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1. Introduction 
 

Seismic analysis is a subset of structural analysis in 

which dynamic response of a building structure (or non-

building structures such as bridges, etc.) against the 

earthquake is examined.  This analysis is a part of the 

structural engineering, the earthquake engineering and 

seismic retrofitting of the structures which should be 

constructed in earthquake prone zones (Liang and Parra-

Montesinos 2004).  

Mechanical analysis of nanostructures has been reported 

by many researchers (Zemri 2015, Larbi Chaht 2015, 

Belkorissat 2015, Ahouel 2016, Bounouara 2016, Bouafia 

2017, Besseghier 2017, Bellifa 2017, Mouffoki 2017, Khetir 

2017, Boadu et al. 2017). Liang and Parra-Montesinos 

(2004) studied seismic behavior of four reinforced concrete 

column-steel plate under various ground motions using 

experimental tests. Cheng and Chen (2004), Changwang et 

al. (2010) studied seismic behavior of steel reinforced 
concrete column-steel truss plate. They developed a design 

formula for shear strength of the structure subjected to 

seismic activities using experimental tests. The effect of 

cumulative damage on the seismic behavior of steel tube-

reinforced concrete (ST-RC) columns through experimental 

testing was investigated by Ji et al. (2014). Six large-scale 

ST-RC column specimens were subjected to high axial 

forces and cyclic lateral loading. The effect of plastic hinge 

relocation on the potential damage of a reinforced concrete 

frame subjected to different seismic levels was studied by 

Cao and Ronagh (2014) based on current seismic designs.  

                                           

Corresponding author, Professor 

E-mail: r.kolahchi@iaujasb.ac.ir 

 

 

The optimal seismic retrofit method that uses FRP jackets 

for shear-critical RC frames was presented by Choi et al. 

(2014). This optimal method uses non-dominated sorting 

genetic algorithm-II (NSGA-II) to optimize the two 

conflicting objective functions of the retrofit cost as well as 

the seismic performance, simultaneously. They examined 

various parameters like, failure mode, hysteresis curves, 

ductility and reduction of stiffness. Liu et al. (2016) focused 

on the study of seismic behavior of steel reinforced concrete 

special-shaped column-plate joints. Six specimens, which 

are designed according to the principle of strong-member 

and weak-joint core, are tested under low cyclic reversed 

load. 

In none of the above articles, the nanocomposite 

structure is considered. Wuite and Adali (2005) performed 

stress analysis of carbon nanotubes (CNTs) reinforced 

plates. They concluded that using CNTs as reinforcing 

phase can increase the stiffness and the stability of the 

system. Also, Matsunaga (2007) examined stability of the 

composite cylindrical shell using third-order shear 

deformation theory (TSDT). Formica et al. (2010) analyzed 

vibration behavior of CNTs reinforced composites. They 

employed an equivalent continuum model based onEshelby-

Mori-Tanaka model to obtain the material properties of the 

composite. Liew et al. (2014) studied postbuckling of 

nanocomposite cylindrical panels. They used the extended 

rule of mixture to estimate the effective material properties 

of the nanocomposite structure. They also applied a 

meshless approach to examine the postbuckling response of 

the nanocomposite cylindrical panel. In another similar 

work, Lei et al. (2014) studied dynamic stability of a CNTs 

reinforced functionally graded (FG) cylindrical panel. They 

used Eshelby-Mori-Tanaka model to estimate effective 

material properties of the resulting nanocomposite structure 

and also employed Ritz method to distinguish the instability 
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regions of the structure. Static stress analysis of CNTs 

reinforced cylindrical shells is presented by Ghorbanpour 

Arani et al. (2015). In this work, the cylindrical shell was 

subjected to non-axisymmetric thermal-mechanical loads 

and uniform electro-magnetic fields. Eventually, the stress 

distribution in the structure is determined analytically by 

Fourier series. Buckling analysis of CNTs reinforced 

microplates is carried out by Kolahchi et al. (2013). They 

derived the governing equations of the structure based on 

Mindlin plate theory and using Hamilton’s principle. They 

obtained buckling load of the structure by applying 

differential quadrature method (DQM). Dynamic response 

of FG circular cylindrical shells is examined by Davar et al. 

