
Earthquakes and Structures, Vol. 14, No. 5 (2018) 425-436 

DOI: https://doi.org/10.12989/eas.2018.14.5.425                                                                  425 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/eas&subpage=7                                      ISSN: 2092-7614 (Print), 2092-7622 (Online) 

 
1. Introduction 
 

Base isolation has attracted much interest among 

engineers in recent decades as a technology for providing 

seismic protection to building structures. The use of 

isolation systems at the base of a structure elongates its 

period of vibration and dissipates the seismic input energy, 

thereby allowing better control of the structural response. 

Among the different types of implemented isolators, 

friction pendulum systems (FPSs) have become widespread 

since 1990 (Zayas et al. 1990). FPS consists of a concave 

spherical sliding surface and a slider, forming an innovative 

bearing that achieves damping through friction. Many 

studies have been conducted on this type of isolation 

systems and other developed generations of FPS 

(Moeindarbari et al. 2014, Moeindarbari and Taghikhany 

2014, Shahbazi and Taghikhany 2017). 

Castaldo and Tubaldi analysed the influence of FPS 

isolator properties on the seismic performance of base-

isolated building frames. The uncertainty in the seismic 

input was taken into account by only considering a set of 

natural records with different characteristics scaled to 

increasing intensity levels (Castaldo and Tubaldi 2015). 

Bucher discussed the analysis of all types of friction 

pendulum isolators and compared their behaviour to the 
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isolation capacity and device displacements (Bucher 2015). 

These studies were developed mainly through deterministic 

analyses, whereas the isolation system characteristics, 

structural system properties, earthquake characteristics, and 

device properties contain inherent uncertainties. 

The stochastic nature of variables such as input ground 

motion motivates the use of probabilistic analysis in 

structural dynamics, structural reliability methods, and 

reliability-based analysis (Enevoldsen and Sørensen 1994, 

Lin and Cai 1995, Ayyub and McCuen 2011). Several 

studies have thus focused on the design analysis of isolated 

structures by considering uncertainties in the structural, 

base-isolation, and ground-motion characteristics 

(Pourgharibshahi and Taghikhany 2012). Su and Ahmadi 

(1988) studied the responses of a rigid structure with a 

frictional base isolation system subjected to randomly 

generated horizontal-vertical earthquake excitations. 

Constantinou and Papageorgiou (1990) discussed the 

stochastic response of practical sliding isolation systems. 

Alhan and Gavin (2005) studied the reliability requirements 

of isolation-system components to protect critical 

equipment from earthquake hazards. They considered a 

four-story structure representing a sensitive facility on an 

isolated raised floor at the second level of the building. The 

stochastic seismic response analysis and reliability 

evaluation of the base-isolated structures were conducted by 

combining a physical stochastic ground-motion model and 

the probability density evolution method by Chen et al. in 

2007 (Chen et al. 2007). They concluded that the response 

and earthquake action on the superstructure could be 

reduced by one degree of intensity, relative to a fixed-based 

structure. The investigations showed that the stochastic 
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seismic response analysis and reliability assessment could 

provide indices that allow more objectivity in decision 

making than the few selected deterministic ground motions 

commonly employed in practice. Xiao et al. (Zou et al. 

2010) in 2010 presented a useful numerical reliability-based 

optimisation technique for the design of base-isolated 

concrete building structures under spectrum loading. Huang 

and Ren presented a dynamic reliability-based optimisation 

technique for the seismic design of base-isolated structures. 

Analytical solutions of stochastic seismic response under 

the Kanai-Tajimi spectrum loading were obtained applying 

on a 3-story isolated building (Huang and Ren 2011). 

Taflanidis and Jia proposed a versatile, simulation-based 

framework for risk assessment and probabilistic sensitivity 

analysis of base-isolated structures. A sampling-based 

approach was also introduced for establishing a 

probabilistic sensitivity analysis to quantify the significance 

of each uncertain model parameter for affecting the overall 

risk (Taflanidis and Jia 2011). Jia et al. (2014) optimised the 

floor isolation system based on reliability criteria, where the 

reliability of the system was quantified, by stochastic 

simulations, in terms of the plausibility that the acceleration 

of the protected contents will not exceed an acceptable 

performance limit. In 2014 Palazzo et al. evaluated the 

seismic reliability of a base-isolated structure with FPS 

considering both isolator properties and earthquake key 

features as random variables. They used Latin hypercube 

sampling (LHS) as the sampling method for Monte Carlo 

simulations (Palazzo et al. 2014). 

Simulation-based methods achieve the best estimates in 

the reliability analysis of the isolated structure via a 

dynamic time-history model of the isolated structure. 

Simulation-based methods for reliability analysis are useful 

tools for calculating the probability of failure (Pf) or 

reliability index () of an isolated structure subjected to 

random earthquake excitations (Alhan and Gavin 2005). An 

important issue in such methods is the computation cost. 

