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1. Introduction 
 

The rehabilitation or strengthening of reinforced 

concrete structures is an important problem in civil 

engineering. In the last few years, GFRP composites are 

being used in the construction industry in the form of 

laminates and pultruded plates for strengthening of existing 

structures Meier (1995). With their excellent properties such 

as high tensile strength, long-term durability, corrosion/fire 

resistance and low weight, FGRPs have almost completely 

replaced steel plates as externally epoxy-bonded 

reinforcement for concrete. An important failure mode for 

such members is the debonding of the FRP plate from the 

member because of high interfacial stresses near the plate 

ends. Accurate predictions of the interfacial stresses are thus 

important for designing against debonding failures. This 

technique has been widely investigated, and several 

examples of existing structures retrofitted using CFRP 

bonded composite materials can be found in the literature 

Tounsi (2008), Benyoucef (2006), Roberts (1989), Smith 

and teng (2001), Shen (2001), Yang (2007), Bouakaz 

(2014). Among these materials, carbon fiber polymers are 

extensively used because of their un paralleled 

characteristics Roberts (1989), Roberts and Haji-Kazemi 
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(1989). The transferring of stresses from concrete to the 

FRP reinforcement is central to the reinforcement effect of 

FRP-strengthened concrete structures. This is because the 

stresses are susceptible to cause the undesirable premature 

and brittle failure, such as debonding of the soffit plate from 

the RC beam. It is therefore important to understand the 

mechanism of this debonding failure mode and develop 

sound design rules. This brittle mode of failure is a result of 

the high shear stress concentrations arising at the edges of 

the bonded FRP strip. Hence, this limited area in the close 

vicinity of the bonded strip edge, subjected to high peeling 

and interfacial shear stresses, proves to be among the most 

critical parts of the strengthened beam. Consequently, the 

determination of interfacial stresses has been researched for 

the last decade for beams bonded with either steel or 

advanced composite materials. In particular, several closed-

form analytical solutions have been developed Al-Emrani 

(2006), Hassaine Daouadji (2016), Asharaful (2018), Awad 

jadooe (2018), Fu (2018), Tounsi (2008), Rabahi (2018), 

Rabahi (2016), Hassaine Daouadji (2016), El Mahi (2014), 

Guenaneche (2014), Kongjian (2018), Wensu (2018), Krour 

(2014), Touati (2015), Yang et al. (2018), Zidani (2015), 

Yang and Ye (2010). All these solutions are for linear elastic 

materials and employ the same key assumption that the 

adhesive is subject to shear stresses that are constant across 

the thickness of the adhesive layer. It is this key assumption 

that enables relatively simple closed-form solutions to be 

obtained. In the existing solutions, two different approaches 

 
 
 

Nonlinear analysis of damaged RC beams strengthened with 
glass fiber reinforced polymer plate under symmetric loads 

 

Rabahi Abderezak1,2, Tahar Hassaine Daouadji
1,2, Benferhat Rabia1,2 and Adim Belkacem2,3 

 
1Département de Génie Civil, Université Ibn Khaldoun Tiaret; BP 78 Zaaroura, Tiaret, Algérie 

2Laboratoire de Géomatique et Développement Durable, Université de Tiaret, Algérie 
3Département des Sciences et Technologies, Centre Universitaire Tissemsilt, Algérie 

 
(Received March 13, 2018, Revised April 11, 2018, Accepted April 12, 2018) 

 
Abstract.  This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the 

nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the 

nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational 

spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations 

produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into 

consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based 

on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To 

confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are 

considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the 

nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility 
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have been employed. Roberts (1989), Roberts and Haji-

Kazemi (1989) used a staged analysis approach, while 

Vilnay (1988), Benyoucef et al. (2006), Smith and Teng 

(2001) considered directly deformation compatibility 

conditions.   

