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1. Introduction 
 

The modelling of bond slip phenomena between steel 

bars and surrounding concrete represents a relevant issue in 

the description of the cyclic response of Reinforced 

Concrete (RC) sections, elements and whole structures, 

especially in the case of existing buildings where plain bars 

are used, often in conjunction with poor anchorage 

conditions and insufficient lap spliced. The inadequacy of 

structural detailing and the following degradation of bond 

strength cause an insufficient available ductility in presence 

of cyclic loads: as highlighted by a lot of past and recent 

experimental investigations (Filippou et al. 1983, Hakuto et 

al. 2000, Gigliotti et al. 2002, Varum et al. 2015, Fernandes 

et al. 2013, Mohammad et al. 2014, Laterza et al. (2017), 

Morelli et al. 2017) a progressive reduction of the strength 

and of the stiffness of RC elements, mainly in 

correspondence of those areas where plasticity occurs and 

cracks open, was observed.  

From what above presented, the need of reliable 

numerical models including relative slip to correctly 

represent the structural performance of RC structures 

becomes evident. Several models including bond-slip 

phenomena where proposed from the 60‟s to nowadays, 

mainly divided in continuum and frame models, differing 

for accuracy and computational time requiring. 

Continuum models for bond slip (e.g., Kwak and 
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Filippou 1995, Lowes 1999) provided a very detailed 

solution requiring, at same time, an excessive 

computational burden to be applied to a whole multi-storey 

RC structure. The adoption of frame elements, on the 

contrary, allowed to describe the global response of RC 

structures through reasonable computational effort, taking 

into account plastic phenomena using two different possible 

approaches: lumped and distributed plasticity.   

In the case of lumped plasticity, bond-slip phenomena 

can be included through nonlinear rotational springs located 

at the end of RC elements (Lowes and Altoontash 2003, 

Mitra and Lowes 2007, Sezen and Setzler 2008): this 

modeling approach introduces a discontinuity in the 

element, needing consequently to define the rotational 

spring relationship. Among distributed plasticity approach, 

Monti et al. (1997, 2000) proposed to replace the steel fiber 

with the „pull-out‟ fiber representing the slip phenomenon. 

All these models, however, even though more rigorous and 

complete, require a very high computational burden often 

connected to numerical convergence problems, limiting 

their adoption to the case of individual structural elements 

rather than of the whole structure. 

In recent years several simplified approaches, mainly 

consisting in the adoption of modified stress-strain steel 

relationships based on reasonable assumptions (Braga et al. 

2012, Braga et al. 2015, Dehestani et al. 2015) were 

proposed for the description of the monotonic behaviour of 

reinforcing steel bars in RC structures directly including 

relative slip.  

The slip model proposed by Braga et al. (2012) and 

validated through the experimental tests presented by 

D‟Amato et al. (2012) allowed the correct representation of  
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Fig. 1 Scheme of bond-slip model 

 

 

the behaviour of existing RC elements with plain bars. An 

extension of this work was later provided by Braga et al. 

(2015) allowing the description of the behaviour of steel 

bars in the post-elastic field and the determination of the 

level of deformation imposed by seismic action in buildings 

designed according to modern standards (Braconi et al. 

2014). The possibility to evaluate the strain level due to 

earthquake events on reinforcing steel bars was needed to 

analyze the effects of corrosion on the ductile performance 

of traditional steel grades (Caprili and Salvatore 2015, 

Caprili et al. 2015, Salvatore et al. 2014). 

The present work has the purpose to upgrade the models 

previously proposed, improving and solving the 

encountered analytical inconsistencies and, mostly, 

implementing the cyclic formulation, originally described 

by a Takeda model based only on empirical considerations. 

This formulation will allow a larger application of the 

model in the field of seismic analyses. The simplicity of the 

proposed model permits investigating the influence of 

several parameters (i.e., concrete strength, length/diameter 

ratio, max bond strength and corresponding slip, 

mechanical properties of steel) on the cyclic steel behaviour 

and determining bond/slip histories along the bar affected 

by such problems. 

 

 

2. Background 
 

The background model (Braga et al. 2012, Braga et al. 