(2013). They developed the mathematical formulation of 

the structure according to first order shear deformation 

theory (FSDT) and Love’s first approximation theory. Also, 

Kolahchi et al. (2016) investigated dynamic stability of FG-

CNTs reinforced plates. The material properties of the plate 

are assumed to be a function of temperature and the 

structure is considered resting on orthotropic elastomeric 

medium. Jafarian Arani and Kolahchi (2016) presented a 

mathematical model for buckling analysis of a CNTs 

reinforced concrete column. They simulated the problem 

based on Euler Bernoulli and Timoshenko plate theories. 

Nonlinear vibration of laminated cylindrical shells is 

analyzed by Shen and Yang (2014). They examined the 

influences of temperature variation, shell geometric 

parameter and applied voltage on the linear and nonlinear 

vibration of the structure. An investigation on the nonlinear 

dynamic response and vibration of the imperfect laminated 

three-phase polymer nanocomposite panel resting on elastic 

foundations was presented by Duc et al. (2015). Van Thu 

and Duc (2016) presented an analytical approach to 

investigate the non-linear dynamic response and vibration 

of an imperfect three-phase laminated nanocomposite 

cylindrical panel resting on elastic foundations in thermal 

environments. Alibeigloo (2016) employed theory of piezo-

elasticity to study bending behavior of FG-CNTs reinforced 

composite cylindrical panels. They used an analytical 

method to study the effect of CNT volume fraction, 

temperature variation and applied voltage on the bending 

behavior of the system. Feng et al. (2017) studied the 

nonlinear bending behavior of a novel class of multi-layer 

polymer nanocomposite plates reinforced with graphene 

platelets (GPLs) that are non-uniformly distributed along 

the thickness direction. Duc et al. (2017a, b, c) studied 

thermal and mechanical stability of a functionally graded 

composite truncated conical shell, plates and double curved 

shallow shells reinforced by carbon nanotube fibers. Based 

on Reddy’s third-order shear deformation plate theory, the 

nonlinear dynamic response and vibration of imperfect 

functionally graded carbon nanotube-reinforced composite 

plates was analyzed by Thanh et al. (2017). Duc et al. 

(2018) presented the first analytical approach to investigate 

the nonlinear dynamic response and vibration of imperfect 

rectangular nanocompsite multilayer organic solar cell 

subjected to mechanical loads using the classical plate 

theory. 
For the first time, dynamic response of AL2O3 

nanoparticles-reinforced concrete plates subjected to 
seismic excitation and magnetic field is studied in the  

 

Fig. 1 Schematic figure of concrete plate reinforced by 

agglomerated AL2O3 nanoparticles under magnetic field 

 

 

present research. So, the results of this research are of great 

importance in Civil Engineering. The concrete plate is 

modeled by applying SSPT and the effective material 

properties of the concrete plate are obtained based on Mori-

Tanaka model considering agglomeration of AL2O3 

nanoparticles. The dynamic displacement of structure is 

calculated by HDQM in conjunction with Newmark 

method. The effects of different parameters such as volume 

fraction and agglomeration of AL2O3 nanoparticles, 

magnetic field, boundary conditions and geometrical 

parameters of concrete plate are studied on the dynamic 

response of the structure. 

 

 
2. Formulation 

 
2.1 Strain relations 
 

As shown in Fig. 1, a concrete plate is reinforced by 

agglomerated AL2O3 nanoparticles subjected to the 

earthquake load and magnetic field. The geometrical 

parameters of plate are length of L and thickness of h. 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017).  

