝑇
√ 𝑇  

𝑇  

 (14) 

Fig. 7 presents the proposed analytical floor spectra, 

calculated at the third level of a 4-storey building. A 

damping ξk equal to 5% (black line) and 10% (grey line) 

have been alternatively assumed and a period of the 

nonlinear building equal to 1.2Tke (corresponding to a 

ductility demand for the main structure μ=2). The seismic 

input is the black dotted graph. From Fig. 7, it is possible to 

deduce the effects of the fk parameter on the floor spectrum 

shape: with the nonlinear response of the main structure, the 

structural damping increases and, consequently, fk decreases 

reducing the peak. 

 

4.4 Criteria for the selection of the relevant modes 
 

The formulation proposed is general and can be applied 

to any structure, once the modal analysis is performed. In 

particular, when the structure has flexible diaphragms (e.g., 

in the case of timber floors), many relevant modes should 

be considered, even close together in terms of 

corresponding periods and involving different parts of the 

structure, all with comparable mass participation 

coefficients. Hence, the floor spectrum in a certain point of 

the structure and for a given direction should be calculated 

considering those modes that significantly affect the PFA 

value. To this aim, it is sufficient to check the product 

|Γ 𝜙 ( ,  ,  )|  and, according to this value, detect the 

higher modes that can be significant in the specific point 

under consideration. Moreover, in the case of flexible 

structures, higher modes can be relevant since the 

amplification on the first mode could be low being in the 

decreasing branch of the ground response spectrum.  

Obviously, the proper selection of modes is a crucial 

step in the application of the proposed formulation and it is 

dependent on the kind of secondary element (or local 

mechanism) to be verified and for which the floor spectrum 

has to be calculated. For example, it is worth noting that if 

an accurate estimate of the floor spectrum in the low 

periods range is needed, the contributions of higher modes 

have to be considered. This is in particular true at lower 

levels in the building for the PFA. Conversely, if the 

secondary element to be verified is sensitive to the long 

periods, the contribution of the higher modes should be 

neglected, except in the case of local modes that are 

relevant for the specific point under consideration in the 

building. Once the modal analysis is performed and the 

relevant modes are selected, it is possible to easily calculate 

all the parameters to apply the proposed expression for the 

floor spectrum evaluation. 

For multi-story buildings, regular in plan and with rigid 

or stiff horizontal diaphragms, it is often possible to neglect 

higher modes and consider only the contribution of the first 

mode in the direction of interest. In this case, the dynamic 

parameters may be evaluated in a simplified way and apply 

an easier engineering practice-oriented formulation, as 

proposed at §8. 

 

 
5. Validation through experimental data 

 
In order to validate the formulation proposed in §4, the 

results of the experimental campaign presented in §2 were 

adopted as reference. This section firstly summarizes all the 

data acquired from the experimental campaign and 

necessary to apply the new analytical expression for the 

floor spectra (§5.1); then, the results of the validation are 

presented (§5.2). 

 

5.1 Description of the available experimental data 
 

From the shaking tests illustrated in Beyer et al. (2015) 

it was possible to acquire: all data necessary to evaluate the 

analytical floor spectra through Eqs. (11)-(12); the 

experimental floor spectra generated from the acceleration 

time histories recorded by the sensors at each building level 

(located as in Fig. 2(a)).  
Table 2 collects the available data for the 9 run tests: 1) 

PGAnom of the run; 2) values of the periods T1 and T1,ID used 
to estimate the level of nonlinear structural response; 3) 
corresponding ductility μ, evaluated from Eq. (13) by 
considering as reference elastic period T1,run 4=T1,ID,run 5=0.16 s, 
being the onset of damage in correspondence of those two 
runs (see Beyer et al. 2015); 4) value of the equivalent 
viscous damping of the main structure, derived from the 
peak of the recorded floor response spectra through Eq. (9); 
5) values of the modal participation coefficient Γ1,a and Γ1,b, 
calculated by assuming a modal shape ϕ normalized at the 
top, evaluated from the values of the PFA or from the peak 
SaZ,1(T1), respectively. It has to be pointed out that the 
period T1 is the one evaluated from the dynamic  
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Table 2 Summary of the main data used in the analytical 