2015) describes the slip field along a hooked end bar of 

diameter db embedded in a concrete block over a certain 

length (equal to L-total length of the specimen or even 

lower) under an increasing monotonic displacement uL 

applied in correspondence of the free end (Fig. 1) and 

representing the opening crack at the end element. 

The analytical formulation of the model is based on the 

following assumptions: 

• The slip field along the bar - before yielding - is 

described by an imposed linear law (Eq. (1)), being u0 

and uL the end displacements, x the abscissa and L the 

length of the bar 
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After yielding, the increase of stress due to hardening 

leads to the increase of relative slip. The development of 

slip along the bar is then approximated by two different 

linear branches (Eq. (2)); the parameter Ly, representing the 

part of the bar in which u(x)≤uy, being uy the value of 

displacement corresponding to the yielding strength, is 

introduced. If the stress increases, Ly increases too. 
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• The bond stress-slip law is given by Eq. (3), where τd 

represents the residual bond strength and u1 is the 

corresponding slip. 
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• Any anchorage at bar end (hook but also bend) can be 

described by a linear function of the displacement u0 

close to the hook, according to Eq. (4), being Fh is the 

force acting in correspondence of the anchored end of 

the bar. 

0ukF hh   (4) 

• The constitutive steel law is elastic-perfectly plastic 

(Braga et al. 2012) or elastic-plastic with hardening 

(Braga et al. 2015). 

The adoption of equilibrium, compatibility and 

constitutive equations allows to define the stress and slip 

fields along the specimen. The equilibrium is given by Eq. 

(5), where Ab and db are, respectively, the cross section and 

the diameter of the bar. 
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(5) 

The compatibility equation leads to the deduced slip 

field, Eq. (6) 
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 (6) 

where the slip along the bar is described in Eq. (7) until the 

yielding of the bar was reached. 
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The stress- slip law at the end of the embedded bar (σL-

uL), where the crack opening occurs, can be then derived.  

The linearization of the slip field is the most significant 

simplification in the analytical formulation of the model: 

D‟Amato et al. (2012) highlighted relatively small 

differences comparing the linear schematization of the slip 

field to other refined formulations (Monti et al. 2000), in 

terms of uL along the abscissa x. Besides, as visible from 

Eq. (8)-relative to the case uL≤u1, u0≤u1 (Braga et al. 2015) - 

the slip model was affected, in its analytical formulation, by 

numerical inconsistencies leading to the violation of the 

compatibility equation: the cubic trend of the slip field can 

be observed. 
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3. The exponential model: analytical formulation of 
the monotonic behaviour 
 

In the proposed model, the exponential slip field 

formulation along the bar replaces the linear assumption on 

which the original slip/hardening models relies. Keeping 

constant the adoptions concerning the bond stress-slip law 

(elastic-perfectly plastic) and the anchorage modelling 

(linear function of u0), the model is based on the 

assumptions summarized in Fig. 1: 

• The slip field along the bar is described by an 

exponential formulation, Eq. (9), in which the symbols 

have the same meaning as before 
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• The constitutive law for steel is elastoplastic with 

hardening and plateau. 

In this case too, equilibrium, compatibility and 

constitutive equations shall be used to provide the analytical 

solution to the problem of a steel bar embedded in a 

concrete block affected by relative slip. Eq. (5) gives the 

equilibrium, while the compatibility equations (Eqs. (10)- 

(11)) provide relative slip before and after the achievement 

of the yielding stress 
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being Es the elastic modulus of steel and Eh the hardening 

stiffness of steel, expressed according to Eq. (12), where fu 

and fy are respectively the tensile and yielding strength of  

CASE 1 uL≤u1, u0<u1 CASE 2 uL>u1, u0<u1 CASE 3 uL>u1, u0>u1 

Describes the solution when the value of 

bond stress is lower than τd at both ends of 

the bar. 

Describes the solution when uL is greater 

than u1 (i.e., the bond stress at the free end is 

equal to τd), but u0 is less than u1. 

Describes the solution when the value 

of τd is reached in the whole bar. 