By applying SSPT, the displacements fields are defined 

as below (Simsek and Reddy 2013) 
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where U, V and W are the respective translation 

displacements of a point at the mid-plane of the plate in the 

longitudinal x, transverse y and thickness z directions. Also, 

ϕ denotes the rotation of the cross section area and Φ(z) is 

the shape function of the plate which is considered as 

follows 
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However, the strain-displacement relations of the 

structure are given as below 
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2.2 Stress relations 
 

The constitutive equations of the orthotropic plate are 

considered as below 
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(6) 

where Cij are the elastic constants of the concrete plate. To 

obtain the effective material properties of the concrete plate 

and to consider the agglomeration effect, Mori-Tanak model 

(Mori andTanak 1973) is employed which the effective 

Young’s modulus E and Poisson’s ratio v of the composite 

material are given by 
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where the effective bulk modulus K and shear modulus G 

may be written as below (Shu and Xue 1997)
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(10) 

The agglomeration effect can be considered based on 

the micro-mechanical model by introducing the two 

following parameters 
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where Vr 
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rV  are the total volume of 

nanoparticles and volume of the nanoparticles inside the 

inclusion, respectively. in addition, Kin and Kout are the 

effective bulk modulus of the inclusion and the matrix 

outside the inclusion, respectively. Also, Gin 
and Gout are the 

effective shear modulus of the inclusion and the matrix 

outside the inclusion, respectively and are given as follows 
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where Cr 
is the volume percent of nanoparticles and
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in which kr, lr, nr, pr and mr 
are Hill’s elastic moduli of the 
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reinforcing phase of the composite material. Furthermore, 

Km 
and Gm are the bulk and shear moduli of the matrix 

phase which are defined as below 
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where Em 
and vm are considered as Young’s modulus and 

Poisson’s ratio of the concrete plate, respectively. 

Moreover, α and β in Eqs. (9) and (10) are given as follows 
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2.3 Energy method 
 

The potential strain energy stored in the structure is 

given as follows 
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Substituting Eqs. (3) and (4) into Eq. (26) we have 
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By substituting Eqs. (5)-(8) into Eqs. (28)-(31), the 

stress resultants of the plate take the following form 
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in which 
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The kinetic energy of the structure are defined as below 
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By substituting Eq. (1) into Eq. (52) we have 
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where 
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The external work due the earthquake and magnetic 

field can be calculated as follows (Kolahchi et al. 2016) 

2
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2
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w
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x
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
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  (56) 

where m and a(t) are the mass and acceleration of the earth, 

respectively; μ
 

and Hx 
are magnetic permeability and 

magnetic field, respectively. To extract the governing 

equations of motion, Hamilton’s principle is expressed as 

follows 

,0)(
0 
t

dtWKU   (57) 

where δ denotes the variational operator. Substituting Eqs. 

(58)-(60) into Eq. (57), the motion equations of the 

structure are obtained as follows 
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(61) 

Also, the boundary conditions of the structure are 

considered as below 
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• Clamped-Simply supported 
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5. Solution procedure 
 

In this study, DQM is applied to examine the dynamic 

behavior of the structure. In this numerical method, the 

governing differential equations of the structure turn into a 

set of first order algebraic equations by applying the 

weighting coefficients. According to DQ method, a 

derivative of a function at a given discrete point will be 

approximated as a weighted linear sum of the function 

values at all discrete points chosen in the solution domain. 

The one-dimensional derivative of the function can be 

expressed as follows (Kolahchi et al. 2016) 
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n

 (65) 

where f(x) is the mentioned function, N denotes number of 

grid points, xi is a sample point of the function domain, fi is 

the value of the function at ith sample point and Cij
 

indicates the weighting coefficients. So, choosing the grid 

points and weighting coefficients is an important factor in 

the accuracy of the results. The grid points are considered 

by Chebyshev polynomials as follows 
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Based on Chebyshev polynomials, the grid points are 

closer together near the borders and in distant parts of the 

borders they away from each other. The weighting 

coefficients may be calculated by the following simple 

algebraic relations 
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By distributing the grid points in the domain by 

substituting Eq. (65) into the governing equations, we have  
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in which [KL], [KNL] and [M] indicate linear part of the 

stiffness matrix, nonlinear part of the stiffness matrix and 

the mass matrix, respectively. Also, {db} and {dd} denote 

boundary and domain points, respectively. To obtain the 

time response of the structure subjected to the earthquake 

loads Newmark method (Simsek 2010) is applied in the 

time domain. Based on this method, Eq. (69) is considered 

in the general form as below 
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  ii QdK
 