The main objective of the present study is to analyze the 

interfacial shear stress in damaged RC beams strengthened 

with CFRP plate. The objective of the present investigation 

is to improve the method developed by Tounsi (2008) by 

assuming a parabolic shear stress across the depth of both 

CFRP plate and damaged RC beams. The objectives of this 

paper are first to present an improvement to Tounsi’s 

solution (2008) to obtain a new closed-form solution which 

accounts for the parabolic adherend shear deformation 

effect in both the beam and bonded plate and second to 

compare quantitatively its solution against the new one 

developed in this paper by numerical illustrations. 

Numerical examples and a parametric study are presented to 

illustrate the governing parameters that control the stress 

concentrations at the edge of the CFRP strip. Finally, the 

adopted improved model describes better the actual 

response of the CFRP- damaged RC hybrid beams and 

permits the evaluation of the adhesive stresses, the 

knowledge of which is very important in the design of such 

structures. It is believed that the present results will be of 

interest to civil and structural engineers and researchers. In 

the present research a finite element model was developed 

using the commercial code ABAQUS (2007) to evaluate the 

interfacial shear stress of damaged RC beam strengthened 

with a bonded GFRP plate. The effects of the material and 

geometry parameters on the interface stresses are 

considered and compared with that resulting from literature. 

The simple approximate closed-form solutions discussed in 

this paper provide a useful but simple tool for 

understanding the interfacial behaviour of an externally 

bonded FRP plate on the damaged concrete beam. 

We can also mention, in addition to the composite fiber 
matrix materials, another alternative can be proposed to 
strengthen the structures that will be addressed in our future 
research, it is therefore the use of functionally graded 
materials (FGM) (Cheikh 2017, Tounsi 2013, Mahi 2015, 
Kaci 2018, Draiche 2016, Belabed 2018, Abdelha 2016, 

Abdelaziz 2017, Bennoun 2016) that in order to improve 
and ensure the material continuity through the thickness of 
the reinforcing  plate, aiming as a parameter in the 
mechanical characteristics of FGM, all by passing laws 
adequately mixes to better meet industrial requirements and 
the environmental condition. 

 

 

2. Finite element analysis  
 

In comparison with laboratory tests which are highly 

time and cost demanding, the numerical simulation is 

cheaper, time-saving, not so dangerous and more 

information. As the computational power has intensely 

increased, numerical methods, in particular the finite 

element method (FEM), have also been resorted for analysis 

of many practical engineering problems. The modeling 

process in Abaqus consists of defining the various 

components of the model individually i.e., the reinforced 

 

Fig. 1 Finite Element mesh of a half damaged RC beam 

strengthened with bonded CFRP plate model 

 

 

concrete beam, CFRP plate and adhesive layer were defined 

as parts, each compatible with the other so as to provide a 

complete analysis. The modeling itself is an iterative 

process, in that it takes several analyses to be able to 

simulate a particular set of characteristics effectively. A 4-

node linear quadrilateral, type S4R was established, in 

which only one half of the beam was considered because of 

symmetry geometry and loading of the beam (Fig. 1). All 

nodes at mid-span were restrained to produce the required 

symmetry, and nodes at the end of the RC beam were 

restrained to represent simply roll-supported conditions. 

The finite element mesh was refined in correspondence of 

the reinforcement ends in order to capture the relevant 

stress concentration with a total of C3D20R- 131150 

elements for FRP-RC hybrid beam. The number of 

elements used depends largely on the geometric parameters 

such as the length and the cross-sectional perimeter. In 

order to obtain accurate stress results at the ends of the 

plate, a fine mesh was deployed in these areas, as shown in 

Fig. 1.  

The relevant geometrical and mechanical properties 

used in the finite element analysis were the same as that 

used in the analytical method shown in Table 1. To simulate 

correctly the interaction behavior between the various 

components of the composite beams, a surface-to-surface 

contact interaction describes contact between two 

deformable surfaces. Element types and material properties 

were then specified and assigned to each corresponding 

part. A single concentrated load was applied at the mid-span 

of the strengthened damaged RC beam. While the damaged 

RC beam was assigned isotropic material properties, 

unidirectional laminate stress-strain relationship was 

adopted for the CFRP plate and elastic material properties 

for the adhesive layer. In this work, the stresses have been 

obtained from the average values of the stress in the bottom 

elements of the adhesive layer. 

