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1. Introduction 
 

Structural design of buildings under seismic excitations 

considers that structures will undergo into inelastic 

behavior, which provides additional capacity and energy 

dissipation. In order to achieve a stable performance under 

inelastic behavior, the ductility and capacity of the building 

must be studied. Modern codes include design procedures 

based on the force reductions associated with non-linearity 

on the structure. In these procedures, specific collapse 

mechanisms are assumed (e.g., weak beam-strong column). 

When the base of the structure is consider fixed, the whole 

displacement is associated with structural deformations. 

Under these considerations, the ductility of the structure is 

defined directly by the ratio of maximum and yield 

displacements.  

In some cases, the structures supporting soil is not stiff 

enough to produce a fixed base condition and soil properties 

become critical to structure performance. The interaction 

between soil and foundation can modify the dynamic 

properties of the soil-structure system, the characteristics of 

the excitation and soil behavior. The effects which arise 

form soil-foundation joint performance are defined as 

Dynamic Soil Structure Interaction (DSSI). The variation of 

structural period (lengthening) and damping produced by 
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Fig. 1 Displacement components of the structure with 

flexible base 
 

 

system flexibilization are the most recognized (Wolf 1985). 

These variations produce a modification on the spectral 

acceleration which the structure will experience. Procedures 

included on building codes (MCBC 2004, ASCE-7 2010, 

NZS, 3101-1 2006, NBCC 2015) use the base shear 

variation associated with spectral acceleration shift to 

compute changes of remaining response quantities (e.g., 

displacements, element forces, etc). Soil-foundation 

flexibility can be represented by its stiffness in different 

directions (e.g., horizontal=Kx and rotational=Kr). Even 
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Abstract.  This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom 

system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different 
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analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid 

body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility 

estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic 

behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements 
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though these DSSI implications are the most used, other 

effects of base flexibility could be also important. 

Relative displacements between the structure supports 

and ground are produced due to base flexibility. Total 

displacement of the soil-structure system includes two 

principal components, one introduced by structural 

deformation (u) and other due to a rigid body behavior (ux 

and θ) as shown on Fig. 1. Since total displacement is not 

directly associated with structure deformation, the relation 

between ductility, defined as before, and inelastic 

deformation of the structure changes, as shown on the 

following. 

Inelastic behavior of structures with flexible base has 

been previously studied. Some studies use an equivalent 

system with a single degree of freedom (ESDOF) in order 

to represent the system with flexible base (Rosenblueth and 

Resendiz 1988, Avilés and Pérez-Rocha 2005, Ghannad and 

Ahmadnia 2006, Eser et al. 2011). The equivalent 

properties (fundamental period, damping ratio and ductility) 

of the ESDOF system are set to reproduce the inelastic 

response of the system with flexible base.  

This work explores the inelastic behavior of systems 

with flexible base. The influence of post yield stiffness is 

discussed. Two different equations to compute equivalent 

ductility considering post yield stiffness are proposed. In 

order to evaluate the equations, inelastic behavior of a 10 

story regular building with RC frames with fixed and 

flexible base are studied. Non linear static analysis 

(pushover) is performed in order to stablish the inelastic 

capacity of the structures.  

In addition, the non linear dynamic behavior of the 

buildings are analyzed, under the same assumptions than 

non linear static analysis. The modifications of the 

hysteretic loops of the whole building and local and global 

ductility demands are studied. The variation of ductility 

demands over the height are discussed. 

 

 
2. Equivalent ductility on flexible base systems 
 

Ductility of the ESDOF system (�̃�) can be expressed as 

a function of the equivalent period (T ̃) and the fundamental 

period and ductility of the system with fixed base (T and μ) 

with Eq. (1) for an elastoplastic system. 

�̃� = (
𝑇

�̃�
)
2

(𝜇 − 1) + 1 (1) 

Equivalent ductility (�̃�) must be used to compute the 

strength reduction factor (Rμ) in order to reproduce the 

behavior of the system with flexible base. This equivalent 

ductility always yields to smaller values than the ductility of 

the fixed base system (�̃�≤μ), since �̃� is always larger or 

equal than T. It does not mean that base flexibility produces 

a reduction on the inelastic capacity of the system, a 

concept that is commonly misunderstood. Ductility of the 

ESDOF system must be modified due to a change on the 

ratio of Rμ and μ produced by base flexibility. If elastic 

seismic forces are reduced by Rμ computed with the target 

ductility of the system with fixed base, then ductility 

demands on the structure with flexible base may be larger 

than the target ductility, as shown by Jarernprasert et al. 

(2013). In order to illustrate this effect, consider an inelastic 

ESDOF system. For structures with larger fundamental 

period than the dominant period of the excitation, maximum 

displacements of the elastic and inelastic systems are equal 

and the strength reduction factor 〖(R)μ) becomes equal to 

ductility (μ) (Chopra 2012). 

As shown on Fig. 1, total displacement of the system 

with flexible base (ut) considers the displacements due to 

rigid body behavior (uRB=ux+Heθ) and deformation of the 

structure (u). Ductility of the ESDOF system (�̃�) is defined 

by Eq. (2). In the following deduction, superscript y stands 

for displacements at structures yield, while superscript u 

stands for the maximum displacement. 

�̃� =
𝑢𝑡
𝑢

𝑢𝑡
𝑦 (2) 

where: 

𝑢𝑡
𝑢 = 𝑢𝑅𝐵

𝑢 + 𝑢𝑢 
maximum displacement of the soil-structure 

system 

𝑢𝑅𝐵
𝑢  maximum displacement due to rigid body 

𝑢𝑢 maximum deformation of the structure 

𝑢𝑡
𝑦
= 𝑢𝑅𝐵

𝑦
+ 𝑢𝑦 

yield displacement of the soil-structure 

system 

𝑢𝑅𝐵
𝑦

 rigid body displacement at yield displacement 

𝑢𝑦 
deformation of the structure at yield 

displacement 

For a target ductility of the ESDOF system of �̃� = 2, the 

corresponding strength reduction factor will be 𝑅𝜇 = 𝑉0 𝑉𝑦⁄ =

2 (Fig. 2(a)). Let 𝑢𝑡
𝑦

 be 2 then, maximum total displacement 

 

 

 
(a) 

 
(b) 

Fig. 2 Inelastic behavior of the ESDOF system and the 

structure 
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becomes 𝑢𝑡
𝑢 = �̃�𝑢𝑡

𝑦
=4. The displacements due to rigid body 

behavior can be estimated as the ratio of base shear and 

foundation horizontal stiffness (𝑢𝑥 = 𝑉0 𝐾𝑥)⁄ ) and the ratio of 

the overturn moment and the foundation rocking stiffness 

(𝜙 = 𝑀0/𝐾𝑟). Since the system is elastoplastic, base shear and 

overturn moment remains constant on the inelastic behavior 

(𝑉𝑦 = 𝑉𝑢 and 𝑀𝑦 = 𝑀𝑢 = 𝑉𝑦𝐻𝑒). Considering that the soil-

foundation system remains elastic, implies that 𝐾𝑥  and 𝐾𝑟  

are not modified, the displacement produced by rigid body 

behavior of the structure at yield and maximum displacement 

must be the same (𝑢𝑅𝐵
𝑦

= 𝑢𝑅𝐵
𝑢 ). If it is supposed that 𝑢𝑅𝐵

𝑦
= 

𝑢𝑅𝐵
𝑢 = 1, then the deformation of the structure at yield and 

maximum displacement become 𝑢𝑦 = 1 and 𝑢𝑢 = 3 (Fig. 