   

 
  








 *

0 1
ln

hL
s

L

L k
L

E
u 




  (13) 

 
 






































*1

0

4

ln

1
1

h
b

d

L

L

x

L

L k
d

xL

L
u







  
(16) 

b

d
hL

d

L
uk







4
0

*
 (19) 

 
 

  


































 








1

ln

1

ln
10

L

L

L

L uu  (14) 
 

 
 L

L

L

L

u
uu









2

1

2

1
0

ln2

ln

ln
1





















 
(17) 








 0

*
0

2
ukL

dE

L
uu hd

bS
L   (20) 

1

24

udE

L

bS

d





  

(15) 

 
 

Lx
L






ln

ln 1
1

 

(18) 

 

S

h

E

Lk 


*

  

0

1
1

u

u
   

0u

uL
L   

 

 

     
 

 

 

  
























 1ln1

ln

1
ln

ln

ln

ln

1
ln

ln 111

LLL LLL

L


















 

 

 

     
 

 

 

  
























 1ln1

ln

1
ln

ln

ln

ln

1
ln

ln 111

LLL LLL

L
















  
 

Fig. 2 Analytical solution before yielding 
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Analytical  solution after yielding 

CASE 4 L>fy, uL≤ u1 CASE 5
L>fy, uL >u1, 

u0<u1, uy>u1
CASE 6 L>fy, uy<u1≤uL CASE 7 L > fy, uL>u1,u0≥u1,uy>u1 

Condition in which uL is lower than u1: the bond 

stress at the free end is lower than τd. The 

compatibility and equilibrium equations allow the 

determination of the slip and the stress at the end of 

the bar (21),(22), being uy the slip corresponding to 

the yield stress fy and L the bar length. 

In this case, the slip in correspondence 

of the free end is higher that u1 while the 

bond stress at the hooked end is lower 

than τd. 

Condition in which only a portion of the bar is 

interested by residual friction bond; being x1 and Ly 

expressed by (29) and (30), the slip and the stress at 

the end of the bar are given by (28) and (31) 

The bond stress along the bar has a constant 

value. The expressions of the slip and the 

stress at the free end are given by: 
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Fig. 3 Analytical solution after yielding 
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Fig. 4 Cardinal points for the new analytical formulation 

 

 

steel, Agt is the elongation to maximum load for the bar and 

p is the deformation corresponding to the beginning of the 

hardening branch (i.e., end of the plateau). 

pgt

yu

h
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
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In the following, the solutions in terms of stress and slip 

at the end of the bar, useful for the determination of the 

modified steel law to be assigned to rebars, are derived and 

presented. The analytical solution considers the different 

possible situations depending on the values of slip at the 

two ends, the different branches of the τ-u relationship and 

the slip values achieved at the ends, as well as already 

developed by Braga et al. (2012) and Braga et al. (2015). 

These analytical solutions are reported, in terms of 

σL_uL, before and after yielding in Figs. 2 and 3. The 

notation below has been followed. 

 
 
4. Stress-slip law 
 

The formulation showed in the previous paragraph 

provides a stress-slip (σL-uL) relationship with three 

fundamental points corresponding to different physical 

status of the steel bar under relative slip. Points A, C, Y 

describe the behaviour of stress and slip in correspondence 

of the free end of the specimen embedded in the concrete 

block as simply presented in Fig. 4. In particular: 

• Point A: represents the achievement of the limit bond 

stress τd at the free end of the bar: uL,A=u1 . 

• Point C: represents the point when all the length of the 

bar is characterized by a bond stress equal to τd. As a 

consequence u0,C=u1 . 

• Point Y: represents the achievement of yielding 

strength at the free end. 

Figs. 5 (a)-(b) show the difference between the imposed 

and the deduced slip fields for the case uL≤u1, u0<u1 (bond 

stress lower than τd): as visible, the exponential model 

allows a good agreement of results is achieved. 