 

 
3. Analytical analysis and solutions procedure 
 

3.1 Assumptions of the solution  
 

One of the analytical approach proposed by Hassaine 

Daouadji (2008) for concrete beam strengthened with a 

bonded GFRP Plate was used in order to compare it with a 

finite element analysis. The analytical approach (Hassaine 

Daouadji 2008) is based on the following assumptions: 

- Bending deformations of the adhesive are neglected.  

- No slip is allowed at the interface of the bond.  

- All materials considered are linear elastic.  

- The beam is simply supported and shallow, i.e., plane 

sections remain plane in bending.  

- Stresses in the adhesive layer do not change with the 

thickness.  
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Fig. 2 Simply supported damaged RC beam strengthened 

with bonded GFRP plate 

 

 

- The shear stress analysis assumes that the curvatures in 

the beam and plate are equal. However, this assumption 

is not made in the peel stress solution. When the beam is 

loaded, vertical separation occurs between RC beam and 

GFRP plate. This separation creates an interfacial 

normal stress in the adhesive layer. We note that this 

assumption is used in several works, e.g., Tounsi (2006, 

2008). 

- A parabolic shear stress distribution through the depth 

of both the concrete beam and the bonded plate is 

assumed.  

- The section properties of the damaged RC beam were 

based on the uncracked section, excluding the 

conventional steel reinforcement. It is known that for 

uncracked section, the concrete can sustain tension. 

However, for cracked section, the concrete cannot 

sustain tension and this is why the effect of steel 

reinforcement in concrete is not neglected. 

 

3.2 Material properties of damaged plates:  

 

The model's Mazars (1984, 1996) is based on elasticity 

coupled with isotropic damage and ignores any 

manifestation of plasticity, as well as the closing of cracks. 

This concept directly describes the loss of rigidity and the 

softening behavior. The constraint is determined by the 

following relation 

 )1( kl ijklij C       0    1      (1a) 

    1
~

1111 EE                  (1b) 

    1
~

2222 EE                  (1c) 

where  
11

~
E , 

22

~
E  and E11, E22 are the elastic constants of 

damaged and undamaged state, respectively, and  is 

damaged variable. Hence, the material properties of the 

damaged plate can be represented by replacing the above 

elastic constants with the effective ones defined in Eq. (1b) 

and (1c).  

 

3.3 Basic equation of elasticity: 
 

Fig. 2 shows a schematic sketch of the steps involved in 

strengthening a damaged RC beam with a bonded GFRP 

plate. A differential section, dx, can be cutout from the 

GFRP- strengthened damaged RC beam, as shown in Fig. 3. 

The strains in the RC beam near the adhesive interface and 

the external FRP reinforcement can be expressed, 

respectively as 

 

Fig. 3 Forces in infinitesimal element of a soffit-plated 
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Where N(x) is the axial force in each adherend and A is 

the cross sectional area. On the other hand, the laminate 

theory is used to determine the stress and strain of the 

externally bonded composite plate in order to investigate 

the whole mechanical performance of the composite 

strengthened structure. The effective modules of the 

composite laminate are varied by the orientation of the fibre 

directions and arrangements of the laminate patterns. The 

classical laminate theory is used to estimate the strain of the 

composite plate, i.e. 
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The terms of the matrices [A], [B] and [D] are written 

as: 

Extensional matrix: 
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Extensional -bending coupled matrix:  
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Flexural matrix: 
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The subscript NN represents the number of laminate 

layers of the GFRP plate, 
ijQ can be estimated by using the 

off-axis orthotropic plate theory, where 
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)cos( jm  )sin( jn 
 (17) 

Where j is number of the layer; h, 
ijQ and j are 

respectively the thickness, the Hooke's elastic tensor and the 

fibers orientation of each layer. 