2(b)). With these values, the structure must develop a ductility 

of 3 (Eq. (3)) 

𝜇 =
𝑢𝑢

𝑢𝑦
= 3 (3) 

which is larger than the target ductility of the EDOF system. 

So, if the desired target ductility demand in the structure is 

𝜇 = 2, a reduced 𝑅𝜇 value computed with �̃� in stead of 𝜇 

must be considered. The need of reduced 𝑅𝜇 values for 

flexible base systems, in order to keep a target has been 

previously described and identified (Jarernprasert et al. 

2013, Halabian and Erfani 2013, Aydemir and Ekiz 2013). 

This procedure considers that ESDOF behaves as a 

perfect elastoplastic system, with no post yield stiffness. 

However, laterally redundant systems experiment a 

progressive yield, that must be modeled as a bilinear system 

with post yield stiffness. In the following section, the 

contribution of post yield stiffness is discussed. 

ESDOF approach is very useful and yields to good 

results in a lot of cases (Avilés and Pérez-Rocha 2005, 

2011). Since just one degree of freedom is used, this 

procedure considers that modifications introduced by base 

flexibility in all structural responses along the structure will 

be linearly equivalent. However, previous studies have 

shown that the representation of a system with multiple 

degrees of freedom and flexible base with an ESDOF 

system may not be accurate in some cases.  

Barcena and Esteva (2007) studied the ductility 

demands on multistory systems with flexible base. They 

found that the modification of the ductility demands 

produced by DSSI are different along the structure height. 

This effect can not be represented by an ESDOF system. 

Ganjavi and Hao (2011) compared the modification on the 

global ductility demand of structures modeled with flexible 

base considering multiple degrees of freedom and with the 

ESDOF approach. Results prove that for very flexible 

structures, ductility demands with flexible base computed 

with the ESDOF approach are smaller than the ones 

computed with the multiple degrees of freedom systems. On 

the other hand, Fernández-Sola et al. (2014, 2015) studied 

the capacity curves of steel braced frames with flexible 

base. They concluded that in general, the inelastic capacity 

of the systems with fixed and flexible base are very similar. 

Ghandil and Behnamfar (2017) studied the inelastic 

behavior of moment resistant frames buildings with flexible 

base. They analyzed the rotational ductility demands on 

beams and columns and found that variations on ductility 

demands along structures height due to base flexibility are 

not constant, as well as Barcena and Esteva. The grater 

increments on story drift are concentrated on the lower 

stories. 

 

 
3. Post yield stiffness on systems with flexible base 
 

As shown above, the relation between 𝑅𝜇  and 𝜇  is 

controlled by the modification of contribution of rigid body 

components when the structure undergoes inelastic 

behavior. For systems with post yield stiffness, the 

displacement due to rigid body components does not remain 

constant for the plastic branch (Avilés and Pérez-Rocha 

2011). In order to include this effect, the following 

procedure is proposed. If the system ductility is expressed 

in terms of rigid body displacement and deformation of the 

structure, it can be established that (Eq. (4)) 

𝑢𝑅𝐵
𝑢 + 𝑢𝑢 = �̃�(𝑢𝑅𝐵

𝑦
+ 𝑢𝑦) 

→ 𝑢𝑢 (1 +
𝑢𝑅𝐵
𝑢

𝑢𝑢
) = �̃�𝑢𝑦 (1 +

𝑢𝑅𝐵
𝑦

𝑢𝑦
) 

(4) 

To compute the ductility in the structure (𝜇), it must be 

considered only the displacement produced by deformation 

of the structure. In consequence, the relation between the 

equivalent system ductility with flexible base ( �̃� ) and 

ductility in the structure (𝜇) can be defined as (Eq. (5)) 

𝜇 =
𝑢𝑢

𝑢𝑦
= �̃�

(1 +
𝑢𝑅𝐵
𝑦

𝑢𝑦 )

(1 +
𝑢𝑅𝐵
𝑢

𝑢𝑢 )
→ �̃� = 𝜇

(1 +
𝑢𝑅𝐵
𝑢

𝑢𝑢 )

(1 +
𝑢𝑅𝐵
𝑦

𝑢𝑦 )

 (5) 

If the contribution of rigid body components to the total 

displacement remains constant for yield and maximum 

displacement, ductility on the structure is equal to the 

ductility on the system. If the contribution is modified, the 

ratio between �̃� and 𝜇 is not equal to 1, and values of �̃� 

and 𝜇  becomes different. Eq. (5) can be used if the 

contribution of each displacement component is known at 

yield and maximum displacement. However, for design 

purposes, the exactly contribution of the different 

displacement components is not known in advance. In order 

to stablish a suitable design equation which takes into 

account the post yield stiffness, the overstrength factor of 

the structure can be used. Overstrength factor can be 

defined as the ratio of maximum base shear and yield base 

shear ( = 𝑉𝑢 𝑉𝑦)⁄ . Total yield displacement (𝑢𝑡
𝑦
) can be 

expressed in terms of yield base shear (𝑉𝑦), elastic stiffness 

of the structure (𝐾) and soil-foundation stiffness (𝐾𝑥 and 

𝐾𝑟) as (Eq. (6)) 

𝑢𝑡
𝑦
=

𝑉𝑦

𝐾
+

𝑉𝑦

𝐾𝑥

+
𝑉𝑦(𝐻𝑒)

2

𝐾𝑟

= 𝑉𝑦 (
1

𝐾
+

1

𝐾𝑥

+
(𝐻𝑒)

2

𝐾𝑟

) (6) 

where: 

𝑉𝑦

𝐾
= 𝑢𝑦          

𝑉𝑦

𝐾𝑥

+
𝑉𝑦(𝐻𝑒)

2

𝐾𝑟

= 𝑢𝑅𝐵
𝑦

 

In addition, total maximum displacement (𝑢𝑡
𝑢) can be 

expressed in terms of yield base shear. Defining the 
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1

1.5

2

2.5

3

3.5

4

00.20.40.60.81

R=1 R=1.2 R=1.4Ω = 1  Ω = 1.2  Ω = 1.4 

1

1.5

2

2.5

3

3.5

4

00.51

Q=1.5 Q=2 Q=3 Q=4𝜇 = 1.5 𝜇 = 2 𝜇 = 3 𝜇 = 4 

maximum base shear as 𝑉𝑚 =  (𝑉𝑦) and the maximum 

displacement due to structure deformation as 𝑢𝑢 = 𝜇𝑢𝑦 =
𝜇(𝑉𝑦 𝐾⁄ ), total maximum displacement yields to (Eq. (7)) 

𝑢𝑡
𝑢 =

𝜇𝑉𝑦

𝐾
+  (

𝑉𝑦

𝐾𝑥

+
𝑉𝑦(𝐻𝑒)

2

𝐾𝑟

) 

= 𝑉𝑦 *
𝜇

𝐾
+  (

1

𝐾𝑥

+
(𝐻𝑒)

2

𝐾𝑟

)+ 

(7) 

Substituting on Eq. (2), equivalent ductility can be 

expressed as (Eq. (8)) 

�̃� =
𝑢𝑡
𝑢

𝑢𝑡
𝑦 =

[
𝜇
𝐾
+  (

1
𝐾𝑥

+
(𝐻𝑒)