The analytical stress-slip formulation (σL-uL) provides 

the relationship between the stress and the relative slip at 

the end of the longitudinal bar: the application of the 

proposed model to nonlinear analysis with fiber elements, 

needs the transformation of the stress-slip relationship into 

a stress-strain one. In the case of fiber elements, the 

response is given by the weighted sum of individual 

representative sections whose position is selected by 

integration scheme. In particular, Li=wp∙L is the portion of  

 
(a) exponential slip field (proposed model) 

 
(b) linear slip field 

Fig. 5 Imposed vs deducted slip field 

 

 

element where the section response is assumed 

constant,being wp the section weight. 

The idea is to improve the (σL-uL) in a fiber finite 

element as modified steel law, being uL the integrated 

displacement of a longitudinal bar including both steel 

deformation and bond slip along the weighted length Li of 

the elements ends, for a generic fiber. Consequently, Eq. 

(42) provides the transformation of displacement to pseudo-

strain for a generic fiber, through the length of integration 

i

TOTL

L

u ,*   (42) 

being ε* the „pseudo-strain‟ including both bar‟s 

deformation and concrete-steel relative slip. 

In Eq. (42) uL,TOT is the total relative displacement of the 

interested longitudinal bar, given by (43) 

BLALTOTL uuu ,,,   (43) 

In which uL,A and uL,B  are the relative displacements 

including the portion of slip regards to each block of 

concrete at the crack, as shown, for example, in Fig. 6. 

The meaning of uL,TOT can be simply explained: the 

experimental flexural behaviour of RC elements (Gigliotti 

et al. 2002) is very similar to mechanisms of rigid bodies, 

with rotations concentrated in few sections, typically 

located at the ends of elements. The slip in correspondence 

of the crack opening represents the amplitude of the same 

crack (uL, TOT), therefore allowing to determine the cyclic 

moment-curvature relationships of RC sections in fiber 

elements. 
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Fig. 6 Scheme of repartition of total slip within the crack 

 

 

To obtain the modified steel law in terms of (σL-uL)TOT, 

is necessary to know (σL-uL),A and (σL-uL),B that depend on 

the characteristics of the two adjacent blocks and 

anchorages.  

 

4.1 Influence of different parameters on the -u law 
 

Fig. 7(a)-(d) highlight the differences in the stress-slip 

relationships obtained varying several parameters, i.e., 

diameter and length of the bar, bond strength and length of 

plateau. In particular, the diameter varies between 12 and 32 

mm, the length of the bar between 600 and 6000 mm, the 

bond strength between 8 and 32 MPa and, finally, the length 

of the plateau depends on the strain at the end of it, εp, 

varying between 1% and 6%.  

As visible, the increase of the bond strength gives lower 

slip for equal stresses, progressively approaching to the 

perfect bond conditions. On the other hand, the increase of 

diameter, length and yield plateau are related to higher 

values of relative slip.  

 

 
5. Cyclic behavior 
 

5.1 Numerical model and main assumptions 
 

A parametric analysis was performed to achieve the 

formulation of the cyclic behaviour of the steel reinforcing 

bar including relative slip. The analyses were used to 

validate the shape and the behaviour of the monotonic 

branch, known from the analytical formulation, and to 

obtain the formulation of unloading and reloading branches 

related to the monotonic analytical formulation too. 

The numerical model used for the parametric analysis 

was elaborated in OpenSees (Mazzoni et al. 2007), and 

consists in a steel bar modelled as truss element, bounded at 

one end with an elastic spring reproducing the hook, and N-

links surrounding the bar introduced to simulate the bond 

slip behaviour (Fig. 8(a)). In the elaboration of the model, 

the following assumptions were made: 

 
(a) Diameter of the bar 

 
(b) Length of the bar 

 
(c) Bond stress 

 
(d) Length of the plateau 

Fig. 7 Stress slip curves depending on different parameters 

 

 

• The bar is provided by a typical steel behaviour 

including the hardening slope and the cyclic response 

following a modified Menegotto-Pinto law (Menegotto 

and Pinto 1973). The “Steel MPF” material (Filippou et  
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(a) Model 

 
(b) Displacement history 

Fig. 8 Numerical model for the cyclic behaviour of the steel 

bar subjects to slip 

 

 

al. 1983), implemented in OpenSees, was used. 