For complex systems where the derivation of joint 

probability-distribution functions is complicated, the 

probability of failure is evaluated by Monte Carlo 

simulations (MCSs). In fact, Pf is the ratio of the number of 

realisations with non-positive limit states to the total 

number of simulations. The required number of simulations 

for complex dynamics is often too large to complete over 

reasonable time frames. Several modified MCS methods 

were therefore developed to reduce the size of calculations. 

Various sampling variance-reduction techniques were 

developed to improve computation efficiency by 

minimising the sample size and reducing the statistical error 

inherent in MCSs. These techniques include importance 

sampling, adaptive sampling, stratified sampling, Latin-

hypercube sampling, the antithetic variate technique, the 

conditional expectation technique, average sampling, and 

asymptotic sampling (Papadrakakis et al. 2004, Iman 2008, 

Bucher 2009). 

Other efficient newly developed methods for 

simulation-based reliability analyses, which can 

significantly reduce computation size, involve estimating 

the limit states using the response surface (Gosavi 2014, 

Dai et al. 2015). The former methods called response-

surface methods (RSMs) are used primarily in reliability-

based design optimisation (RBDO) (Gosavi 2003). One of 

the most appropriate tools in RSM is the artificial neural 

network (ANN) and its recent variants such as wavelet 

neural networks (Farooq Anjum et al. 1997, Desai et al. 

2008). Kerh and Ting used a back-propagation neural 

network model, to estimate peak ground acceleration at ten 

train stations along the high-speed rail system in Taiwan 

(Kerh and Ting 2005). Liu et al. used neural networks to 

train a classifier for damage diagnosis of structures (Liu et 

al. 2011). Papadrakakis and Lagaros (2002) examined the 

application of neural networks (NNs) to the reliability-

based structural optimisation of large-scale structural 

systems. The failure of the structural system in that study 

was associated with plastic collapse. Other studies 

demonstrated the efficiency of neural networks as a tool for 

estimating the limit-state function (Gomes and Awruch 

2004). Adeli and Jiang presented a new dynamic time-delay 

fuzzy wavelet neural network model for nonparametric 

identification of structures using the nonlinear 

autoregressive moving average with exogenous inputs 

approach (Adeli and Jiang 2006). 

The present study deals with the seismic reliability 

analysis of a base-isolated structure using MCSs. Although 

the Monte Carlo simulations for the reliability analysis of a 

single specific isolated structure does not impose high 

calculation cost, in the optimal reliability-based design of 

an isolated structure, the failure probability should be 

calculated for several times due to the properties variation 

of the supposed system. Thus we present two methods 

aimed at decreasing the computation cost of reliability 

analysis: (I) by exploiting NN efficiency as a meta-model to 

predict the maximum structural responses; and (II) by 

reducing the number of uncertain variables using a recent 

sensitivity analysis to ignore the uncertainty of some input 

variables of the meta-model. The NN estimates are used 

instead of direct time-history analysis in the Monte Carlo 

simulations as a surrogate model for calculating the 

probability of failure. Applying sensitivity analysis beside 

NN improves the efficiency of the NN design procedure. 

The input variables of the surrogate model are the 

design variables of the isolated structure beside the 

uncertain variables of the entire analytical model.  

Protecting delicate facilities in a structure as one of the 

applications of seismic base isolation is chosen for the 

desired performance of the structure in this paper. 

Therefore, as an innovative study, the limit state is defined 

by the maximum acceleration response of the floors. The 

reliability of the structure is computed using the estimations 

of the limit state by the designed NNs to show the 

efficiency of the introduced method. Accordingly, the 

results obtained from the evaluations of NN are compared 

with the results from the direct time-history analysis. 

 

 

2. The selected model and assumptions 
 

2.1 Superstructure 
 

In this study, an isolated two-dimensional, three-story  
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Fig. 1 The two-dimensional three-story concrete frame 

modelled for the simulations 

 

 

concrete frame (see Fig. 1) is purposed for stochastic 

analyses. The sensitive computer servers are installed on the 

second and third floors of the supposed structure. 

The structure is subjected to the ground motions 

generated randomly through the combination of parametric 

or functional descriptions of the amplitude spectrum with a 

random phase spectrum as discussed later.  

At first, all the loads and resistant parameters of the 

structure assumed as random variables; however, to reduce 

the input parameters of the surrogate model, only essential 

variables are selected as random by using sensitivity 

analysis. 

For the probability of failure, the limit state is defined 

using a function to determine the case where the facility 

floor accelerations reach a 100 milli-g acceleration level. 

Acceleration levels in the range of 100–200 milli-g are 

specified by computer producers for sensitive computers as 

the limit where they fail to operate (Alhan and Gavin 2005). 