2

𝐾𝑟
)]

[
1
𝐾
+

1
𝐾𝑥

+
(𝐻𝑒)

2

𝐾𝑟
]

 (8) 

Elastic stiffness of the structure (𝐾) can be expressed 

in terms of the fixed base period (𝑇). Horizontal (𝐾𝑥) and 

rocking (𝐾𝑟) stiffness of the foundation can be expressed 

in terms of the period of the structure behaving as a rigid 

body in translation (𝑇𝑥)  and rocking (𝑇𝑟)  too. (Wolf, 

1985) (Eq. (9)) 

𝑇2 =
4𝜋2𝑀𝑒

𝐾
;  𝑇𝑥

2 =
4𝜋2𝑀𝑒

𝐾𝑥

         𝑇𝑟
2 =

4𝜋2𝑀𝑒𝐻𝑒
2

𝐾𝑟

 (9) 

Substituting Eq. (9) in Eq. (8), and using the definition 

of the equivalent period (Avilés and Pérez-Rocha 2004) 

�̃�2 = 𝑇2 + 𝑇𝑥
2 + 𝑇𝑟

2, yields to (Eq. (10)) 

�̃� =
[𝜇𝑇2 +  (𝑇𝑥

2 + 𝑇𝑟
2)]

[𝑇2 + 𝑇𝑥
2 + 𝑇𝑟

2]
= (

𝑇

�̃�
)
2

*𝜇 +  
(�̃�2 − 𝑇2)

𝑇2
+ 

= (
𝑇

�̃�
)
2

(𝜇 −  ) +   

(9) 

For elastoplastic systems ( = 1) Eq. (10) yields to Eq. 

(1). This proposed equation takes into account the post yield 

stiffness of the structure only by using the equivalent period 

and the overstrength of the structure. Previous studies have 

found that overstrength is not influenced by base flexibility 

(Fernández-Sola et al. 2015). Avilés and Pérez-Rocha 

(2011) proposed an equation in terms of explicit post yield 

stiffness of the system. Nevertheless, in the design process, 

the overstrength factor is used more commonly than the 

post yield stiffness. Expressing post yield stiffness in terms 

of   and 𝜇 , the equation proposed by Avilés and Pérez-

Rocha (2011) yields to the equation proposed in this work. 

Many building codes defines overstrength as the ratio of 

maximum shear and design shear (  = 𝑉𝑢 𝑉 )⁄ . Under 

these conditions,    values included on building codes are 

larger than the values used in the present work which 

consider 𝑉𝑦  instead of 𝑉 . It is necessary to explore the 

relation between 𝑉𝑦 and 𝑉  in different structural systems 

in order to establish the ratio   =    ⁄  used in Eq. (10). 

Expressing Eq. (10) in terms of    yields to: 

�̃� = (
𝑇

�̃�
)
2

(𝜇 −     ) +      (9) 

Variations of equivalent ductility estimated with Eq. 

(10) are shown on Fig. 3. Equivalent ductility (�̃�) was 

computed for bilinear systems with different fixed base 

ductility (𝜇 = 1.5 2 3     4) and overstrength factors 

 
(a) 

 
(b) 

 

 

 

Fig. 3 (a) Equivalent ductility (�̃�) variation and (b) ductility 

reduction for bilinear systems with different overstrength 

factors ( ) 
 

 

( = 1 1.2     1.4) . Results are plotted in terms of the 

period shift due to base flexibility (𝑇 �̃�⁄ ) . Equivalent 

ductility is shown on figure 3(a). For the fixed base case 

(𝑇 �̃�⁄ = 1)  all systems yield to the fixed base ductility, 

regardless of  , as expected. As base becomes more 

flexible, equivalent ductility decreases. Values of equivalent 

ductility are smaller for perfectly elastoplastic systems 

( = 1) in all cases. This means that the use of Eq. (1) can 

be conservative. As   becomes larger, values of equivalent 

ductility get larger. For the theoretical case of a infinitely 

flexible base  (𝑇 �̃�⁄ =  ), 𝜇 yields to   in all cases. For 

bilinear systems, this results represent elastic behavior of 

the system. On Fig. 3(b), results are shown as the ratio of 

equivalent ductility and fixed base ductility (𝜇 �̃�⁄ ) . As 

fixed base system ductility becomes larger, reductions of 

equivalent ductility are larger too. Again, it can be seen that 

the greater reductions are associated with systems with 

( = 1). In fact, reductions on the system with 𝜇 = 3 and 

 = 1 are slightly larger than the reductions on the system 

with 𝜇 = 4 and  = 1.4. This effect is more pronounced 

for the systems with 𝜇 = 1.5 and  = 1  and 𝜇 = 2  and 

 = 1.4 . So ductility reductions estimated with the 

elastoplastic approach can be very conservative. 

 

 
4. Case of study 
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Table 1 Soil-structure parameters 

Vs (m/s) 
�̃� 

( ) 
𝐾  

( / ) 
𝐾𝑟 

(   ) 
   

( ) 
 𝑟 

( ) 
 �̃� 

( ) 

  0.83     0 0 5 

250 0.87 2.37x105 3.02x107 3.1 2.5 4.6 

100 1.08 3.72x104 4.50x106 22.1 2.6 4.9 

70 1.36 1.77x104 2.09x106 25.6 0.23 4.6 

 

 

In order to asses the accuracy of ESDOF approach, a 10 

story RC building was analyzed. The building was designed 

following the procedure described on the Mexico City 

Building Code (MCBC 2004). Dimensions of the elements 

and details of the design can be found on Huerta-Écatl 

(2015). Representative diagrams of buildings are shown on 

Fig. 4. RC moment resistant frames designed with moderate 

ductility criteria (𝜇=2) accordingly to MCBC are used. 

Fundamental period of the building with fixed base is 

T=0.83 s. The supporting soil corresponds to a 

homogeneous layer with thickness of Hs=40 m. Three soil 

types with different stiffness are considered (Vs=70, 100 

and 250 m/s) in addition to the fixed base model (Vs=). 

Foundation consists on a mat foundation overlaying this 

homogenous soil layer. The foundation is embedded 5 m for 

all soil types.  

Base flexibility is taken into account with the dynamic 

stiffness of the soil-foundation system (impedance function) 

as presented by Gazetas (1991). A set of distributed springs 

along mat foundation is used (Fig. 4). This procedure 

considers the influence of the soil mass and stiffness, so the 

dynamic stiffness of the soil-foundation system depends on 

the frequency of the excitation. Since a static and time 

domain analysis were performed, only the value of the 

impedance functions corresponding to the fundamental 

frequency of the soil-structure system was used. Given that 

the period of the soil-structure system with flexible base (�̃�) 

and base flexibility are mutually dependent, it is necessary 

to perform an iterative process to establish the definitive 

values of impedance functions. DYNA6 software (Novak et 

al. 2012) was used to estimate the values of impedance 

functions in horizontal and rocking direction. Soil-

foundation stiffness ( 𝐾𝑥  and 𝐾𝑟 ) and periods of the 

structure with fixed and flexible base are presented on 

Table 1. 

Additional damping introduced by DSSI is taken into 

account by using an effective damping ratio. Effective 

damping ratio was computed with the procedure included 

on MCBC (2004). 