(70) 

where subscript i+1 denotes the time t=ti+1, K
*
(di+1) and Qi+1 

are the effective stiffness matrix and the effective load 

vector which are given as  
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where (Simsek 2010) 
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 (73) 

where γ=0.5 and χ=0.25. By applying the iteration method, 

Eq. (70) is solved at any time step and modified velocity 

and acceleration vectors are computed as follows 

,)( 32101 iiiii ddddd    
 (74) 

,1761   iiii dddd    (75) 

Then for the next time step, the modified velocity and 

acceleration vectors in Eqs. (74) and (75) are applied and all 

the mentioned procedures are repeated. 

 

 
6. Numerical results 

 

In this section, the effect of various parameters on the 

dynamic response of the concrete plate reinforced by 

AL2O3 nanoparticles under seismic load and magnetic field 

is examined. The length and thickness of the concrete plate 

are L=3 m
 
and h=15 cm, respectively. The elastic moduli of 

concrete and AL2O3 nanoparticles are Ec=20 GPa and 

Er=165 GPa, respectively. The earthquake acceleration is 

considered based on Kobe earthquake that the distribution 

of acceleration in 30 seconds is shown in Fig. 2. 

 

6.1 Convergence of DQM 
 

Fig. 3 shows the convergence of DQM in evaluating the 

maximum deflection of the structure versus time. As it can 

be seen, with increasing the number of grid points N, the 

maximum deflection of the structure decreases until N=15, 

which the results converge to a constant value.  So, the 

results presented below are based on the number of grid  
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Fig. 2 Acceleration of Kobe 

 

 

Fig. 3 Convergence and accuracy of DQM 

 

 

points 15 for DQ solution method. 

 
6.2 Validation of results 
 

Since, there is not any similar work in the literature in 

the scope of this paper, however, validation of this work is 

done by comparing the numerical and analytical solutions. 

The results of the analytical and numerical (DQ) methods 

are depicted in Fig. 4. As it can be observed, the results of 

numerical and analytical methods are identical and 

therefore, the obtained results are accurate and acceptable. 

 

6.3 Effect of magnetic field 
 

Fig. 5 illustrate the effect of magnetic field on the 

dynamic deflection versus time. As it can be observed, the 

structure without magnetic field has a greater dynamic 

deflection with respect to the concrete plate subjected to 

magnetic field. The reason is that the magnetic field 

increases the stiffness of the structure. Fig. 5(a) shows the 

maximum dynamic deflection of the structure without 

magnetic field equal to 39 while by applying the magnetic 

field of 1, 5 and 10 A/m, the maximum dynamic 

displacement of the structure is 27.05, 18.15 and 17.97, 

respectively. By comparing the results, we can say that 

applying the magnetic field of 1, 5 and 10 A/m decreases 

the maximum dynamic displacement of the structure up to 

30.64, 53.46 and 53.92 percent which is a remarkable result 

 

Fig. 4 Comparison of numerical and analytical results 

 

 

Fig. 5 The effect of magnetic field on the dynamic response 

of the structure 

 

 

Fig. 6 The effect of AL2O3 nanoparticles volume percent on 

the dynamic response of the structure 

 

 

in the dynamic designing of the structures. Also it should be 

noted that the excessive increasing of the magnetic field 

increases costs while it does not have a noticeable effect on 

the dynamic response of the structure. Hence, the magnetic 

field of 5 A/m is the best choice for the present structure. 

 

6.4 Effect of AL2O3 nanoparticles 
 

The effect of AL2O3 nanoparticles volume percent on 

the dynamic response of the structure is studied. Fig. 6(a)-

(d). It is apparent that the maximum dynamic displacement 

of the structure is equals to 32.3 for the case of cr=0  
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Fig. 7 The effect of AL2O3 nanoparticles agglomeration on 

the dynamic response of the structure 

 

 

Fig. 8 The effect of concrete plate length on the dynamic 

response of the structure 

 

 

(without AL2O3 nanoparticles). By using AL2O3 

nanoparticles with volume fractions of 0.05, 0.1 and 0.18, 

the amount of maximum dynamic displacement is 29.1, 

27.05 and 30.83, respectively. Therefore, using AL2O3 

nanoparticles with volume fractions of 0.05 and 0.1 

increases the stiffness of the structure and reduces the 

maximum displacement of structure 9.91 and 16.25 percent, 

respectively while the volume percent of 0.18 has a 

converse result and 4.5 percent increase the deflection.  