Supposing a floor acceleration threshold at the limit state 

function can be formally stated with 

( ) tg X a MFA   (1) 

MFA is the maximum floor acceleration of the story 

where the facility is installed. Then the probability of failure 

is defined as 

 ( ) 0fP P g X   (2) 

 

2.2 Mechanical behaviour and design of FPS (Single-
FP bearings)  

 

Single-FP bearings are devices which support the 

vertical load and transmit horizontal loads in a predefined 

manner through an articulated slider which slides on a 

concave surface with a radius R and friction coefficient µ  as 

indicated in Fig. 2. 

The centre of the spherical concave plate follows a 

circular trajectory so that the motion is that of a pendulum 

having a length equal to the radius of curvature R. As shown 

in Fig. 2 the resisting force F has two components; the 

pendulum component and the friction component which are 

determined from the following equations 

 

Fig. 2 FP Bearing, deformed shape and the slider free body 

diagram 
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(3) 

Where u is the horizontal displacement of the pivot 

point of the slider, sign denotes the signum function of the 

sliding velocity u , R is the radius of curvature of the 

spherical surface, W is the contributing weight of 

superstructure on the bearing and μ is the coefficient of 

sliding friction. The magnitude of μ is a function of 

different parameters as; sliding velocity, vertical pressure, 

cycling and breakaway effects (Lomiento et al. 2013). 

In this study only the dependency of the coefficient of 

friction to the velocity is considered which is given by the 

following equation (Constantinou et al. 1990, Mokha et al. 

1990) 

max max min( )exp( )a u        (4) 

where μmax 
is the friction coefficient due to high velocities, 

μmin is the friction coefficient in the lowest (or negligible) 

velocities and a is the rate parameter that adjusts the speed 

of the transition of the friction coefficient between μmax and 

μmin. 

The fundamental period of vibration of the system, T, 

related only to pendulum component, is independent of the 

mass of the structure and associated only with the radius of 

curvature of the spherical surface R. 

2
R

T
g

  (5) 

To evaluate the efficiency of the proposed technique, we 

compared the results of the meta-model and the direct time-

history analysis considering a specific base isolation 

system. So we designed an FPS for the supposed structure 

considering a desired effective isolated period T=2 second.   

For the considered structure (Fig. 1), FPS is designed 
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based on the procedures proposed by Mayes and Naeim ( 

2001). We computed the radius of curvature to be R=1 m 

from Eq. (5) considering an effective isolation period T=2 

sec. Supposing Seismic Zone 4, Site Class D and Seismic 

Group 1 based on the NEHRP seismic provisions, Spectral 

Coefficients SM1 and SD1 would be 0.427 and 0.640 

respectively. Assuming the target provided damping of the 

isolation system βI=20% leads to numerical coefficient 

BI=1.5. So the horizontal displacement capacity (D) can be 

computed by 

1

2 2

9.81 0.64 2
( )( ) ( )( ) 0.212

1.54 4

D
M

I

S Tg
D m

B 


    (6) 

Then the coefficient of friction would be approximately 

μ=0.11
 
from the following equation 

2

/
I

MD R




 



 (7) 

So the design procedure for the isolated structure leads 

to the friction pendulum system having a concave surface 

with a one-meter radius of curvature and a friction 

coefficient equal to 0.11.  

 

 

3. Input ground motion 
 

There is two approaches available for time-history 

dynamic analysis of structures subjected to earthquakes: (1) 

dynamic response-history analysis using a set of recorded 

ground motion time-histories and (2) stochastic dynamic 

analysis employing a set of generated stochastic ground 

motions. Artificial ground motions are created through the 

combination of parametric or functional descriptions of the 

amplitude spectrum with a random phase spectrum. They 

randomly cover the complete range of the characteristics of 

ground motions with different duration, magnitude and the 

distance from the source. Accordingly, for simulation-based 

reliability analysis of the isolated structure, the best method 

is applying random excitation using artificial earthquake 

ground motions. This means of simulating ground motions 

is often called “Stochastic Method”. 

Herein the proposed point-source stochastic method by 

Boore (2003) is applied considering some modifications. In 

this method, the correlation between random variables is 

not observed. So the results can be improved using another 

technique that examines the correlation between the random 

variables. 

Regarding the aim of this research, the parametric 

descriptions of the ground motion (such as the earthquake 

magnitude and the distance from the source) considered 

being random variables. 

In this method the total spectrum of the motion at a site 

(Y(M0,R,f)) is broken into contributions from earthquake 

source (E), path (P), site (G) and instrument or type of 

motion (I), so that 

0 0Y( , , ) ( , ) ( , ) ( ) ( )M R f E M f P R f G f I f  (8) 

The total spectrum would be a function of M instead of 

M0, using the unit mapping between the moment magnitude 

(M) and seismic moment (M0) 

Table 1 Parameters of source spectrum (E) for AS00 model 

Parameter Value 

Sa 2 2

1

1 ( / ) 1 ( / )a bf f f f

 


   
Sb 1 

logfa 2.181-0.496M
 

logfb 2.41-0.408M
 

log ε 0.605 - 0.255M  

0, , , , ,s sR V F R   0.55,0.707,2.0,2.8,3.5,1  
 

 

0

2
log 10.7

3
M M   (9) 

Here, each component of the Eq. (8) is discussed 

separately. 