The main limitation of using equivalent springs with a 

constant stiffness is that the dependence of the impedance 

functions with frequency is partially considered. In order to 

stablish the accuracy of the SSI model used, the response on 

the softest soil compared with the results computed with a 

frequency domain method model. This model considers 

directly the dependence of the impedance functions with 

frequency. The frequency domain model is based on 

computing the transfer function of the soil-structure system, 

solving the equation of motion in the frequency domain. 

Each story is represented by its horizontal displacement, 

with lumped mass (shear model). Soil foundation stiffness 

  

 

Fig. 4 Building scheme and base flexibility model 

 

 

is considered incorporating two degrees of freedom 

(translation and rotation) and, coupling the impedance 

functions values in the stiffness and damping matrix for the 

global system. In the mass matrix, the masses associated 

with inertial forces that will produce rigid body motions of 

the superstructure must be included due to the base 

flexibility. Since non linear behavior is considered 

exclusively on the elements of the structure, and frequency 

domain models can not include non linear behavior, only 

the elastic response is compared. More details of the 

formulation of this model may be found in Avilés (1990), 

Fernández-Sola and Avilés (2008). 

To reproduce the shear model on the structural model, 

rigid beams and axially rigid columns were considered for 

comparing with the frequency domain model. On the non 

linear analysis presented below, beams are considered 

flexible as well as the columns in the axial direction. On the 

frequency domain model, kinematic interaction is 

considered multiplying the Fourier spectrum of the free 

field motion by the transfer functions proposed by Kausel et 

al. (1978). Both, translational and rotational effective 

motions produced by kinematic interaction are considered. 

Time history displacements on three different stories 

representing the low, middle and high part of the structure 

(1, 5 and 10) are shown on Fig. 5. Structure was subjected 

to September 19th 1985 Mexico City earthquake recorded 

on a soft soil (Fig. 6). Only the strong motion phase is 

shown in order to have a better comparison. The general 

trend on both models is very similar, indicating that the 

frequency content of the response is well reproduced by the 

equivalent model. Magnitude of the displacements are 

slightly different. This trend is the same along structure 

height. In addition, peak floor displacements (umax) along 

all height is shown on Fig. 5. It can be seen that peak floor 

displacements are reasonably estimated with the equivalent 

model for the studied case. Peak floor displacements at 1st, 

5th and 10th levels are pointed out on Fig. 5. Studied models 
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are very regular in plain and height, so their response is 

highly controlled by the fundamental mode (the mass ratio 

for fundamental period is 85%). 

Since soil-foundation stiffness used on the equivalent 

model were computed for the fundamental mode of the soil-

structure system, responses are very similar. For structures 

with larger higher modes contributions, the equivalent 

model approach must not be so accurate. For those cases, 

lumped mass models for SSI consideration must be more 

suitable (Wolf 1994). 

On the other hand, soil stiffness and foundation depth 

(D) produce that kinematic effects are small for the studied 

case. Kausel et al. (1978) established that kinematic effects 

become important for high frequency motions. These 

motions can be identified with a simplified threshold 

defined by an equivalent frequency  𝑒 =  . 𝑉 (4 )⁄ . For 

the studied cases,  𝑒 values are 8.75 hz (𝑇𝑒=0.11 s), 3.5 hz 

(𝑇𝑒=0.29 s) and 2.45 hz (𝑇𝑒=0.41 s) for 𝑉 = 250, 100 and 70 

m/s respectively. Ground motions correspond to real 

earthquakes. For each soil type, a different excitation was 

used in order to consider the differences on ground motion 

produced by soil type (site effects). Records for Vs=70 and 

100 m/s correspond to September 19
th

 1985 Mexico City 

earthquake on SCT and Viveros stations respectively. 

Record for Vs=250 m/s corresponds to October 9
th

 1995 

Colima earthquake on Manzanillo station. On Fig. 6, 

accelerograms and elastic response spectra of the different 

 

 

ground motions are shown. The interval of periods where 

kinematic effects are expected to be important is indicated 

with a grey band on the response spectrum. It can be seen 

that for all cases that kinematic effects are expected to be 

small, so on the numerical analysis free field motion was 

used as excitation. 

Fundamental period of the structure with fixed (FB) and 

flexible base (DSSI) are indicated on each response spectra. 

In order to meet the spectral acceleration values considered 

on the code, excitation was scaled to meet spectral pseudo 

accelerations around 1 g for structures fundamental periods 

with fixed base. 

Horizontal stiffness was uniformly distributed among 24 

horizontal individual springs ( 𝑥). Rotational stiffness was 

distributed considering the contribution of the horizontal 

springs and 16 additional vertical individual springs ( 𝑧). 

Base of the first story columns are constrained with a 

master joint with a rigid body condition. More details of 

this procedure can be found on Huerta-Écatl (2015). 

 

 
5. Numerical analysis and results 

 
5.1 Pushover analysis 
 

Static non-linear analysis is performed with triangular 

load pattern with displacement control. For the columns, the  

 

 

Fig. 5 Displacements computed with the frequency domain model and the equivalent model 
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Table 2 Non linear parameters of frame sections (beams and 

columns) 

 Story 
Dimension 

(m) 

My 

(ton-m) 

Mu 

(ton-m) 

𝜇𝜑

=
𝜑𝑢

𝜑𝑦
 

lp 

(m) 

θp 

(rad) 

Beams 

1 0.50x0.70 81.85 87.52 7.35 0.40 0.01030 

2-6 0.45x0.70 90.58 97.79 6.66 0.40 0.00941 

7-10 0.40x0.70 63.25 65.76 9.71 0.40 0.01332 

Columns 

1 0.80x0.80 162.17 200.41 5.53 0.45 0.00724 

2-7 0.70x0.70 136.01 168.46 4.40 0.40 0.00594 

8-10 0.65x0.65 92.12 112.66 4.92 0.35 0.00625 

 

 

influence of axial force on the non linear behavior is 

considered. The nonlinear parameters for the sections (yield 

moment (𝑀𝑦), maximum moment (𝑀𝑢), curvature ductility 

(𝜇𝜑), plastic length (  ) and plastic rotation (  )) are 

reported on Table 2. The possibility of plastic hinges is 

 

 

defined at 5 and 95 percent of the length for frame 

elements. Plastic length is computed with the empiric 

equation proposed by Park and Paulay (1974). 

Overall capacity curves, defined by the relation between 

the base shear and the average drift are presented in Fig. 7. 

The average drift is estimated as the ratio of the 

displacement of the top of the building and building total 

height. Maximum displacement is defined when one of the 

following three conditions is achieved: a) a plastic hinge 

develops a rotation greater than the maximum rotation 

feasible for that element; b) all columns of the same story 

develop plastic hinges at both ends, producing a soft story 

failure mechanism and c) all element ends that concur at 

one joint develop plastic hinges, producing a joint plastic 

mechanism. 

Ductility on buildings with fixed and flexible base were 

estimated with two sets of results. First, the capacity curves 

consider the total displacement which includes both the  

  

 

(a) 

  

 

(b) 

  

 

(c) 

Fig. 6 Accelerograms and elastic response spectrum of the ground motions on different soil types (a) Vs=250 m/s, 

(b) Vs=100 m/s and (c) Vs=70 m/s.) 
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Fig. 7 Capacity curves of the building on different soils 

(FB, Vs=250, 100, and 70 m/s) with   total displacement 

(left) and structure deformation (right) 

 

 

displacement associated with structure deformation (u) and 

the displacement produced by rigid body behavior (ux and 

θ). This set of results are computed to compare the inelastic 

parameters of the multistory building with the equivalent 

properties proposed by the ESDOF approach. The second 

set of capacity curves consider only the displacement 

associated with structure deformation (u). This results are 

used to establish if the inelastic parameters of the structure 

are modified by base flexibility due to P-Δ effects.  