• An elastoplastic model, based on Model Code 1990 

(CEB-FIP 1993), was adopted for the representation of 

the N-links simulating the bond-slip phenomena. 

• The hook has an elastoplastic behaviour, according to 

the hypothesis of the analytical monotonic model. 

The so modelled steel bar was subjected to increasing 

displacement histories imposed at the free end (Fig. 8(b)), 

according to different levels of ductility.  

Parametrical analysis was then executed obtaining a 

regressive formulation, using parameters such as diameter 

and length of the bar, characteristics of the steel material 

(yield and maximum strength, plateau and maximum 

deformation), strength of concrete material, bond-slip law 

(using different bond strength τd and correspondent u1). 

Results allowed to connect the unloading and reloading 

curves to the monotonic analytical exponential formulation. 

To obtain an analytical formulation as close as possible to 

reality, the results coming from the experimental tests 

executed by Saatcioglu and Ozcebe (1989), Gigliotti et al. 

(2002) were taken into consideration. 

 

5.1.1 Modelling of bond-slip relation for the N-links 
Several analytical models describing the monotonic and 

cyclic problem of bond-slip for deformed bars were 

proposed in the current and past literature (e.g., Morita and 

Kaku 1973); however, no sufficient information is provided 

about plain bars, highly diffused in the case of existing 

buildings and whose performance strongly differ from the 

case of ribbed bars.  

Abrams (1913), Verderame et al. (2009) executed 

several experimental test campaigns, analyzing both ribbed 

and plain bars, varying parameters such as diameter, 

embedded length, bar surface, concrete blocks dimensions, 

 

Fig. 9 Numerical examples using different models for bond 

slip monotonic law 

 

Table 1 Relevant points for the description of the monotonic 

bond-slip relationship 

Model 

adopted 

τb,max τb,f smax sf 

[MPa] [MPa] [mm] [mm] 

CEB-FIP 0.68 0.68 0.10 0.10 

Verderame et al. (2004) 1.41 0.61 0.23 2.39 

Varum 2.55 0.79 0.74 4.98 

 

 

anchorage, storage conditions, age and concrete mix. 

Verderame et al. (2009) provided an analytical monotonic/ 

cyclic relationship for the stress-slip model for plain bars, 

described as function of the concrete strength. Melo et al. 

(2015) elaborated a very refined analytical monotonic 

model considering all the features influencing the bond-slip 

relationship, however with lack of details regarding the 

cyclic behaviour. 

The bond-slip monotonic relationship generally shows 

three different branches: the first one describing the 

behaviour for very small slip (due to chemical adhesion, 

mechanical interaction between concrete and bar surface, 

friction, etc.) until the reaching of the peak strength; a 

second branch showing the effects of softening (different in 

the case of plain or deformed bars) due to the degradation 

of the friction resistance, and a third one governed by the 

residual friction strength.  

Model Code (CEB-FIP 1993) provides an analytical 

model for the bond stress/slip law in which the ascending 

branch is described by a power function, extending the 

results provided by Eligehausen et al. (1983) for plain bars. 

The peak of the strength is neglected considering that it is 

lost after the first cycles. Verderame et al. (2009), Melo et 

al. (2015) proposed more detailed models based on the 

results of experimental tests, slightly different for the 

formulation of the softening branch.  

The differences in the three considered monotonic 

models are presented in Fig. 9, while the values of 

significant points are presented in Table 1. As visible, the 

standard provisions can be considered conservative respect 

to experimental based models. 

Concerning the cyclic behaviour, Model Code (CEB-FIP 

1993) provides only the stiffness of the unloading branch 

with the average value equal to 200 N/mm
2
. Verderame et 

al. (2009) determined the cyclic τ-u behaviour from 

experimental tests: the most interesting aspect of such 

experimentations consisted in the fact that in the reloading 
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branch of the cyclic behaviour the stresses did not reach the 

monotonic value of the friction strength but lower values, 

however not always simple to define. 