 

3.1 The source effect E (M0, f) 
 

The source spectrum is given by the following equation 

0 0 0 0( , ) ( , ) ( , )a bE M f C M S M f S M f  (10) 

Where the constant C is given by 

3

04 s s

R VF
C

R 
  (11) 

RΘΦ is the radiation pattern, V represents the partition of 

total shear-wave energy into horizontal components, F is 

the effect of the free surface, ρs and βs 
are the density, and 

shear-wave velocity in the vicinity of the source and R0 is a 

reference distance, usually set equal to 1 km. Regarding 

using of mixed units, if the ground motion is to be in cm 

and ρs, βs, and R0 are in units of gm/cc, km/s, and km, 

respectively, then C in Eq. (11) should be multiplied by the 

factor 10
-20

. 

Sa and Sb are components of displacement source 

spectrum that are a function of corner frequencies (fa and fb) 

and moment ratio (ε). Referring to the research by Atkinson 

and Silva (AS00 model) (Atkinson and Silva 2000) 

parameters for the source spectrum are gathered in Table 1. 

 

3.2 The path effect P (R, f) 
 

The next component that affects the spectrum of motion 

is radiation path. The following equation can give the effect 

of radiation path in motion spectrum 

( , ) ( )exp / ( ) QP R f Z R fR Q f c     (12) 

Where the geometrical spreading function Z(R) is given 

by 

0.5

1
; 40

( )
1 40

; 40
40

R
R

Z R

R
R





 

     

 (13) 

R is the closest distances to the rupture surface that can 

be calculated, having the closest distance to the vertical 

projection of the rupture surface onto the ground surface (r)  
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Table 2 Parameters of path spectrum (P) for AS00 model 

Parameter Value 

Q 180f0.45 

CQ 3.5 km/s 

R 2 2

dr h
 

hd 100.15-0.05M 

 

 

Fig. 3 Curve fitting for amplification factor A(f) 

 

 

and hypocentral depth (hd). Parameters for calculation of 

path spectrum are given by Table 2. 

 

3.3 The site effect G (f) 
 

Albeit the modification of seismic waves by local site 

conditions is part of the path effect, it would be convenient 

to separate the site and path effects due to the largely 

independent local site effects. In such case, the site 

spectrum (G) can be given by 

( ) ( ) ( )G f A f D f  (14) 

Where A(f) and D(f) are the amplification and 

attenuation functions. A(f) can be calculated using 

amplification factors proposed in a study by Boore and 

 

Table 3 Parameters of temporal window function w(t, εw, η, 

tη) for AS00 model 

Parameter Value 

εw 0.2 

η 0.05 

b  ( ln ) / 1 (ln 1)w w w       
c b/εw 

a (exp(1) / )b

w  

tη 

2,

0.5 / 0.05

GM GMT GM T

GM a

Path DurationSource Duration

f T where f

T f R

 

 

 

 

 

Joyner (Boore and Joyner 1997). We obtained the equation 

(15) by curve fitting on the data in Table 3 of the mentioned 

study in reference (Boore and Joyner 1997).  

0.2541( ) 1.274 0.455A f f   (15) 

Fig. 3 shows the fitness of Eq. (15) with the proposed 

data by Boore and Joyner. Also, D(f) is given by the 

following equation 

0.5
8

0 max( ) exp( ) 1 ( / )D f f f f


      (16) 

where κ0 and fmax are site diminution parameters with 

proposed values of 100 and 0.03 respectively in AS00 

model. 

 

3.4 The type of motion I (f) 
 

By the filter I(f), the particular type of ground motion 

resulting from the simulation is controlled. For different 

types of ground motion, I(f) is given by 

( ) (2 )nI f f i  (17) 

 

 
 

 

Fig. 4 Six steps of simulating ground motion using the stochastic method. M= 7 and r= 10 km and other parameters 

are based on AS00 model as specified. 
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where 1i    and n=0,1 or 2 for ground 

displacement,velocity, or acceleration, respectively. 

 

3.5 Simulations of acceleration time-history  
 

By using assumptions mentioned above, the simulation 

procedure of artificial acceleration time histories is 

described as the following steps.  

1. A Gaussian random white noise is generated for the 

given duration of motion. 

2. The noise is windowed applying the envelope of 

acceleration time series.  