From capacity curves, yield and maximum shear and the 

corresponding displacements were estimated. Ductility is 

defined as the ratio of maximum displacement and yield 

displacement. On Table 3, ductility factors for the structure 

with different soil types are shown. When total 

displacement is considered, base flexibility reduces the 

developed ductility, which computed in this way correspond 

to equivalent ductility previously defined (�̃�). This ductility 

reduction is associated with the increment of yield 

displacement, as previously discussed. As soil becomes 

more flexible, ductility reduction increases. On the other 

hand, when only the displacement associated with structure 

deformation is considered (𝜇), ductility remains constant for 

all cases. This is an expected result, since the inelastic 

capacity of the building must be independent on the base 

condition if P-Δ effects are small enough to not change 

Table 3 Structure ductility (𝜇 ) and equivalent ductility 

computed with different approaches (�̃�=from the capacity 

curve, �̃�𝑒 . =elastoplastic system, �̃�𝑒 . =considering 

explicitly the displacement components and �̃�𝑒 . 0= using 

 ) 

 Ductility capacity 

Vs (m/s) 𝜇 𝜇 𝜇𝑒 .  𝜇𝑒 .  𝜇𝑒 . 0 

  (FB) 2.67 2.67 2.67 2.67 2.67 

250 2.67 2.54 2.50 2.54 2.54 

100 2.67 2.12 2.00 2.15 2.09 

70 2.67 1.85 1.66 1.89 1.78 

 

Table 4 Displacement components for yield and maximum 

displacements (𝑢𝑡
𝑦

 and 𝑢𝑡
𝑢)  

  

Displacement 

components at 𝑢𝑡
𝑦

 

(%) 

Displacement 

components at 𝑢𝑡
𝑢 

(%) 

Vs 

(m/s) 
𝑇 �̃�⁄    𝑢𝑥

𝑦
 

 𝑦(𝐻𝑒

+ ) 
𝑢𝑦 𝑢𝑥

𝑢 
 𝑢(𝐻𝑒

+ ) 
𝑢𝑢 

  

(FB) 
1.000 1.25 - - 100.00 - - 100.00 

250 0.954 1.25 0.56 7.71 91.73 0.28 3.87 95.85 

100 0.769 1.25 2.17 35.83 62.00 1.31 21.69 77.00 

70 0.610 1.25 2.77 55.15 42.08 1.94 38.54 59.52 

 

 

structures behavior (Fernández-Sola et al. 2015). Buildings 

studied in the present work exhibit this behavior. In 

addition, effective ductility (�̃�) computed with Eqs. (1), (5) 

and (10) are reported on Table 3 (�̃�𝑒 .  �̃�𝑒 .  and �̃�𝑒 . 0). 

Contribution of the different displacement components to 

yield and maximum total displacement are reported on 

Table 4 as well as period shift and overstrength factor,  

 = 𝑉𝑢 𝑉𝑦⁄ . For the studied cases   remains constant 

independently of the soil stiffness. 

Equivalent ductility computed with Eq. (1) (elastoplastic 

system) is smaller than the ductility from the capacity 

curves for all cases. Difference becomes larger as soil 

stiffness is reduced. As discussed on section 2, results from 

elastoplastic approach corresponds to a lower boundary for 

�̃�  since overstrength is neglected. On the other hand, 

equivalent ductility computed with Eq. (5) and (10), which 

considers the overstrength of the structure, yields to similar 

values to the ones computed from the capacity curves. In 

general, for the studied cases, Eq. (5) tends to slightly 

overestimate equivalent ductility while �̃� estimated with 

Eq. (10) are smaller. From this results, it can be said that 

ESDOF approach represents in an accurate way the global 

ductility of the multiple degree of freedom system, specially 

when overstrength is considered. This result is in good 

agreement to the study presented by Ganjavi and Hao 

(2011).  

 
5.2 Non linear time history analysis 

 

Non linear dynamic analysis was performed for the 

structures with fixed and flexible base. As mentioned 

before, ground motions were selected to be coherent with 

the soil properties considered for the flexible base models,  
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to take into account for the site effects. Global and local 

ductility demands were computed by non linear time history 

analysis. For global behavior, as well as in the pushover 

analysis, two types of results were computed for the 

buildings with flexible base, one considering the total 

displacement and other considering only the structure 

deformation. For the analysis of element ductility, only its 

deformation is considered.  

Non linear parameters for elements (beams and 

columns) are the same as for the pushover analysis. The 

hysteretic model proposed by Takeda (1970) is used to 

consider stiffness degradation. Analysis is performed for the 

whole duration of the excitation, since none of the elements 

achieves its maximum plastic rotation in any moment. Only 

inelastic behavior for flexure is considered given that design 

procedure considers that shear failure is avoided.  

 

 

Global base shear-displacement curves are shown on 
Fig. 8 for fixed and flexible base, considering the roof 
displacement. Yield and maximum displacements are 
presented on Table 5. In this table, total displacement (𝑢𝑡 ) 
and structure deformation (u) for the system with flexible 
base (DSSI) are reported. For fixed base (FB), total 
displacement is equal to the structure deformation.  

Three different ductility demands are computed. For FB, 

ductility demand is computed directly by the ratio of 

maximum to yield displacement (𝜇 𝐵 = 𝑢 𝐵
𝑢 𝑢 𝐵

𝑦⁄ ). This 

value corresponds to the ductility demand on the structure 

neglecting the DSSI. For flexible base, demand of the 

whole system is computed as the ratio of total maximum to 

total yield displacements (�̃�    = 𝑢𝑢    
𝑡 𝑢𝑦    

𝑡⁄ ). In 

addition, ductility demand on the structure is defined as the 

ratio of maximum and yield displacements associated with  

Fixed base (u) 

   
Total displacement with flexible base  (u

t
) 

   
Deformation of the structure with flexible base (u) 

   
Fig. 8 Capacity curves of the building on different soils (FB, Vs=250, 100, and 70 m/s) with total displacement (left) and 

structure deformation (right) 
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Table 5 Total displacement and structure deformation for 

yield and maximum displacements with fixed and flexible 

base 

 
Response with 

fixed base 
Response with flexible base 

Vs 

(m/s) 
𝑢 𝐵
𝑦

 

(cm) 

𝑢 𝐵
𝑢  

(cm) 
𝜇 𝐵 

𝑢𝑦    
𝑡  

(cm) 

𝑢𝑢    
𝑡  

(cm) 
𝜇     

𝑢𝑦     

(cm) 

𝑢𝑢     

(cm) 
𝜇     

250 7.60 11.98 1.58 8.33 13.73 1.65 7.32 12.20 1.67 

100 5.43 13.61 2.51 10.60 23.18 2.19 5.26 12.16 2.31 

70 5.71 10.73 1.88 18.91 33.08 1.75 5.83 10.52 1.80 

 

 

the deformation of the structure (𝜇    = 𝑢𝑢    𝑢𝑦    ⁄ ). 

This value corresponds to the target ductility demand of the 

design. 