floor spectra calculation 

Run PGAnom [g] T1 [s] T1,ID [s] μ ξ1 Γ1,a Γ1,b 

1 0.05 0.13 0.13 0.4 0.05 1.331 1.329 

2 0.1 0.14 0.13 0.6 0.05 1.317 1.328 

3 0.2 0.14 0.13 0.6 0.05 1.355 1.345 

4 0.3 0.16 0.15 1 0.08 1.231 1.299 

5 0.4 0.20 0.16 2.2 0.12 1.139 1.340 

6 0.6 0.23 0.17 3.5 0.12 1.167 1.288 

7 0.4 0.22 0.17 3.1 0.09 1.130 1.304 

8 0.7 0.26 0.19 5.0 0.15 1.236 1.298 

9 0.9 0.29 0.21 6.9 0.16 1.258 1.203 

 

 

amplification on the examined run, while the period T1,ID 

was obtained from the structural identification performed 

by the EPFL on the mock-up after each test. As expected, 

T1 and T1,ID are almost equal during the first runs (when the 

structural response is linear), while they gradually increase 

when the structure is damaged, with T1,ID always lower than 

T1. It is worth noting that the estimated maximum ductility 

demand, for Run 9, is compatible to values experimentally 

observed in Beyer et al. (2015). 

Fig. 8 illustrates, for runs 2, 4 and 6, the comparison of 

the modal shapes respectively estimated from the PFA (Fig. 

8(a)) and from the floor spectrum peak - SaZ,1(T1) (Fig. 8(b)). 

As it is possible to observe, the modal shape ϕ obtained 

from the peak SaZ,1(T1) exhibits the expected linear shape, 

apart the run 6 that shows the onset of a soft story behavior 

(really observed from shaking table tests). On the contrary, 

the ones evaluated from the PFA present higher values at 

the first two levels; this is due to the fact that PFA is 

influenced, in particular at the lower levels of the building, 

by the higher modes: therefore, the estimation of mode 

shapes from PFA is less accurate. These experimental 

modal shapes have been used to evaluate the Γ1 and Γ2 

modal participation coefficients presented in Table 2.  

The validation of the formulation proposed in §4 is 

based on the direct derivation of the equivalent viscous 

damping of the structure in correspondence of the peak of 

the recorded floor response spectra through Eq. (9), being 

known all other parameters in the formulation. Indeed, the 

obtained values (Table 2) are very reasonable: 1) before the 

occurrence of damage (run 1, 2 and 3) the value of the floor 

spectrum peak is obtained by assuming ξ1=0.05 that is a 

widely-used reference value for mixed masonry-RC 

buildings; 2) after the occurrence of the damage, the 

equivalent viscous damping gradually increases up to a 

value of 0.16, which is also a typical value for damaged 

masonry buildings. In order to check the relation obtained 

between ductility and damping, these values (square 

indicators in Fig. 9) have been compared with the following 

analytical damping law (dashed line in Fig. 9), commonly 

assumed in literature for various building typologies (Calvi 

1999; Blandon and Priestley 2005) 

 =   +  𝐻 (1 −
1

  
) (15) 

In the examined case, the ξ0 value is equal to ξ1,run 1,2,3=0.05, 

while for β and ξH a value equal to 0.8 and 0.14 has been  

 
(a) 

 
(b) 

Fig. 8 Comparison of modal shapes for consecutive runs as 

obtained from: (a) PFA; (b) SaZ,1(T1) 

 

 

Fig. 9 Comparison between the adopted damping values 

(scattered indicators) and the analytical damping law 

expression (dashed black line) 

 

 

assumed respectively, since these latter are values 

traditionally included in the range of those adopted for 

masonry structures (Cattari and Lagomarsino 2013a). Fig. 9 

shows that the adopted analytical expression fits quite well 

the experimental data, except for the black indicator, which 

refers to run 7. However, it is worth noting that this latter 

was performed with a level of intensity lower than test run 6 

and led only to a very little additional damage with 

maximum residual crack widths in practice unaltered. 
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Hence, the test unit was damaged, but with a less strong 

vibration: that means drift smaller than the one induced by 

test 6. 