3. The windowed noise is transferred to the frequency 

domain 

4. The spectrum is normalised by the square-root of the 

mean square amplitude spectrum 

5. The normalised spectrum is multiplied by the ground 

motion spectrum Y 

6. The resulting spectrum is transformed back to the 

time domain 

Fig. 4 graphically shows the procedure of the above 

steps for an earthquake with a moment magnitude M= 7 and 

closest distance to the vertical projection of the rupture 

surface r= 10 km. 

The following equation gives the envelope of 

acceleration time series (or temporal window function) 

(t, , , ) ( / ) exp( ( / ))b

ww t a t t c t t       (18) 

where the parameters a, b, c, εw, η, tη 
are calculated using 

the selected parameters listed in Table 3. 

For a better understanding of the effect of the 

earthquake parameters in the generation of artificial ground 

motion, variations of earthquake parameters like moment 

magnitude (M) and closest distance to the vertical 

 

 

projection of the rupture surface (r)  as the most effective 

parameters are studied. In Fig. 5 four plots of the 

acceleration time histories have been arranged for different 

values of M (7.5, 6.5) and r (10 km. 50 km). As shown in 

the figure, reduction of M from 7.5 to 6.5 reduced the 

duration and peak acceleration significantly and increase of 

r mostly results in the reduction of peak acceleration.  

 

3.6 Generation of random variables 
 

Even though in ground motion simulation the white 

noise is generated randomly, to apply entirely stochastic 

method, the uncertainty of the described variables should be 

included. Here, ten more efficient random parameters lined 

up as: M, r, k0, fa, fb, fmax, ε, TGM, εw, η. 

We generated these variables randomly, and for each set, 

a ground motion is synthesised applying the described 

method. 

The uncertainty of moment magnitude, M, is modelled 

by the Truncated Gutenberg–Richter relationship on the 

interval [Mmin, Mmax]=[4,5,7] with the regional seismicity 

factor bM=0.9In(10). So the random generation of moment 

magnitude would be done by the following equation using 

CDF of moment magnitude 

max min minln(1 (1 exp( (M M ))) / ( b) MM U b        (19) 

Where U is uniformly distributed random variable on 

the interval [0.1].  

The uncertainty of closest distance to the vertical 

projection of the rupture surface (r) is modelled considering 

fault as a line source. The cumulative density function of 

this variable is defined by the following equation (Der 

Kiureghian and Ang 1975) by assuming the closest 

horizontal distance between site and source is 10 kilometres 

 

Fig. 5 Variation of acceleration time-history due to the variation of M and r 
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Table 4 Random variables and their distribution used in 

earthquake generation (Boore 2003) 

Parameter Median Value 
Coefficient of 

Variation (C.O.V) 

Distribution 

Type 

k0 0.03 - 
Uniform on 

[0.02,0.04] 

fa 102.181-0.496M 0.2 Lognormal 

fb 102.41-0.408M 0.2 Lognormal 

fmax 100 0.2 Lognormal 

ε 100.605-0.255M 0.2 Lognormal 

TGM 0.5/fa+0.05R 0.4 Lognormal 

εw 0.2 0.4 Lognormal 

η 0.05 0.4 Lognormal 

 

 

2 210
( ) ( ) 2r

F

r
F r P r r

L


    (20) 

 Where the length of fault projection is LF=10
-3.55+0.74M 

(Boore and Joyner 1991). From Eq. (20), r would be 

generated randomly by the following equation 

0.5
2 2( / 2) 10Fr UL     (21) 

Other random variables have median values with the 

probability distribution listed in Table 4. 

 

 

4. Sensitivity analysis 
 

In reliability analysis of the supposed isolated structure 

besides many random variables contribute to the generation 

of artificial ground motions; the uncertainty of the other 

variables of the model should be included too. However, to 

decrease the number of input variables of the surrogate 

model, only the critical uncertain variables are considered 

in training and design procedure of ANN. The design 

variables of the FPS system (RFPS, μ) would be included in 

input variables of ANN regardless. 

 

 

Table 5 Formulas to compute Si and STi 

Si Reference 

1

1
*( ) ( ) ( ) ( )

N
i

j B j j

j

a f B f A f B
N 

  
 

(Saltelli et al. 2010) 

2

1

1
( ) ( ) ( ) ( )

2

N
i

j B j

j

b V Y f B f A
N 

   
 

(Jansen 1999) 

STi Reference 

1

1
( ) ( ) ( ) ( )

N
i

j j B j

j

c f A f A f A
N 

  
 

(Sobol 2007) 

2

1

1
( ) ( ) ( )

2

N
i

j B j

j

d f A f A
N 

  
 

(Saltelli et al. 2010, 

Jansen 1999) 

* , i

j j B jA B and A denotes the jth row of matrix , i

BA B and A  and 

V(Y) indicates the variance of all random sample outputs 

 

 
Sensitivity analysis is the study of how the uncertainty 

in the output of a model (numerical or otherwise) can be 
apportioned to different sources of uncertainty in the model 
input variables (Saltelli and Sobol 1995). Sample-based 
methods are among the most potent sensitivity analysis 
procedures. Variance-based sensitivity analysis as one of 
the efficient sample-based methods (Saltelli et al. 2010) can 
easily show each variable’s portion in output uncertainty 
using sensitivity indices.  