Assume that the ply arrangement of the plate is 

symmetrical with respect to the mid-plane axis y2= 0. A 

great simplification in laminate analysis then occurs by 

assuming that the coupling matrix B is identically zero. 

Therefore Eqs. (4)-(8) can be simplified to the following 

matrix form for a plate with a width of b2 
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In the present study, only an axial load Nx and the 

bending moment Mx in the beam’s longitudinal axis are 

considered, i.e., Ny=Nxy=0 and My=Mxy=0. Therefore, Eq. 4 

can be simplified to 
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Using CLT, the strain at the top of the GFRP plate 2 is 

given as 

2
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t
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Substituting equation, gives the following equation 
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Where: N2(x)=N, and M2(x)=Mx 

The subscripts 1 and 2 denote adherends 1 and 2, 

respectively. M(x), N(x) and V(x) are the bending moment, 

axial and shear forces in each adherend. 

 

3.4 Mathematical formulation of shear stress 
distribution along the GFRP-damaged RC interface 
 

The governing differential equation for the interfacial 

shear stress (Rabahi 2016) is expressed as: 
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Where 
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(23) 

For simplicity, the general solutions presented below are 

limited to loading which is either concentrated or uniformly 

distributed over part or the whole span of the beam, or both. 

For such loading, d
2
VT(x)/dx

2
=0, and the general solution to 

Eq. (22) is given by 
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(26) 

And B1 and B2 are constant coefficients determined from 

the boundary conditions.  

 

3.4 Application of boundary conditions:  

 

The same loads cases used by Smith and Teng (2001) 

are considered in the present method. A simply supported 

beam is investigated which is subjected to a uniformly 

distributed load and an arbitrarily positioned single point 

load as shown in Fig. 4. This section derives the expressions 

of the interfacial shear stresses for each load case by 

applying suitable boundary conditions. 

Interfacial shear stress for a uniformly distributed load: 

As is described by Smith and Teng (2001) the interfacial 

shear stress for this load case at any point is written as. The 

constants of integration need to be determined by applying  
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Fig. 4 Load cases 

 

 

suitable boundary conditions. The first boundary condition 

is applied at the bending moment at x=0. Here, the moment 

at the plate end Mf (0) and the axial force of either the 

concrete beam or GFRP plate are zero. As a result, the 

moment in the section at the plate curtailment is resisted by 

the beam alone and can be expressed as 
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Applying the above boundary condition in Eq. (22) 
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By substituting equation, B2 can be determined as 
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The second boundary condition requires zero interfacial 

shear stress at mid-span due to symmetry of the applied 

load. B1 can therefore be determined as 
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For practical cases 10
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and as a result 
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. So the expression for B1 can be simplified to 
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Substitution of B1 and B2 into Eq. (24) gives an 

expression for the interfacial shear stress at any point 
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where q is the uniformly distributed load (Fig. 4(a))  and x, 

a, L and Lp are defined in Fig. 1. Contrary, to the method 

presented by Smith and Teng (2001), the expression of m2 

in the present method which take into account the shear 

deformations of adherends become 

Interfacial shear stress for a single point load: The 

general solution for the interfacial shear stress for this load 

case is 
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where P is the concentrated load (Fig. 4(b)) and k=λ(b−a). 

The expression of m1, m2 and, takes into consideration the 

shear deformation of adherends. 

Interfacial shear stress for two point loads: The general 

solution for the interfacial shear stress for this load (Fig. 

4(c)) case is 
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4. Results and discussions 
 

Material used: 
The material used for the present studies is an RC beam 

bonded with a glass fibre reinforced plastic GFRP. The 

beams are simply supported and subjected to a uniformly 

distributed load. A summary of the geometric and material 

properties is given in Table1. The span of the RC beam is 

3000 mm, the distance from the support to the end of the 

plate is 300 mm . 