It is worth noting that the derivation of correct values of 

the equivalent viscous damping from the reverse application 

of the proposed formulation for floor spectra to 

experimental results on shaking table represents a 

significant validation because it means that Eqs. (7) to (9) 

are mechanically consistent.  

 

 

5.2 Results of the experimental validation 
 

In order to validate the proposed formulation in the 

linear and nonlinear phases of the structural response, for 

 

 

each run the experimental floor spectra have been compared 

with the analytical ones obtained through Eqs. (11)-(12). 

Fig. 10 presents the results of the experimental validation. 

In particular, the validation‟s results have been presented in 

Fig. 10 in terms of: 

a. comparison between the experimental and analytical 

floor spectra: the experimental floor spectra recorded by 

the sensors at the fourth level (blue and red lines) are 

compared with the ones evaluated by applying the 

analytical proposed formulation, where Γ and ϕ have 

been respectively evaluated from the PFA (in grey) or 

from the SaZ,1(T1) (in black); the corresponding response 

spectra at the shaking table are represented with the 

dotted lines (indeed, only one accelerometer was placed 

on the shaking table, which is rigid); 

 (a) Acceleration Floor Spectra (b) PFA – SaZ,1 (T1) 
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Fig. 10 Comparison for different runs in terms of experimental and analytical obtained: (a) floor spectra at the 4

th
 level of the 

mock-up; (b) values of PFA and SaZ,1(T1) 
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b. comparison between the experimental and analytical 

values of PFA (lower curves) and SaZ,1(T1) (upper 

curves): the experimental values (marked in blue) are 

compared alternatively with the ones analytically 

obtained, with Γ and ϕ alternatively deduced again from 

the PFA (in grey) or from the SaZ,1(T1) (in black). 

From the comparison, it is possible to observe that: 

i. by using the values of ϕ and Γ obtained from the PFA, 

the experimental values of PFA recorded at the different 

stories are better described. Instead, when ϕ and Γ are 

evaluated from the peaks, the best fitting between 

experimental and analytical data is in terms of 

maximum values of the response spectra; 

ii. the proposed analytical formulation is able to 

simulate well the experimental data, especially when ϕ 

and Γ are obtained from the peak values of the response 

spectra. Despite this, the differences with those obtained 

from the peak SaZ,1(T1) are quite moderate as well. It is 

worth noting that the expression proposed for f1 (Eq. (9)) 

catches quite well the entity of the peak and its decrease 

when the structure behaves nonlinearly.  

iii. with the progression of the structural response in the 

nonlinear range, in the floor spectra, secondary peaks 

come out for values of the period T higher than the 

fundamental one. This might be due to the contribution 

of local out-of-plane modes, characterized by lower 

frequency, which occurred because of the degradation of 

the connections between walls. 

 

 

6. Numerical validation 
 

In order to provide also a numerical validation of the 

proposed formulation, dynamic analyses have been 

performed on an elementary 3-DOF system by using Matlab. 

To this aim, the numerical floor spectra (as generated from 

the acceleration time histories filtered by the main building) 

have been compared with the ones obtained by applying the 

expressions proposed in §4. The building was alternatively 

considered linear and nonlinear through an equivalent 

elastic model with increased period and damping (§6.1). 

Different values of the damping of the secondary element 

(ξ=5% and ξ=3%) have been considered as well, in order to 

represent various types of secondary elements (Degli 

Abbati 2016). The dynamic analyses have been executed 

using as input 648 actual time histories selected to be 

compatible with the seismic action expected in L‟Aquila at 

different return period. Such accelerograms have been 

selected within the framework of the RINTC project 

(Iervolino et al. 2018, RINTC Workgroup 2018).  