Consider the model as a function Y=f (X1,X2,…,XK) 

where Xi (i=1:k) represents the i
th

 single or set of random 

variables.  

One of the sensitivity indices is Si that is a normalised 

index. This index theoretically varies between 0 and 1 and 

measures the first order effect of Xi on the model output. 

Another popular variance-based measure is the total effect 

index STi that measures the total effect, i.e., first and higher 

order effects of random variable Xi (Homma and Saltelli 

1996, Saltelli and Tarantola 2002). 

To calculate the sensitivity indices, we imagine having 

two independent sampling matrices A and B, with aji and bji 

as generic elements. The index i runs from one to k, the 

number of random variables, while the index j runs from  

 

 
 

 

Table 6 Random variables and their distribution considered for sensitivity analysis 

Representation of 

variable 
Name Description Mean Value 

Coefficient of 

Variation (C.O.V) 
Distribution Type 

X1 DC 
Dimensions of square 

columns 
400 mm 0.02 Normal (Vrouwenvelder 1997) 

X2 HB Height of beams 400 mm 0.02 Normal (Vrouwenvelder 1997) 

X3 WB Width of beams 300 mm 0.02 Normal(Vrouwenvelder 1997) 

X4 RFF 
Radii of curvature 

of FPSs 
1000 mm 0.2 Normal (Vrouwenvelder 1997) 

X5 μ 
Friction Coefficients 

of FPSs 
0.11 0.1 Lognormal (Steele 2008) 

X6 DL Dead load 
1.05×DLn* 

=3675 kg/m 
0.1 

Normal (Ellingwood and 

Galambos 1983) 

X7 LL Live load 
1×LLn

* 

=1500 kg/m 
0.25 

Extreme Value (Ellingwood and 

Galambos 1983) 

X8 EC 
Modulus of elasticity 

of concrete 

1.12×EC 

=28 GPa 
0.13 

Lognormal (Vrouwenvelder 

1997) 

X9 - Input ground motion - - 

Randomly generated in 

agreement with section 4 

*DLn and LLn denotes the nominal dead and live loads 
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one to N, the number of simulations. So to create matrix A, 

each of random variables should randomly be generated for 

N times. To calculate sensitivity indices matrix 
i

BA  should 

be generated where all columns are from matrix A except 

the i
th

 column which is from matrix B (Saltelli, Annoni et al. 

2010). Now the normalised “main effect indices” Si and 

“total effect indices” STi can be calculated from the 

equations in Table 5. 

Table 5 indicates that for each estimator (a),(b),(c) and 

(d) we would need (2+k)N simulations; 2N simulations for 

A and B matrix and kN simulations for the matrix 
i

BA .  

In the present study, eight random load/structural 

variables in addition to input ground motion are considered 

as random variables for sensitivity analysis. These nine 

single/set of variables and their distribution are introduced 

in Table 6. The median values for R and µ  are selected 

based on the designed FPS system. 

With N=5000 the results indicate an excellent 

convergence in sensitivity indices (see Fig. 6). For N=5000 

it needs 55000 simulations for each estimator to be 

computed. 

Table 7 shows the main and total effect indices (Si and 

STi) calculated with different estimators mentioned in Table 

5 with N=5000.  

The calculated indices with all estimators show that the 

first eight variables uncertainties are negligible in 

comparison to uncertainty in the input ground motion. So 

considering first eight variables as certain, would not 

significantly affect the reliability analysis.  

 

 

5. Neural networks 
 

Neural networks (NN) are numerical algorithms inspired 

in the functioning of biological neurones. McCulloch and 

Pitts (McCulloch and Pitts 1943) firstly introduced this 

concept. They proposed a mathematical model to simulate 

neurone behaviour (Cardoso et al. 2008). Nowadays NN 

and its recent variants (such as wavelet neural networks and 

wavelet support vector machine-based NN) have found its 

way into practical applications in many areas (Veitch 2005, 

Chen et al. 2013). Numbers of computational structures 

technology applications, which are heavily dependent on 

 

Table 7 Main and total effect indices calculated with 

different estimators for N=5000 

Variable 

Si Estimator 

(a) 

Si Estimator 

(b) 

STi Estimator 

(c) 

STi Estimator 

(d) 