Since the present work is mainly oriented to the 

determination of a model able to describe the cyclic/seismic 

behaviour of steel bars, the cyclic bond-slip relationship 

shall be defined.  
Experimental tests previously mentioned, highlighted 

that the peak strength is lost immediately after first cycles 
due to friction and other phenomena: this focus the attention 
on the residual friction strength, remaining constant while 
relative slip increase. In the numerical analyses of the 
present work, the peak strength has been neglected, 
according to Model Code model (CEB-FIP 1993): for the 
cyclic behaviour of the N-link simulating the bond-slip, a 
simple elastoplastic law has been assumed.  

 

5.1.2 Modelling of steel behavior 
The behaviour of plain bars is different with the respect 

to the deformed bars too (Prota et al. 2009). Anyway, steel 

behaviour is characterized by many aspects, such as 

isotropic strain hardening, Baushinger effect with 

degradation in the loading and unloading cycles, yielding 

plateau, fatigue, buckling in compression etc., that need to 

be considered for the correct representation of the structural 

performance of RC sections and elements. However, the 

accuracy and the reliability of the numerical model shall be 

joined with the limitation, as much as possible, of the 

computational burden, to be applied also to the case of 

complex RC constructions. 

In the present work, the “SteelMPF” model 

implemented in OpenSees (Mazzoni et al. 2007) was 

selected. The model follows the Menegotto-Pinto law with 

the addition of several features, such as the possibility to 

use different yield stress values and strain hardening ratios 

for tension and compression, the degradation of the cyclic 

curvature parameter R for strain reversals in both pre- and 

post-yielding regions etc. Fatigue and bucking phenomena 

were neglected, while kinematic strain hardening was 

included; the plateau was not modelled, since lost in the 

first few cycles, as visible from the execution of 

experimental tests (Caprili and Salvatore 2015).  

Further numerical simulations were executed adopting 

the “Steel4” material model (Zsarnóczay and Budaházy 

2013), more complicated from a computational point of 

view and then used only for a reduced number of analyses, 

to validate the adopted assumptions, finally providing 

positive results allowing to keep on with selected 

hypotheses.  

 

5.2 Analytical formulation 
 

Numerical parametrical analyses were executed with the 

aim of determining a cyclic formulation able to relate the 

unloading and reloading branch to the monotonic law, 

previously described. The shape of the unloading and 

reloading branches was defined in a normalized plane with 

to respect the yielding stress (fy) and strain (y) of each 

considered case: for example, Figs. 10(a)-(b) show different 

axial stress-slip curves obtained for several values of 

yielding strength. Adopting different values of bond 

 

 

strength, yield strength, length/diameters ratios, the results 

did not highlight significant variations of the cyclic shape of 

the curve. 

In the loading branch, the cycles were characterized by 

„cardinal point‟s, related to the ones identified in the 

monotonic formulation. Two main conditions can be 

observed: 

• Case 1: point A, where the slip at the free end uL is 

equal to u1, and point Y, in which the stress at the free 

end σL is equal to σy. 

• Case 2: point A, where the slip at the free end uL is 

equal to u1, point C where the anchorage slip u0 is equal 

to u1 (i.e., τd is constant along the bar) and point Y, in 

which the stress at the free end σL is equal to σy. 

The first case is the most common, in which the 

anchorage length is lower than the total length of the bar 

and the bar yields before reaching the maximum bond 

strength for the entire length of the specimen. The second 

case concerns the situation in which both the 

length/diameter ratios and the strength are low (respectively 

of about 90 and 1.0 MPa). 

The unloading branch is characterized by a first part 

(SA’) with stiffness equal to the elastic one of the first 

monotonic branch OA, so that KA=KSA’; the SA’ branch is 

then followed by a descending curve until the reloading 

point S’ is achieved.  

From this point, a reloading branch (S’A’’), 

characterized again by the same elastic stiffness of the first 

part, so that KS’A’’=KA’ is defined and followed by the 

reloading curve (Figs. 11(a)-(b)). 

The curvatures of the unloading and reloading curves 

are defined in function of the deterioration parameters of  

 
(a) Real 

 
(b) Normalized 

Fig. 10 Different σ-u plane with to respect to yielding point 
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Menegotto-Pinto law, while the subsequent cycles follow 

the typical trend of kinematic hardening (Fig. 11). The 

regressions on numerical curves allow obtaining the 

following expressions for the unloading and reloading 

curves in the normalized plane (Eq. (44)) 
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Where σ* and u* represent, respectively, the normalized 

stress and slip and a and b are defined according to Eqs. 