 

6.1 Definition of the reference building model 
 

The 3-DOF system was conceived in order to be 
representative of an existing masonry building (Cattari and 
Lagomarsino 2013b). For this reason, a three-dimensional 
detailed model was implemented with the Tremuri software 
(Lagomarsino et al. 2013), following the equivalent frame 
modelling strategy, where each wall is discretized as a 
frame of piers, spandrels and rigid nodes. The 3-DOF of the 
equivalent model are the horizontal translations of the three  

Table 3 Comparison among the results of the modal 

analyses 

 Matlab (3-DOF) Tremuri (3D model) 

Modal shapes 

(First Mode) 

0.381 0.397 

0.698 0.710 

1 1 

First Period T1 0.298 s 0.296 s 

 

Table 4 Members of mass, stiffness and damping matrixes 

M, K and C 

 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 

M 

[kg] ∙105 
2.460 0 0 0 2.097 0 0 0 1.433 

K 
[N/m]∙109 

1.345 -0.676 0 -0.676 1.227 -0.532 0 -0.532 0.435 

C 
[Ns/m] ∙106 

1.932 -0.773 0 -0.773 1.739 -0.609 0 -0.609 0.726 

 

Table 5 Considered values for T1 and ξk, depending on the 

maximum ductility demand 

 B1 B2 B3 

μ 1 3.3 9 

T1[s] 0.298 s 0.42 s 0.596 s 

ξ1 5% 11.8% 15% 

 

 

levels, taking into account also the spandrels flexibility that 

allows the nodes rotation.  

In order to characterize the dynamic system, the mass 
matrix M and the stiffness matrix K have been evaluated. In 
particular, in the examined case, M is a diagonal matrix, 
where the components represent the sum of the nodal 
masses obtained in each level from the Tremuri model, 
while K has been numerically obtained from the detailed 3D 
model.  

The correspondence between the complex 3D model and 

the equivalent 3-DOF system has been verified by 

performing a modal analysis. Table 3 compares the results, 

in terms of first period T1 and modal shapes (normalized to 

the unity at the top). 

The three natural periods deduced from the modal 

analysis were T1=0.298 s, T2=0.095 s and T3=0.064 s. With 

these values and assuming a Rayleigh damping, the matrix 

C has been defined as proportional to the mass and stiffness 

matrixes (C=a0M+a1K), in order to have a damping ξ equal 

to 5% for the modes 1 and 2. The coefficients a0 and a1 are 

equal to 1.5994 and 0.0011, respectively. Table 4 

summarizes the values of the mass (M), stiffness (K) and 

damping (C) matrixes. Each column of Table 4 refers to the 

i-j component of each matrix (where i= matrix‟s row; j= 

matrix‟s column).  

As briefly abovementioned, this building was analyzed 

under three different conditions of seismic response: linear 

behavior (B1); considering two different levels of maximum 

ductility demand (B2: μ=3.3; B3: μ=9). These values of 

maximum ductility correspond, through Eq. (13), to an 

average ductility of 2 and 4, respectively.  

Table 5 illustrates for the three buildings the values of  
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(a) 

 
(b) 

Fig. 11 Shear-ductility relation (a) and equivalent damping 

(b), according to Eqs.(13)-(15) 

 

the maximum ductility μ, the fundamental period T1 and the 

equivalent damping ξ1. 

For buildings B2 and B3 an equivalent elastic model, 

with stiffness matrix reduced by a constant factor, is 

considered (Fig. 11(a)). The equivalent damping ξk 

associated to the two different values of ductility is obtained 

from Eq. (15), assuming ξ0=5%, ξH=20% and β=0.5 (Fig. 

11(b)). These values are compatible with the ones proposed 

for masonry buildings (Cattari and Lagomarsino 2013a). 

 

6.2 Results of the numerical validation 
 

Fig. 12 illustrates the comparison between the numerical 

(dotted lines) and analytical (continuous lines) floor spectra, 

in terms of median value (in red), 16° percentile (in blue) 

and 84° percentile (in green). Also the ground response 

spectra is reported (the median value through the black 

continuous line; the 16° percentile and 84° percentile 

through the dotted grey lines).  

All floor spectra are presented in the format of both  
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Fig. 12 Comparison between numerical (dotted lines) and analytical (continuous line) floor spectra (secondary element 

damping ξ=5%; building ductility: B1-μ=1; B2-μ=3.3 and B3-μ=9) 
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acceleration-period and acceleration-displacement response 

spectra, for a damping equal to 5% of the secondary system. 