When total displacement is considered, the 

displacements of the system with flexible base are larger 

due to increased flexibility as expected. The increment on 

maximum total displacement is of 15, 70 and 208% for 

Vs=250, 100 and 70 m/s respectively (Table 5). This is an 

important effect to verify possible collision with adjacent 

buildings, and the response of contents (Jaimes-Téllez et al. 

2017). On the other hand, the displacements produced by 

deformation of the structure can be increased or reduced. 

For Vs=100 m/s, yield and maximum displacements are 

reduced by base flexibility. For Vs=250 m/s yield 

displacement is reduced but maximum displacement is 

increased, producing an increment on the ductility demand. 

The opposite happens for Vs=70 m/s, where the yield 

displacement is increased while maximum displacement is 

reduced.  

Because of this effect, ductility demands on the structure 

(Table 5) are modified by base flexibility, in some cases are 

increased (Vs=250 m/s) and in other cases reduced (Vs=100 

and 70 m/s). This is a confirmation that DSSI does not 

always reduces the structural response. The increase or 

reduction of structural response largely depends on the 

spectral shape of the excitation, on the period shift and on 

the variation of the inelastic response produced by DSSI. As 

for the pushover analysis, ductility demands on the structure 

(𝜇    ) are larger than global ductility computed with total 

displacements (�̃�    ), for all cases. However, the larger 

increment is for Vs=100 m/s, and not for the most flexible 

soil (Vs=70 m/s). 

The design procedure of inelastic structures is based on 

setting specific values of 𝑅𝜇 to achieve a target ductility 

demand. Since 𝜇     is always larger than �̃�    , it is 

necessary to use reduced 𝑅𝜇     values to keep 𝜇     

within design values. Variations of 𝑅𝜇 values are analyzed. 

Maximum base shear (𝑉𝑢) and base shear of the 

corresponding linear system (𝑉0) and 𝑅𝜇 values are shown 

on Table 6. Since the same design is considered for all 

cases, yield base shear remains constant (𝑉𝑦 = 1 1   t). 

Maximum shear (𝑉𝑢) is very similar for all excitations and 

all soil conditions given that the maximum base shear in the 

structure can be associated to its strength. Variations are 

produced on the 𝑅𝜇 magnitudes, due to modification of 𝑉0. 

For Vs=250 and 100 m/s, 𝑅𝜇 are larger for the system with 

fixed base, while for Vs=70 m/s, reduction factor is larger 

Table 6 Maximum base shear for the inelastic (Vu) and 

corresponding linear system (V0) and yield strength 

reduction factors (Rμ) with fixed (FB) and flexible base 

(DSSI) 

 
Response with fixed 

base 
Response with flexible base 

Vs 

(m/s) 
𝑉𝑢 𝐵 

(ton) 

𝑉0 𝐵 

(ton) 
𝑅𝜇 𝐵 

𝑉𝑢     
(ton) 

𝑉0     
(ton) 

𝑅𝜇     
𝑉𝑢 𝐵

𝑉𝑢    
⁄  

250 1,161 3,493 3.18 1,203 3,758 3.41 0.97 

100 1,206 3,013 2.74 1,182 2,138 1.94 1.02 

70 1,195 1,818 1.65 1,179 2,514 2.29 1.01 

 

 

with flexible base.  

A fundamental parameter is the ductility demand (𝜇) 
associated with 𝑅𝜇. The ratio of 𝑅𝜇 𝜇⁄  was computed for 

the different systems (Table 7). For Vs=250 and 100 m/s, 

𝑅𝜇  𝜇⁄  are smaller for the flexible base system. This means 

that base flexibility produces larger ductility demand for a 

specific reduction on the yield strength. On the other hand, 

for Vs=70 m/s, 𝑅𝜇  𝜇⁄  is larger for the flexible base system. 

Variations depend partially on the spectral shape and the 

spectral position of the fundamental periods of the structure 

(Ruiz-García and Miranda 2004, Chopra 2012). However, 

the appearance of displacements due to rigid body behavior 

has an influence on the modification of this ratio too. 

To study this effect, the ratio in terms of equivalent 

ductility ( �̃�    ) is presented on Table 7. As mentioned 

above, �̃� does not separate the displacement produced by 

the deformation of the structure of the displacement 

produced by rigid body behavior, so this is a virtual 

ductility demand, which is used for design purposes. As 

shown on Table 5, �̃�     is smaller than 𝜇     in all cases, 

so 𝑅𝜇 �̃�    ⁄  is consistently larger than 𝑅𝜇  𝜇     ⁄ . On the 

design process, the ratio of strength reduction and ductility 

demand is defined based on the definition of ductility of Eq. 

(2), so the design target ductility demand (�̃�    ) and the 

actual ductility demand on the structure (𝜇    )  are not 

equal. In order to illustrate the differences of design 

strength yield reduction factor for the systems with fixed 

and flexible base, the corresponding 𝑅𝜇  for a target 

ductility demand on the structure of 𝜇 = 2 are computed 

(Table 7). For flexible base two 𝑅𝜇  are computed, one 

using �̃� and other with 𝜇. If global ductility of �̃� = 2 is 

used, corresponding 𝑅𝜇  are larger than the actual values 

that must be used to get a target ductility demand of 𝜇 = 2 

on the structure. For Vs=250 and 100 m/s, the required 

values of 𝑅𝜇  are smaller for flexible base. The opposite 

happens for Vs=70 m/s, where the 𝑅𝜇 factor is greater for 

the flexible base system. For this reason, some building 

codes considers reduced values of inelastic capacity of 

systems with flexible base for the computation of yield 

strength reduction factors.  

Equivalent ductility computed with Eq. (1), (5) and (10) 

for dynamic analysis are reported on Table 8 and compared 

with values computed directly form response of the 

structure used as reference (Table 5). The contribution of 

each displacement component in percentage for use of Eq. 

(5) are reported too. Developed overstrength ( ), computed  
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Table 7 Ratio of 𝑅𝜇  𝜇⁄  and ductility variation for systems 

with fixed (FB) and flexible base (DSSI) 

Vs 

(m/s) 

RμFB 

/μFB 

RμDSSI 

/𝜇     

RμDSSI 

/μDSSI 

RμDSSI 

/μFB 

μDSSI 

/𝜇     

For 𝜇 = 2 

𝑅𝜇 𝐵 𝑅�̃�     𝑅𝜇     

250 2.01 1.93 1.90 1.06 1.01 4.02 3.86 3.80 

100 1.09 0.89 0.84 0.92 1.05 2.18 1.78 1.68 

70 0.88 1.31 1.27 0.96 1.03 1.76 2.62 2.54 

 

Table 8 Displacement components for yield and maximum 

displacements (𝑢𝑡
𝑦

 and 𝑢𝑡
𝑢) 

 
Displacements 

at 𝑢𝑦 
Displacements 

at 𝑢𝑢 
     

Vs 

(m/s) 
𝑢𝑅𝐵
𝑦

 

(%) 

𝑢𝑅𝐵
𝑢  

(%) 

𝑢𝑦 

(%) 

𝑢𝑢 

(%) 

  

= 𝑉𝑢 𝑉𝑦⁄  
𝜇 𝜇𝑒 .  𝜇𝑒 .  𝜇𝑒 . 0 

250 12.12 11.14 87.88 88.86 1.06 1.65 1.59 1.65 1.62 

100 50.38 47.54 49.62 52.46 1.10 2.19 1.70 2.19 1.82 

70 69.17 68.20 30.83 31.80 1.09 1.75 1.28 1.75 1.35 

 

 

as the ratio of maximum base shear developed on the 

structure and the yield base shear ( = 𝑉𝑢 𝑉𝑦⁄ ) is used for 

Eq. (10) (Table 8). As for pushover analysis, values of 

equivalent ductility computed with Eq. (1) are the smallest. 