Comparison with experimental results:  
 

 

Table 1 Geometric and material properties 

Component 
Width 

(mm) 

Depth 

(mm) 

Young’s 

modulus 

(MPa) 

Poisson’s 

ratio 

Shear 

modulus 

(MPa) 

RC beam b1=200 t1=300 E1=30 000 0.18 - 

Adhesive 

layer 
ba=200 ta= 4 Ea=3000 0.35 - 

GFRP plate b2=200 t2= 4 E2=50 000 0.28 G12=5000 

Aluminum b2=200 t2= 2 E2=63500 0.30  
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Fig. 5 Comparison of interfacial shear of the steel plated RC 

beam with the experimental results 

 

 

To validate the present method, a rectangular section is 

used here. One of the tested beams bonded with steel plate 

by Jones (1988), is analysed here using the present 

improved solution. The beam is simply supported and 

subjected to four-point bending, each at the third point. The 

geometry and materials properties of the specimen are 

summarized in the Table 1. The interfacial shear stress 

distributions in the beam bonded with a soffit steel plate 

under the applied load 180 kN, are compared between the 

experimental results and those obtained by the present 

model (damaged RC beam bonded by GFRP plate =0 and 

=0,2). As it can be seen from Fig. 5, the predicted 

analytical results are in reasonable agreement with the 

experimental results.   

Comparison with analytical solutions: A comparison of 

the interfacial shear and normal stresses from the different 

existing closed-form solutions and the present new solution 

is undertaken in this section. An undamaged RC beam 

bonded with a GFRP soffit plate is considered. The beam is 

simply supported and subjected to to a different type of 

loading (uniformly distributed load, a single point 

distributed load and a Two symmetric point load) (Table 2). 

Fig. 6 plots the interfacial shear stress near the plate end for 

the example RC beam bonded with a GFRP plate for the 

uniformly distributed load case. Overall, the predictions of 

the different solutions agree closely with each other. As it 

can be seen from the results, the peak interfacial stresses 

assessed by the present theory are smaller compared to 

those given by Tounsi (2008), Rabahi (2016) solution. This 

implies that adherend shear deformation is an important 

factor influencing the adhesive interfacial shear stress 

distribution. Hence, it is apparent that the adherend shear 

deformation reduces the interfacial shear stress 

concentration and thus renders the adhesive shear 

distribution more uniform. 

Comparison with numerical model: One of advantages 

of FEM simulation is that the detailed distributions of the 

shear stress along the interfaces can be produced. A simply 

supported damaged RC beam strengthened with a bonded 

CFRP plate. Taking advantage of the symmetry of the 

specimens, only one quarter of the beams was modelled, 

The influence of the mesh size on the predicted shear stress 

at the cutoff points was noticeable. In general, increasing  
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Fig. 6 Comparison of shear interfacial stress in damaged RC 

beam bonded with GFRP plate 
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Fig. 7 Influence of element size in the direction on 

maximum shear stress at cutoff point 

 

 

the size of the elements results in a proportional increase in 

the distances among the integration points within the 

element. Therefore, the induced shear stresses at the strip 

cutoff points are averaged over a large distance and are 

considerably less than the true values. Decreasing the size 

of the elements results in a substantial increase in the 

maximum shear stress up to a certain limit beyond which no 

further increase in the shear stresses is observed. The size of 

the elements at this transition stage is termed the optimum 

size.The optimum size of the elements in the longitudinal as 

well as in the vertical directions was determined as shown 

in Fig. 7. Further refinement of the mesh around the cutoff 

points increased the predicted shear stress by less than 0.5 

percent. The final mesh dimensions used for 92000 

elements (mesh 4). The FEM solutions are compared with 

the present analytical model and the interfacial shear stress 

distributions near the end of FRP are shown in Fig. 6. The 

FEM results are in reasonable agreement with the analytical 

results.   

Parametric studies: The parametric study program was 

based on FE analysis work and analytically approach, 

which will help engineers in optimizing their design 

parameters, the effects of several parameters were 

investigated.  