In the evaluation of the analytical floor spectra, for the sake 

of simplicity, only the contribution of the first mode is here 

considered. From Fig. 12, a general good agreement is 

observed although the analytical formulation slightly 

overestimates the floor spectra during the elastic response 

of the main structure, and slightly underestimates them 

when the primary system behaves in the nonlinear field (B3: 

μ=9).  
 
 

7. Limits of application 
 

As recalled in §1, the Floor Spectrum Approach is based 

on the assumption to neglect the dynamic interaction 

between primary structure and secondary element. In this 

section, the reliability of such assumption is verified by 

identifying the conditions when decoupling is possible. 

To this aim, the acceleration floor spectra at the third 

level of the linear elastic 3-DOF system presented in §6.2 

have been compared with the ones resulting by considering 

the whole system, that is the 4-DOF system where the 

further degree of freedom constitutes the secondary element 

(Fig. 13). As input for the dynamic analyses performed on 

such complete system, ten actual records from the 2009 

L‟Aquila earthquake have been used. In order to establish a 

complete coherence between the 3-DOF and 4-DOF 

systems, the secondary element mass ms has been subtracted 

 

 

 

from the mass of the third level in the mass matrix M. As 

far as the damping matrix C of the 4-DOF system concerns, 

a Caughy O‟ Kelly damping has been assumed to able to 

guarantee an initial damping equal to 5% on all the four 

modes (Eq. (16)) 

 = ∑   ( 
 1 ) 

  1

   

 (16) 

The response spectrum to be compared with the 

analytical one has been then generated by points, varying 

the secondary element‟s stiffness ks to obtain different 

values of the periods Ts (through the well-known 

equation  𝑇𝑠 = 2 √
  

  
). Fig. 13 outlines the applied 

numerical methodology. 

The analyses have been parametrically repeated by 

considering different values of the secondary element‟s 

mass (ms) with respect to the global one of the building 

(Mtot), in order to consider different possible kinds of 

secondary elements (Fig. 14(a)). In particular, the ms –Mtot 

ratio has been assumed respectively equal to: 0.05, 0.01, 

0.005, 0.001.  

Fig. 14(a) compares the floor spectrum at the third level 

of the 3-DOF system (grey line) with the ones evaluated 

point-by-point through the linear dynamic analyses 

performed on the 4-DOF system (marked with the scattered 

indicators and different colors varying the given ms/Mtot 

ratio).  

 

Fig. 13 Outline of the numerical methodology applied to obtain the floor spectrum by points 

  
(a) (b) 

Fig. 14 (a) Comparison between the Floor Response Spectrum Approach and the Combined P-S System approach: results of 

the performed analyses; (b) Coefficient fm,k as a function of the ms-Mk ratio, able to graduate properly the floor spectrum peak 
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(a) 

 
(b) 

Fig. 15 Dependence of the periods Ts, T1,4-DOF, T2,4-DOF e 

T3,4-DOF as a function of the ratio Ts/T1,3-DOF, by varying the 

value of the secondary element‟s mass: (a) ms=0.05Mtot, on 

the left; (b) ms=0.005Mtot, on the right 

 

 

The results of Fig. 14(a) highlight that: i) for secondary 

elements characterized by a negligible mass with respect to 

that of the main system, the floor spectrum obtained without 

considering the dynamic interaction with the main structure 

is correct; ii) otherwise, when the mass of the secondary 

element becomes significant, the Floor Spectrum Approach 

overestimates the actual spectral accelerations, especially in 

the range of periods close to the fundamental period of the 

primary system. 

Fig. 15 allows interpreting these results more accurately. 

It shows, for two different masses of the secondary element, 

the period of the secondary element (Ts) and of the first, 

second and third periods of the 4-DOF system (T1,4-DOF, T2,4-DOF 

e T3,4-DOF) as a function of the ratio Ts/T1,3-DOF (being T1,3-DOF 

the first period of the 3-DOF system).  