*MFA 

2
nd

 

floor 

MFA 

3
rd

 

floor 

MFA 

2
nd

 

floor 

MFA 

3
rd

 

floor 

MFA 

2
nd

 

floor 

MFA 

3
rd

 

floor 

MFA 

2
nd

 

floor 

MFA 

3
rd

 

floor 

X1 0.0017 0.0005 0.0842 0.0383 0.0148 0.0308 0.0121 0.0215 

X2 0.0009 0.0004 0.0904 0.0422 0.0198 0.0226 0.0083 0.0172 

X3 0.0023 0.0014 0.0694 0.0721 0.0022 0.0105 0.0104 0.0158 

X4 0.0007 0.0023 0.0830 0.0694 0.0094 0.0083 0.0070 0.0116 

X5 0.0051 0.0022 0.0569 0.0641 0.0057 0.0098 0.0337 0.0289 

X6 0.0025 0.0013 0.1062 0.0482 0.0517 0.0234 0.0228 0.0257 

X7 0.0004 0.0054 0.0655 0.0495 0.0012 0.0117 0.0150 0.0194 

X8 0.0002 0.0014 0.0623 0.0749 0.0063 0.0058 0.0114 0.0205 

X9 0.7755 1.0244 0.9662 0.9447 1.0408 0.9801 0.9299 1.0126 

*Maximum Floor Acceleration 

 

 

extensive computer resources, have been investigated, 

showing the range of application of neural network 

capabilities. The basic idea of applying NN here is to use it 

as the RSM as an evaluation of the limit state in MCS. The 

significant advantage of a trained NN over the conventional 

numerical process is that results can be produced in a few 

clock cycles, requiring orders of magnitude less 

computational effort than the conventional computational 

process. More detailed introduction to NN may be found in 

(Schmidhuber 2015). 

 

5.1 The NN training and assumptions  
 

Herein, the efficiency of the proposed method of 

application of the NN is investigated to predict the 

maximum structural responses in the context of reliability 

analysis. This objective comprises the following tasks:  

(i) Select the proper training set. 

(ii) Find suitable network architecture.  

(iii) Determine the appropriate values of characteristic 

parameters.  

The Back Propagation (BP) algorithm according to 

Levenberg-Marquardt optimisation (Wilamowski, Iplikci et 

al. 2001) is used as the learning algorithm that updates  

 

Fig. 6 Convergence of ST9 with estimator (d) 
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weight and bias states.  

The number of neurones to be employed in the hidden 

layers is not known in advance and usually, is estimated by 

trial and error.However, the number of 100 hidden layers 

shows good results in output estimations.  

The comparison of the predicted results with the target 

results computed using the root mean square (RMS), 

controls the convergence of the training process.  

For validation and testing, 30% of I/O training pairs are 

randomly extracted (each one 15%), and the training is done 

with the remained 70% I/O training pairs.  

The input variables for the NN are the design variables 

of FPS in addition to parameters of random motion 

generation regarding the results of sensitivity analysis, and 

the outputs are maximum floor accelerations of the second 

and third floors of the building. 

After the selection of the suitable NN architecture and 

the performance of the training procedure, the network is 

used to produce predictions of limit state function 

corresponding to different values of the input variables. The 

results are then processed using MCS to calculate the 

probability of failure Pf. 

 

 

6. Results 
 

Herein due to the results of the sensitivity analysis, we 

only exerted the uncertainty of ground motion in the model. 

We considered the ten most important variables of the 

ground motion generation (M,r,k0,fa,fb,fmax,ε,TGM,εw,η) as 

uncertain variables. These variables are previously 

mentioned in section 3. Other two design variables are RFPS, 

μ that are considered as uniformly distributed on [0.1m,10m] 

and [0.02,0.2] respectively. So the surrogate model would 

have twelve input variables that are: 

[RFPS,μ,M,r,k0,fa,fb,fmax,ε,TGM,εw,η]. 

The Monte Carlo simulation approach consists of 

drawing samples of variables according to their probability 

density functions and then feeding them into the 

mathematical model g(X). The samples thus obtained would 

give all the probabilistic characteristics of the structural 

response as a random variable. However, for calculation of 

the probability of failure if Nf is the number of simulation 

 

 

cycles when g(X) is less than zero then Pf=Nf/N where N is 

the total number of simulations. 

To have data for validation procedure, at first 100,000 

sets of the ten uncertain random variables of the ground 

motion model were generated as input variables of the 

structural model. Then the maximum responses of the 

structure for these sets were obtained using dynamic time-

history analysis of the structural model considering μ=0.11 

and RFPS=1 m as the design variables of FPS. Afterwards, 

cumulative distribution functions (CDF) of the maximum 

floor accelerations (MFA) of the equipped stories were 

obtained. Fig. 7 shows the CDF of MFA for both equipped 

floors. From this figure, it can be concluded that the floor 

accelerations do not pass the threshold of 0.4 g. 