Effect of plate stiffness on interfacial stress: Fig. 6 and 

Table 2, gives interfacial shear stresses for the damaged RC 
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Fig. 8 Effects of damage on the maximal interfacial shear 

stress of RC beam strengthened by a GFRP plate 

 

 

beam bonded with a GFRP plate and Aluminum plate, 

respectively, which demonstrates the effect of plate material 

properties on interfacial stresses. The length of the plate is 

Lp=2400 mm, and the thickness of the plate and the 

adhesive layer are both 4 mm. The results show that, as the 

 

 

plate material becomes softer (from aluminum to GFRP), 

the interfacial stresses become smaller, as expected. This is 

because, under the same load, the tensile force developed in 

the plate is smaller, which leads to reduced interfacial 

stresses. The position of the peak interfacial shear stress 

moves closer to the free edge as the plate becomes less stiff. 

Effect of damaged on the maximal interfacial shear 

stresses: Fig. 8 show the effect of damage extent on 

maximum shear interfacial stress, for the GFRP materials. 

The results show that when the damage variable  increases 

from 0 to 0.15, the maximum interfacial stress increase 

slowly. However, it can be seen that from 0.20 to 0.60, 

these stresses increase rapidly.   

Effect of length of unstrengthened region “a”: The 

influence of the length of the ordinary-beam region (the 

region between the support and the end of the composite 

strip on the edge stresses) appears in Table 3.  It is seen 

that, as the plate terminates further away from the supports, 

the interfacial shear stress increase significantly. This result 

reveals that in any case of strengthening, including cases 

where retrofitting is required in a limited zone of maximum 

bending moments at midspan, it is recommended to extend 

the strengthening strip as possible to the lines.   

Table 2 Comparison of interfacial shear stress (MPa) 

Comparison of interfacial shear stress (MPa): Perfect concrete (=0%) 

Model 
Effect of 

damage 

RC beam with GFRP plate RC beam with Aluminum plate 

Single Point 

Distributed 

Load 

Two 

Symmetric 

Point Load 

Uniformly 

Distributed 

Load 

Single Point 

Distributed 

Load 

Two Symmetric 

Point Load 

Uniformly 

Distributed 

Load 

Present =0 2.459 2.767 1.565 2.767 3.090 1.765 

Present =0,1 2.719 3.060 1.731 3.056 3.415 1.949 

Present =0,2 3.040 3.423 1.935 3.412 3.814 2.176 

Present =0,3 3.448 3.884 2.194 3.862 4.320 2.463 

Rabahi (2016) =0 1.367 1.456 0.884 1.547 1.627 1.004 

Tounsi (2008) =0 1.341 1.426 0.868 1.518 1.592 0.986 

Comparison of interfacial shear stress (MPa): Imperfect concrete (=2%) 

Model 
Effect of 

damage 

RC beam with GFRP plate RC beam with Aluminum plate 

Single Point 

Distributed 

Load 

Two 

Symmetric 

Point Load 

Uniformly 

Distributed 

Load 

Single Point 

Distributed 

Load 

Two Symmetric 

Point Load 

Uniformly 

Distributed 

Load 

Present =0 2.507 2.821 1.596 2.820 3.150 1.799 

Present =0,1 2.772 3.120 1.764 3.114 3.480 1.986 

Present =0,2 3.099 3.489 1.972 3.476 3.887 2.217 

Present =0,3 3.514 3.959 2.236 3.935 4.402 2.509 

Rabahi (2016) =0 1.384 1.473 0.895 1.566 1.645 1.016 

Tounsi (2008) =0 1.358 1.443 0.879 1.537 1.611 0.998 

Comparison of interfacial shear stress (MPa): Imperfect concrete (=4%) 