(45)-(48) 
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The coordinates of point S can be found by Eqs. (49)-

(50) considering the following expressions where represents 

the level of ductility. 

ys uu    (49) 

 
 

  yyu

yu

ys

s
uu

uu
 






 (50) 

 

 

Fig. 12 Comparison between numerical model and 

analytical proposed model 

 

 

To describe the unloading and reloading curves is 

necessary to define the coordinates of points A’ (uA’ and 

σA’) and of A’’ (uA’’ and σA’’), that can be derived as a 

function of the coordinates of point A, defined in the 

monotonic branch (Eqs. (51) -(52)) 
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Being 

**
' ASA    

(53) 

**
' ASA uu   

(54) 

Eq. (55) shows the trend of the stiffness in the branch 

(SA’)
 
 

**
' ASA KK   (55) 

The value of the exponent n of Eq. (44) is given by the 

followings Eqs. (56)-(57), respectively for Case 1 and 2. 

29.082.1  n  (56) 

09.056.1  n  (57) 

Being µ  the ductility and is expressed by umax/uY.  

Eqs. (56)-(57) expresses the exponent n of the unloading 

and reloading branch only in function of the ductility µ . The 

dependence of the parameter n from different features such 

as yield stress, bond strength, length/diameter ratio, for 

different level of ductility, is, in fact, not relevant.  

It is then clear that the shape of the cycles (depending 

on parameter n) does not change significantly with different 

bar parameters, essentially depending only from the 

ductility. Fig. 12 shows the good agreement between 

numerical and the proposed analytical model. 

 
 
6. Validation of the proposed cyclic model 
 

6.1 Saatcioglu and Ozcebe (1989), Specimen “U4” 
 

To validate the analytical model, the experimental test 

“U4” by Saatcioglu and Ozcebe (1989), was reproduced.  
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(b) Normalized 

Fig. 11 Cardinal cyclic points in different σ-u plane with to 

respect to yielding point 
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(a) Section geometry 

 
(b) Schematization of real model 

Fig. 13 Saatcioglu and Ozcebe (1989) specimen U4 

 

 

The case study consists in a cantilever beam subjected to a 

lateral top displacement with a constant axial load equal to 

600 kN and square section with a typical flexural collapse. 

The yield strength of steel bars was equal to 438 MPa, the 

bond strength was equal to 2.0 MPa and u1 was equal to 0.1 

mm. Figs. 13(a)-(b) show the geometry, details and load 

application to the test specimen. 

The cantilever beam was modelled in OpenSees 

(Mazzoni et al. 2007), using Beam With Hinges element, 

characterized by two plastic hinges of specified length in 

correspondence of the two ends and one elastic central part.  

The stress-slip law must be shifted in a stress-strain law, 

using an opportune hinge length Lp, that - in the present 

case - was formulated according to Paulay and Priestley 

(1992). The total slip was provided by the sum of slip near 

to opening crack: the first slip is related to the portion of 

concrete block in hook region, called LA, representing the 

slip of the bar respect to the concrete block, while the 

second slip is related to the straight bar, called LB, 

representing the slip of the concrete respect to the bar. 

Obviously, the slip related to concrete block in the hook 

region has a lower value than the on provided by the 

straight bar, so that the total σ-u is given by the contribution 

of two laws (Figs. 14(a)-(b)). 

For the modelling of the concrete, the BGL model 

(Braga et al. 2006) was assumed; for reinforcing steel bars 

the analytical model previously elaborated and described 

was adopted. 