For training data, 200,000 sets of the twelve random 

variables including [RFPS,μ,M,r,k0,fa,fb,fmax,ε,TGM,εw,η], were 

generated as input variables of the structural model. Then 

the maximum responses of the structure for these sets were 

obtained using dynamic time-history analysis of the 

structural model. For design procedure of ANNs, these I/O 

pairs were selected to train the NNs. For each maximum 

response of the equipped floors, a specific NN was designed 

and trained. Then 100,000 new sets of the ten uncertain 

random variables of the ground motion model were 

generated, and Monte Carlo simulations were done using 

designed NNs instead of the dynamic structural time-history 

analysis. For the first two input variables of NNs, we again 

supposed μ=0.11 and RFPS=1 m in all Monte Carlo 

simulations. This time the CDF of MFA was obtained from 

the evaluations of designed NNs. Fig. 7 shows the results of 

NNs estimations in comparison to direct structural time-

history analysis.  

Considering Eqs. (1) and (2), the probability of failure 

for all acceleration thresholds can be obtained from the 

CDF of the MFA using the following equation 

   

 

( ) 0

1 1 ( )

f t

t

P P g X P MFA a

P MFA a CDF MFA

   

    
 (22) 

Fig. 8 shows the obtained probability of failures for all 

acceleration thresholds (at) using NN estimations of limit 

state in comparison to direct time-history analysis of 

structure. The figure indicates that the estimates of the NNs  

 

Fig. 7 CDF of maximum floor acceleration for second and third floor 
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made such close results, especially for higher acceleration 

thresholds. 

Also for a better comparison, several NNs were 

designed with the various numbers of I/O training pairs. 

Then for a specific acceleration threshold at=100 milli-g, 

the probability of failure was computed using estimations of 

these NNs. The convergence of the Pf for second and third 

floors using time-history analysis and direct MCS are 

shown in Fig. 9.  

The number of direct Monte Carlo simulations is the 

same when using either NNs or direct time-history analysis 

(100,000 Monte Carlo simulations). Table 8 shows the 

results. 

 

 

 

 

According to the results and the errors (e%) showed in 

Table 8, the probability of failure obtained using NNs 

exhibits excellent compatibility with the ones achieved by 

structural time-history analysis for above 10000 I/O training 

pairs. So if a lesser accuracy of Pf is acceptable, the 200000 

I/O training pairs can even be decreased to the 10000 I/O 

pairs. 

It took about 121946 seconds for a specific computer to 

run 100,000 simulations based on the direct time-history 

analysis of the structure. This time decreases to just 0.817 

seconds with the same computer using the estimations of 

trained NN. So the computation cost for Monte Carlo 

simulations can be significantly reduced using the surrogate 

 

Fig. 8 Probability of failure considering different acceleration thresholds for second and third floors 

 

Fig. 9 Convergence of Probability of failure using time history analysis and direct MCS 

Table 8 Probability of failure computed using different generated NN by various numbers of I/O training pairs and 

their error into results of 100,000 direct time-history structural analysis simulations (Pf) 

 Number of I/O training Pairs 1000 2000 5000 10000 20000 50000 100000 200000 

Second 

Floor 

Probability of failure using 

neural network ( NN

fP ) 0.33575 0.32432 0.31523 0.27475 0.24789 0.25307 0.25167 0.25041 

(%) 100

NN

f f

f

P P
e

P


 

 
33.95 29.39 25.76 9.61 1.10 0.97 0.41 0.09 

Third 

Floor 

Probability of failure using 

neural network ( NN

fP ) 0.63222 0.44963 0.33524 0.41239 0.40907 0.39275 0.37501 0.38205 

(%) 100

NN

f f

f

P P
e

P


 

 
65.27 17.54 12.36 7.81 6.94 2.67 1.97 0.12 
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model. 

Although the reliability analysis considering an FPS 

with specific properties (R, µ) does not impose high 

calculation cost, in the optimal reliability-based design of 

an isolated structure, the failure probability should be 

calculated for several times due to the properties variation 

of the isolation system. This fact can show the efficiency of 

the proposed model. 

 

 

7. Conclusions 
 

In this paper, we presented an efficient method to reduce 

the cost of reliability analysis of a structure isolated with 

FPS. At first, a unique sensitivity analysis was conducted to 

decrease the number of uncertain variables. The sensitivity 

procedure leads to a reduction of computation cost for 

training and design process of NNs. Sensitivity analysis 

showed that the uncertainty of all variables is negligible in 

comparison to the randomness of input ground motion.  

Then the reliability of the structure was computed using 

the estimations of the limit state by the designed NNs to 

show the efficiency of this method. The limit state was 

defined based on the maximum response of the structure 

floors.  

At last, we compare the results of the direct time-history 

analysis with the ones obtained from the estimations of NN. 

The probability of failure that obtained using NNs 

shows excellent compatibility with the ones achieved by 

structural time-history analysis. The results would be 

striking considering that the required time for 100,000 

Monte-Carlo simulations using NNs is less than even a 

single dynamic time-history analysis of the structure. It 

would significantly help the computation process when the 

reliability of the structure should be evaluated several times 

for example in the optimal reliability-based design of 

structures. 
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