It is worth noting that, close to the unity (that is when 

Ts=T1,3DOF), for decreasing values of the secondary element 

mass, the value of its period tends to become equal to the 

values of the first and second period of the 4-DOF system, 

that in turn tends to coincide with the first period of the 
3-DOF system. This means that, when the secondary 

element has a negligible mass, the 4-DOF system is not 

influenced by the presence of this latter and it exactly 

behaves as the 3-DOF system. In other words, when the 

secondary element is characterized by a low mass, in 

correspondence to the peak of amplification, the whole 

system tends to have two periods almost equal: this justifies 

the presence of a significant amplification and the reliable 

use of a sub-structuring procedure. On the contrary, when 

the secondary element has a significant mass with respect to 

that of the primary structure, two equal periods never occur 

and the amplification tends to be reduced. 

Starting from the peak acceleration values obtained from 

the numerical analyses performed on the 4-DOF system 

(Fig. 14(a)), a corrective factor fm,k to be applied to Eq. (7) 

has been calibrated in order to reduce the amplification on 

the k
th

 natural period as 

  =   , ∙   
  .  (17) 

The corrective factor fm,k is a function of the ratio ms/Mk, 

where Mk is the participant mass on the k
th

 natural period. 

Fig. 14(b) shows the numerical values of fm,k, which 

gradually decrease from 1 as the mass of the secondary 

element increases. A good fitting of these values is obtained 

by the following analytical formula 

  , = [1 +  (
 𝑠

  

)
 . 

]

 1

 (18) 

Even if an accurate numerical validation through a wide 

parametric analysis would be necessary, the proposed 

formula can be considered as a first proposal of a practice-

oriented tool that allows referring to a Floor Spectrum 

Approach, even in case of the seismic assessment of 

secondary elements with non-negligible mass.   

 

 

8. Engineering practice-oriented implementation for 
multi-story buildings with rigid diaphragms 
 

As abovementioned, the formulation proposed in §4 is 

general and can be applied to any structure, once the modal 

analysis is performed and the relevant modes are selected. 

However, in the case of multi-story buildings, regular in 

plan and with stiff horizontal diaphragms, it is often 

possible to neglect higher modes and consider only the 

contribution of the first mode. In this ambit, an engineering 

practice-oriented implementation of the more general 

formulation is proposed below.  

The floor spectra at the different levels of a multi-story 

building with rigid or stiff diaphragms and without 

significant torsional modes may be obtained by considering 

only the first mode of vibration in the direction of interest 

and evaluating all the dynamic parameters required by the 

formulation proposed in §4 in a simplified way. The modal 

shape can be defined as follows 

𝜙1(𝑍) = (
𝑍

𝐻
)

 

 (19) 

where Z is the level of the secondary element, H is the total 

height of the building and κ is a proper coefficient. Usually 

κ=1 (inverse triangular modal shape) may be assumed for 

framed buildings, unless a soft storey is present at the base 

(κ<1); while κ>1 can be used in the case of slender shear  
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Fig. 16 Practice-oriented floor spectra in the linear and 

nonlinear phase of the structural response compared with 

the corresponding ones obtained through the theoretically-

based expression 

 

 

walls.  

Regarding the modal participation coefficient, if it is 

possible to assume a linear modal shape and equal masses at 

the different floors, it is directly given by the number of 

stories N 

 1 =
3 

2 + 1
 (20) 

The fundamental period T1 of the building in the 

direction of interest can be obtained through empirical 

relations, dependent on the total height or the number of 

stories, such as those proposed in Standards for the different 

structural materials (masonry, reinforced concrete, steel, 

timber) and types (frame, wall, etc.). This estimate is for 

sure affected by uncertainties, but it is worth noting that 

uncertainties cannot be avoided also by using a detailed 

numerical model (i.e., due to the influence of non-structural 

elements). For this reason, the simplified formulation here 

presented defines a plateau of maximum spectral 

amplification in the floor response spectrum, for a range of 

periods around the fundamental period which has been 

estimated, identified by the following lower and upper 

values: Tlow=0.8T1; Tup=1.1T1. The spectral acceleration of 

this plateau is assumed a little bit lower than the sharp peak 

of the floor spectrum defined by Eq. (11), because it would 

be very conservative to use the peak for a wide range of 

periods. The proposed formulation for the factor f1 (Eq. (9)) 

of amplification of the PFAZ,1 is the following 

 1 = 1.1 1
  . 