The agglomeration effect of AL2O3 nanoparticles on the 

dynamic deflection of the structure versus time is illustrated 

in Fig. 7. As it can be observed, by considering the 

agglomeration effect, the stiffness of the structure reduces 

while the dynamic displacement increases. For example, in 

the absence of the agglomeration effect (ξ=1), the maximum 

dynamic deflection of the structure is 22.22 while for ξ=0.5 

the maximum dynamic deflection is 27.05. The results 

reveal that the existence of the agglomeration changes the 

maximum dynamic displacement of the structure up to 

21.74 percent.  

 

6.5 Effect of concrete plate length 
 

The effect of concrete plate length on the dynamic 

response versus time is shown in Fig. 8(a)-(d). It can be 

seen that with an increase in the concrete plate length, the 

structure becomes softer and the dynamic deflection of the  

 

Fig. 9 The effect of different boundary conditions on the 

dynamic response of the structure 

 

 

system increases. For example, the maximum dynamic 

displacements of the concrete plate increase 72.75% with 

increasing the length from 2 to 3 m.  

 

6.6 Effect of boundary conditions on dynamic 
response 
 

Fig. 9 illustrate the effect of various boundary 

conditions on the dynamic response versus time. Four 

boundary conditions including clamped-clamped, clamped-

simply, simply-simply and free-simply supported are 

considered. The maximum dynamic deflections of the 

structure for clamped-clamped, clamped-simply supported, 

simply-simply supported and free-simply supported 

boundary conditions are 13.53, 18.94, 27.05 and 32.46, 

respectively. As it can be observed, boundary conditions 

have a significant effect on the dynamic response of the 

system so that the structure with clamped-clamped 

boundary condition has the lowest displacement with 

respect to the other boundary conditions.  

 

 

7. Conclusions 
 

Seismic response of concrete plates reinforced by AL2O3 

nanoparticles was presented in this article. The structure 

was subjected to axial magnetic field for controlling the 

dynamic deflection of the structure. Based on SSPT, the 

structure was simulated and utilizing the energy method and 

Hamilton’s principle, the motion equations were derived. 

For calculating the effective material properties of structure 

and considering agglomeration of AL2O3 nanoparticles, 

Mori-Tanaka model was used. Applying HDQ and 

Newmark methods, the dynamic deflection of the structure 

was calculated and the effects of different parameters of 

AL2O3 nanoparticles volume percent and agglomeration, 

magnetic field, boundary conditions and length of the 

concrete plate were considered on the results. Numerical 

results indicate that the structure without magnetic field has 

a greater dynamic deflection with respect to the concrete 

plate subjected to magnetic field so that applying the 

magnetic field of 5 A/m decreases the maximum dynamic 

displacement of the structure up to 53.46 percent. Also it 
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should be noted that the excessive increasing of the 

magnetic field increases costs while it does not have a 

noticeable effect on the dynamic response of the structure. 

Using AL2O3 nanoparticles with volume fractions of 0.05 

and 0.1 increases the stiffness of the structure and reduces 

the maximum displacement of structure 9.91 and 16.25 

percent, respectively while the volume percent of 0.18 has a 

converse result and 4.5 percent increase the deflection. The 

results reveal that the existence of the agglomeration 

changes the maximum dynamic displacement of the 

structure up to 21.74 percent. In addition, the maximum 

dynamic displacements of the concrete plate increase 

72.75% with increasing the length from 2 to 3 m. 

Furthermore, boundary conditions have a significant effect 

on the dynamic response of the system so that the structure 

with clamped-clamped boundary condition has the lowest 

displacement with respect to the other boundary conditions.  
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