Values computed from Eq. (5) are equal to the values 

computed directly from the response of the structure in this 

case, in difference to the pushover analysis where values are 

similar but not equal. On the other hand, values computed 

with Eq. (10) are closer to the reference values than the 

values of Eq. (1). However, in this case these values are 

significantly smaller. With these results it can be confirmed 

that neglecting the post-yield stiffness may lead to large 

errors on predictions of global ductility. 

Rotational ductility demands on beams were computed 

as the ratio of maximum to yield rotation. Demands on an 

external (EB) and internal beam (IB) in an external (EF) 

and internal frame (IF) on each floor are analyzed (Fig. 9). 

In order to study the modification on ductility demand  

 

 

produced by DSSI, the ratio of ductility demand with fixed 

and flexible base is presented (𝜇𝜃    𝜇𝜃 𝐵⁄ ) on Fig. 10. 

The doted red line corresponds to values of 𝜇𝜃    𝜇𝜃 𝐵⁄ =
1 (no change on ductility demand). Values greater than unit 

represent that base flexibility increases the ductility demand 

while smaller values represent a reduction of ductility 

demand. Results for the four different beams (EB-EF, IB-

EF, EB-IF and IB-IF) along structure height and the average 

at each floor are shown on Fig. 10 (a), (b) and (c). 

Comparison of the average values for the different cases is 

shown on Fig. 10(d).  

Modifications of ductility demand are different along 

structure height in all cases. Variations along height can not 

be reproduced with an ESDOF system. For Vs=70 m/s, 

ductility demands on the 3
rd

 story are reduced by base 

flexibility while for the 4
th

 story, demands are increased. 

Actually, modifications of ductility demand are different in 

the different beams of the same story. For example, 

increment of ductility demand on the beams of the internal 

frame (IF) are larger than in the ones of the external frame 

(EF) in the first six stories for Vs=100 m/s. In fact, the 

beams of the same frame in the same floor experience 

increments and reductions on the ductility demand (i.e., EF 

beams of the 6
th

 story for Vs=250 m/s). A concentration of 

ductility demand can be observed on the external beam of 

the external frame (EF-EB) of the first story for Vs=70 m/s 

while the other three beams on the same story develop a 

reduction on the ductility demand.  

Variation of global ductility demand reported on Table 7 
can be compared with the local variations. For Vs=100 m/s, 
global ductility demand is reduced about 8% (μDSSI/μFB= 
0.92) and all ductility demands on beams are consistently 
reduced by base flexibility. However, local ductility 
reductions are up to 20% on the external beam of the 

external frame (EF-EB) in the first story, and the average 
ductility modification on this story is about 16%. Average 
ductility modification for 2-8 stories are very close to the 
global values. Beams on upper stories (9-10) experience a 
very small or even null inelastic behavior in all cases. For 

 

 
 

 
Fig. 9 Outline of frame and beam distribution on plain 
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Vs=250 m/s, global ductility demand is increased about 6% 

as well as the average local ductility demand on the first 

two stories. In contrast, the ductility demand on the mid rise 

stories (3-8) is reduced by base flexibility. In this case, the 

global ductility modification is controlled by the variations 

on the lower stories. Previous studies had identified that the 

variation on inelastic response due to base flexibility on the 

first stories are the largest (Ghandil and Behnamfar 2017) 

and controls the global inelastic behavior of the structure 

(Fernández-Sola and Martínez-Galindo 2015). For Vs=70 

m/s, base flexibility reduces the global ductility demand 

about 4%. Again, the modification on lower stories (1-4) is 

consistent with the global ductility change, with reductions 

up to 9% for the first story. However, on 4
th

 story, average 

ductility demand is increased in 5% with an increase on the 

internal beam of the internal frame (IF-IB) of 9%. It is clear 

that, even when the ESDOF approach used to take into 

account the variations of the DSSI predicts good 

approximation for the global ductility demand, the specific 

changes on the ductility demands on the elements may not 

be correctly computed, having in some cases increments on 

 

 

local ductility demands while the ESDOF approach predicts 

reductions on the ductility demand. 

 

 

6. Conclusions 
  

Modification on the ductility of structures due to base 

flexibility is studied. The representation of the inelastic 

behavior of systems with flexible with an equivalent single 

degree of freedom system (ESDOF) is discussed as well as 

the role of the post yield stiffness. Two different equations 

for including the post yield stiffness effect on the ESDOF 

approach are proposed. One considers explicitly how the 

contribution of rigid body components influences the 

ductility modification and the other is based on the 

overstrength factor for design purposes. In order to 

exemplify the differences on the inelastic behavior of 

systems with fixed and flexible base the inelastic static and 

time history analysis of RC buildings with fixed and 

flexible base are presented. A moment resistant building 

with 10 stories is considered with a mat foundation. 

  
(a) (b) 

  
(c) (d) 

Fig. 10 Ratio of rotational ductility demands in each floor, on different beams (IB=internal and EB=external) of diferent 

frames (IF=internal and EF=external) of structures with flexible and fixed base (𝜇𝜃    𝜇𝜃 𝐵⁄ ) with Vs=70, 100 and 250 m/s 
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Inelastic behavior of systems with flexible base 

 

Ductility capacities are defined based on the base shear-

average drift capacity curves from the static non-linear 

analysis. Ductility demands and yield strength reduction 

factors are computed from time history non-linear analysis. 

Average drift was computed in two ways: one with the total 

displacement of the soil-structure system, which includes 

structure deformation and rigid body components, and other 

considering only the structure deformation. Impedance 

functions for the fundamental frequency are used. 

From the static non-linear analysis, it is shown that 

ductility capacity computed with the displacement 

associated with structural deformation remains almost 

unchanged. It means that inelastic capacity of the structure 

remains equal independently on base flexibility. On the 

other hand, when total displacement is considered (whole 

soil-structure system), equivalent ductility is reduced by 

base flexibility in general. Ductility reduction in this case is 

mostly due to the increment on yield displacement produced 

by system flexibilization. Ductility reduction does not mean 

a reduction on deformation capacity, it is produced by the 

difference on the contribution of rigid body components to 

total displacement at yield and maximum displacement. 

Equivalent ductility computed from the capacity curves is 

compared with the values computed with the ESDOF 

approach considering elastoplastic behavior and the 

proposed equations. It is shown that values computed with 

the equations proposed in this work are more accurate than 

the ones computed considering an elastoplastic behavior.  

Global ductility demand and the corresponding yield 

strength reduction factor are modified by base flexibility 

partially due to the change of fundamental period, and 

partially due to the appearance of rigid body displacements. 

For the flexible base structure, ductility demand on the 

whole soil-structure system (equivalent ductility) is smaller 

than the actual ductility demand produced on the structure. 

Values of the equivalent ductility demand computed from 

non linear time history analysis are compared with the 

ESDOF approach too. Proposed equations fits better 

numerical results of the global equivalent ductility than the 

elastoplastic approach. However, for the dynamic case, 

values computed with the proposed design equation based 

on the overstrength factor are not as accurate as the ones 

computed with the equation that considers the rigid body 

components. It is proved that the ratio between yield 

strength reduction factor and structure ductility demand is 

smaller for the structure with flexible base respect to the 

fixed base case.  