Model 
Effect of 

damage 

RC beam with GFRP plate RC beam with Aluminum plate 

Single Point 

Distributed 

Load 

Two 

Symmetric 

Point Load 

Uniformly 

Distributed 

Load 

Single Point 

Distributed 

Load 

Two Symmetric 

Point Load 

Uniformly 

Distributed 

Load 

Present =0 2.557 2.877 1.627 2.875 3.212 1.834 

Present =0,1 2.827 3.182 1.799 3.175 3.548 2.025 

Present =0,2 3.160 3.558 2.011 3.544 3.963 2.260 

Present =0,3 3.583 4.036 2.280 4.010 4.487 2.557 

Rabahi (2016) =0 1.401 1.491 0.907 1.585 1.664 1.029 

Tounsi (2008) =0 1.376 1.460 0.891 1.557 1.630 1.011 
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Table 3 Effect of length of unstrengthened region “a” of 

damaged RC beam bonded with a GFRP plate subjected to 

a uniformly distributed load 

 

Effect of 

damage 
a=50 a=100 a=150 a=200 a=250 a=300 

Shear 

stress 

=0 0,5241 0,8841 1,2313 1,5657 1,8873 2,1961 

=0,1 0,5789 0,977 1,3612 1,7311 2,0868 2,4283 

=0,2 0,6466 1,092 1,5217 1,9355 2,3334 2,7155 

=0,3 0,7322 1,237 1,7253 2,1948 2,6464 3,0799 
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Fig. 9 Effects of fiber orientation on the maximal interfacial 

shear stress of RC beam strengthened by a GFRP plate 

 

 

Effect of fiber orientation: The effect of fiber orientation 

on adhesive stresses is show in figure 9, the maximum 

interfacial shear stress increase with increasing alignment of 

all high strength fibers in the composite plate in beam's 

longitudinal direction x.   

Effect of adhesive layer thickness: 

Table 4 shows the effects of the thickness of the 

adhesive layer on the interfacial shear stress. Increasing the 

thickness of the adhesive layer leads to a significant 

reduction in the peak interfacial stresses. Thus using thick 

adhesive layer, especially in the vicinity of the edge, is 

recommended. In addition, it can be shown that these 

stresses decrease during time, until they become almost 

constant after a very long time. 

 

 
5. Conclusions 

 

This paper has been concerned with the prediction of 

interfacial shear stress in damaged RC beams retrofitted 

with externally advanced composite materials, were 

investigated by analytical and the finite element method and 

subjected to a uniformly distributed bending load. Such 

interfacial stresses provide the basis for understanding 

debonding failures in such beams and for development of 

suitable design rules. Numerical comparison between the 

existing solutions and the present new solution has been 

carried out. The results show that the damage has a 

significant effect on the interfacial stresses in GFRP-

damaged RC beam, especially, when the length of damaged 

region is equal or superior to the plate length. The 

numerical examples show that the FE calculations are in 

good agreements with the theoretical analysis. 

Table 4 Effect of adhesive layer thickness of damaged RC 

beam bonded with a GRP plate subjected to a uniformly 

distributed load 

 

Effect of 

damage 
ta=1 ta=2 ta=3 ta=4 ta=5 ta=6 

Shear 

stress 

=0 2,0189 1,5657 1,3335 1,1863 1,0824 1,0039 

=0,1 2,2323 1,7311 1,4742 1,3114 1,1964 1,1096 

=0,2 2,4963 1,9355 1,6481 1,4660 1,3373 1,2402 

=0,3 2,8312 2,1948 1,8686 1,6619 1,5159 1,4057 

 

 

Consequently, it is recommended to use a strengthening 

plate having length, superior to the damaged zone. The 

results reveal also, that thickness of the GFRP strip 

significantly increases the edge peeling and shear stresses. 

Observations were made based on the numerical results 

concerning their possible implications to practical designs. 

we can conclude that, This research is helpful for the 

understanding on mechanical behavior of the interface and 

design of the GFRP-RC hybrid structures. 

In conclusion, we can say that in addition to matrix 

composite fiber materials, another alternative may be 

proposed for strengthening structures. This will involve the 

use of functionally graded materials (FGM) (Bouafi 2007, 

Bellifa 2017, Elhaina 2017, Menasria 2017, Adim 2016, 

Benferhat 2016, Attia 2018, Abualnour 2018, Benchora 

2018, Tounsi 2013) in order to ensure continuity properties 

lift through the thickness of the reinforcement plate.  
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