 (21) 

which gives a reduction of the peak of less than 20% for 

ξ=0.05 and of 10% for ξ=0.15. 

When the floor spectrum is derived with an input ground 

motion for which the main building is expected to behave 

nonlinearly with a maximum ductility demand μ, the 

reference value T1,NL, for the period of the equivalent linear 

building to be used for the evaluation of PFAZ,1 from (Eq. 

(6)), is given by 

𝑇1,  ( ) = 𝑇1

1 + √ 

2
 (22) 

The lower and upper periods of the plateau are then 

given by 

𝑇   = 𝑇1    [1 0.4(1 + √ )] (23) 

𝑇  = 0.55(1 + √ )𝑇1 (24) 

Finally, the equivalent viscous damping ξ1 can be 

assumed equal to 0.05, in the case a linear response of the 

main building is expected, or a larger value, as a function of 

the maximum ductility demand through Eq. (15). 

In conclusion, for a multi-storey building regular in plan 

and with stiff horizontal diaphragms, the engineering 

practice-oriented formulation for the floor spectra, which 

considers only the contribution of the fundamental period in 

the direction of interest, can be expressed as follows 

𝑆𝑎𝑍,1(𝑇,  ) =

{
 
 
 

 
 
 

 1 ( )   𝑍,1

1 +   1 ( ) − 1 (1 −
𝑇

𝑇   
)
1.   𝑇  𝑇   

 1 ( )   𝑍,1     𝑇    𝑇  𝑇  

 1 ( )   𝑍,1

1 +   1 ( ) − 1 (
𝑇

𝑇  
− 1)

1.2      𝑇  𝑇  

 (25) 

where T and ξ are the period and the damping of the 

secondary element. 

Fig. 16 shows the floor spectra obtained through this 

practice-oriented expression compared with those obtained 

through the more general expression introduced in §4 (Fig. 

7), considering the linear (black line) and nonlinear (grey 

line) behavior of the structural response. In the figure, the 

response spectrum of the input is drawn with the black 

dotted line. 
 

 

9. Conclusions 
 

This paper deals with the problem concerning the 

definition of reliable floor response spectra. This topic is 

relevant for the seismic verification of different kinds of 

elements, such as non-structural components in RC and 

steel structures or local mechanisms in masonry buildings. 

The critical discussion in §3 of the expressions already 

available highlighted that the methods in Standards provide 

results significantly scattered and sometimes overestimate 

the seismic demand on the secondary element; moreover, a 

significant drawback is that these methods neglect the 

effects of nonlinearities of the main structure. The 

formulations available in the literature are more rigorous 

but less practice-oriented, since they require the evaluation 

of many parameters, which are sometimes empirically 

calibrated making questionable their extrapolation to a huge 

variety of possible structures. The formulation proposed in 

the paper may be applied to any kind of structure and 

allows to include also the nonlinear behavior of the main 

building, although through a linear equivalent approach. 

The reliability of the formulation is demonstrated through 

experimental and numerical validations in both cases of 

linear and nonlinear behavior of the primary structure. It 

appears promising, being at the same time theoretically-

based and straightforward in its application. In fact, it 
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requires to know: the response spectrum at the ground floor; 

the damping of the main structure and of the secondary 

element; the modal parameters in terms of natural periods, 

deformed shape and modal participation coefficient of all 

the relevant modes. These latter can be easily determined 

from a modal analysis of the main structure, when available, 

or defined in a simplified way as presented in §8 in the 

engineering practice-oriented implementation of the 

proposed expression. Moreover, the applicability of the 

floor spectra approach in the case of secondary elements of 

non-negligible mass with respect to the one of the 

supporting building, has been verified by the comparison 

with results obtained by considering the dynamic 

interactions between primary system and secondary element. 

In this case, the dynamic interaction between the two 

systems determines a reduction of the amplification peak. 

Thus, a preliminary corrective factor is proposed as a 

function of the ratio between the mass of the secondary 

element and the participant mass of the main structure on 

the considered natural periods. It could be corroborated in 

future by a more extensive parametric analysis. 
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