The modification on rotational ductility demands on 

beams along the structure are presented. It is shown that 

ductility demands on beams are increased in some cases and 

decreased in others. Variations are not constant along the 

structure, effect that can not be reproduced with the ESDOF 

approach. For some cases, ductility demand on some beams 

are increased even when global ductility demand is reduced.  

 

 
Acknowledgments 

 

Authors would like to acknowledge the grant given by 

Consejo Nacional de Ciencia y Tecnología (CONACyT) of 

México for the master degree studies of second author and 

the comments given by Prof. Manuel Ruiz-Sandoval to 

improve the present paper. 

 

 
References 

 
ASCE 7 (2010), Minimum Design Loads for Buildings and Other 

Structures, ASCE Standard ASCE/SEI 7-10, American Society 

of Civil Engineers. 

Avilés, J. (1991), “Respuesta sísmica de un sistema suelo-

estructura”, Revista Internacional de Métodos Numéricos para 

Cálculo y Diseño en Ingeniería, 7(1), 29-43. (in Spanish) 

Avilés, J. and Perez-Rocha, L.E. (2005), “Soil-structure interaction 

in yielding systems”, Earthq. Eng. Struct. Dyn., 32(11), 1749-

1771. 

Avilés, J. and Perez-Rocha, L.E. (2011), “Bases para las nuevas 

disposisciones reglamentarias sobre la interacción dinámica 

suelo estructura”, Revista de Ingeniería Sísmica, 71, 1-36. (in 

Spanish) 

Avilés, J. and Perez-Rocha, L.E. (2011), “Use of global ductility 

for design of structure-foundation systems”, Soil Dyn. Earthq. 

Eng., 31, 1018-1026. 

Aydemir, M.E. and Ekiz, I. (2013), “Soil-structure interaction 

effects on seismic behaviour of multistorey structures”, Eur. J. 

Environ. Civil Eng., 17(8), 635-653. 

Barcena, A. and Esteva, L. (2007), “Influence of dynamic soil-

structure interaction on the nonlinear response and seismic 

reliability of multistorey systems”, Earthq. Eng. Struct. Dyn., 

36(3), 327-346. 

Chopra, A.K. (2012), Dynamics of Structures, 4th Edition, 

Prentice Hall, New Jersey. 

Eser, M., Aydemir, C. and Ekiz, I. (2011) “Effects of soil-structure 

interaction on strength reduction factors”, Procedia Eng., 14, 

1696-1704. 

Fernández-Sola, L.R. and Avilés, J. (2008) “Efectos de interacción 

suelo-estructura en edificios con planta baja blanda”, Revista de 

Ingeniería Sísmica, 79, 71-90. (in Spanish) 

Fernández-Sola, L.R. and Martínez-Galindo, G. (2015), “Behavior 

of RC frames with hysteretic dampers considering dynamic soil 

structure interaction”, 11th Canadian Conference on Earthquake 

Engineering, Victoria, BC, Canada. 

Fernández-Sola, L.R., Dávalos-Chávez, D. and Tapia-Hernández, 

E. (2014) “Influence of the dynamic soil structure interaction on 

the inelastic response of steel frames”, 10th U.S. National 

Conference on Earthquake Engineering, Anchorage, Alaska. 

Fernández-Sola, L.R., Tapia-Hernández, E. and Dávalos-Chávez, 

D. (2015), “Respuesta dinámica de marcos de acero con 

interacción inercial suelo-estructura”, Revista de Ingeniería 

Sísmica, 92, 1-21. (in Spanish) 

Ganjavi, B. and Hao, H. (2011), “Elastic and inelastic response of 

single- and multi-degree-of-freedom systems considering soil 

structure interaction effects”, Australian Earthquake 

Engineering Society 2011 Conference, Barossa Valley, South 

Australia. 

Gazetas, G. (1991), Foundation Vibrations, Foundation 

Engineering Handbook, Ed. H.Y. Fang, Van Nostrand 

Reinhold. 

Ghandil, M. and Behnamfar, F. (2017), “Ductility demands of 

MRF structures on soft soils considering soil-structure 

interaction”, Soil Dyn. Earthq. Eng., 92, 203-214. 

Ghannad, M.A. and Ahmadnia, A. (2006), “The effect of soil-

structure interaction on inelastic structural demands”, Eur. 

Earthq. Eng., 20(1), 23-35. 

Halabian, A.M. and Erfani, M. (2013), “The effect of foundation 

flexibility and structural strength on response reduction factor of 

423



 

Luciano R. Fernández-Sola and Juan E. Huerta-Écatl 

 

RC frame structures”, Struct. Des. Tall Spec. Build., 22(1), 1-

28. 

Huerta-Ecatl, J.E. (2015), “Evaluación de la interacción dinámica 

suelo-estructura en el comportamiento inelástico de un edificio 

de concreto reforzado”, Master Dissertation, Posgrado en 

Ingenieria Estructural, UAM-Azcapotzalco. (in Spanish) 

Jaimes-Tellez, M.A., Arredondo-Vélez, C.A. and Fernández-Sola, 

L.R. (2017), “Rocking of non-symmetric blocks in buildings 

considering effects associated with soil-structure interaction”, J. 

Earthq. Eng., 1-28. 

Jarernprasert, S., Bazan-Zurita, E. and Bielak, J. (2013), “Seismic 

soil-structure interaction response of inelastic structures”, Soil 

Dyn. Earthq. Eng., 47, 132-143. 

Kausel, E., Whitman, R.V., Morray, J.P. and Elsabee, F. (1978), 

“The spring method for embedded foundations”, Nucl. Eng. 

Des., 48, 377-392. 

MCBC (2004), “Reglamento de construcciones para el Distrito 

Federal”, Gaceta Oficial del Departamento del Distrito 

Federal, México, México. (in Spanish) 

NBCC (2015), National Building Code of Canada, National 

Research Council of Canada, Ottawa. 

Novak, M., Sheta, M., El-Hifnawy, L., El-Marsafawi, H. and 

Ramadan, O. (2012), “DYNA6.1: A computer program for 

calculation of foundation response to dynamic loads”, 

Geotechnical Research Centre, The University of Western 

Ontario, Canada. 

NZS 3101-1 (2006), New Zealand Standard Code of Practice for 

General Structural Design and Design Loadings for Buildings, 

Standards Association of New Zealand, Wellington. 

Park, R. and Paulay, T. (1974), Reinforced Concrete Structures, 

1st Edition, John Wiley & Sons. 

Rosenblueth, E. and Resendiz, D. (1988), “Disposiciones 

reglamentarias de 1987 para tener en cuenta interacción 

dinámica suelo-estructura”, Series del Instituto de Ingeniería, 

509, Universidad Nacional Autónoma de México, México. (in 

Spanish) 

Ruiz-García, J. and Miranda, E. (2004), “Inelastic displacement 

ratios for design of structures on soft soil sites”, J. Struct. Eng., 

ASCE, 130(12), 2051-2061. 

Takeda, T.M., Sozen, M.A. and Nielsen, N.N. (1970), “Reinforced 

concrete response to simulated earthquakes”, J. Struct. Div., 96, 

2557 - 2573. 

Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Prentice-

Hall.  

Wolf, J.P. (1994), Foundation Vibration Analysis Using Simple 

Physical Models, Prentice-Hall. 

 

 

CC 

424