The comparison between the experimental and the 

numerical results are presented in Fig. 15. Results of 

numerical analyses confirmed that the hypothesis of perfect 

bond is not sufficient to reproduce the actual response of the 

 
(a) σ-u model 

 
(b) σ-ε relation 

Fig. 14 Relationship referred to two blocks 

 

 
(a) Perfect bond 

 
(b) Bond slip 

Fig. 15 Experimental vs Numerical results 

 

 

structural RC element; the overestimation of the energy 

dissipation is highlighted: perfect bond condition  
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Fig. 16 Displacement history applied at the top of the 

column 

 

 

overestimates of 30% the energy dissipated in the actual 

response, such as the initial stiffness. On the contrary, the 

modelling of bond-slip allows to capture the actual 

response, in terms abovementioned.  

 

6.2 Braga, Gigliotti, Laterza (2002) 
 

The case study consists in a beam-column joint designed 

only for vertical loads and with plain bars. At the top of the 

upper column, a constant axial load of 270 kN was applied 

and the specimen was subject to cyclic load reversal. The 

beam-column joint was modelled in OpenSees (Mazzoni et 

al. 2007) using BeamWithHinges elements. Materials 

presented the following properties: concrete compressive 

strength (fcm) 22.47 MPa, steel yielding strength (fy) 340 

MPa, steel tensile strength (fu) 430 MPa, steel maximum 

deformation 30%. Following the value of concrete strength 

fcm, according to Model Code (CEB-FIP 1993), the value of 

bond strength τd was assumed equal to 0,7 MPa, u1 equal to 

0.1 mm and hook stiffness kh* equal to 670 N/mm
3
. 

The top of the column was subject to a horizontal 

displacement history as presented in Fig. 16. Figs. 17(a)-(d) 

present the general geometry of the interior joint, while 

Figs. 18(a)-(f) and Figs. 19(a)-(b) show the constitutive 

laws used for concrete and bars. More information about the 

tests are provided in Gigliotti et al. (2002). 

The stress-slip law was shifted to a stress-strain law, 

through hinge length Lp equal to H/3 (where H is the high of 

section), according to the experimental test results. The 

stress- pseudo strain laws are also shown in Fig. 18, while, 

as an example, in Fig. 19(b) are presented the differences 

between the same laws in case of bond slip hypothesis and 

perfect bond, for column‟s bars.  

The results of numerical analyses in terms of horizontal 

column force vs. top displacement (Figs. 20(a)-(b)) 

confirmed that the perfect bond hypothesis is not sufficient 

to describe the real behaviour of the beam-to-column joint. 

In particular, perfect bond gives an initial stiffness that is 

twice the real stiffness and overestimates it in the last cycles 

until four times. The perfect bond overestimates, 

furthermore, the dissipated energy for each cycle, while 

bond slip hypothesis gives a reasonable indication 

according with the experimental results. 
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Fig. 17 Interior beam column joint 
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(a) Column monotonic (b) Column cyclic 

  
(c) Beam d 12 monotonic (d) Beam d 12 cyclic 

  
(e) Beam d 18 monotonic (f) Beam d 18 cyclic 

Fig. 18 Modified monotonic and cyclic steel law for different bars 

  
(a) σ-ε concrete (b) σ-ε bars (Bond Slip vs Perfect Bond) 

Fig. 19 Materials constitutive laws 
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7. Conclusions 
 

A new simplified exponential cyclic formulation is 

proposed to describe modified the constitutive stress-strain 

law of steel reinforcing bars, directly including relative slip 

between bars and surrounding concrete. The proposed 

model aims to complete and deepen the original Braga et al. 

(2012) model, being able to overcome its inconsistencies 

regarding the cubic deduced slip, including hardening but 

simplifying the analytical formulation provided by Braga et 

al. (2015) and, mostly, to provide an analytical description 

of cyclic behaviour through the description of unloading 

and reloading branches. The cyclic proposed formulation, 

for its simplicity, can be used for the nonlinear analysis of 

RC structures, especially when plain bars are used: in this 

case the issue of relative slip between bars and concrete is, 

in fact, very important, while neglecting it often leads to 

wrong prediction of the structural response. 

Validations of the proposed model with experimental 

results have been executed, highlighting the adequacy of the 

model to estimate the actual structural response, in 

particular compared to the perfect bond hypothesis. 
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AT 

 

 

Notations 
 

Symbol Description 

db longitudinal bar diameter 

Ab cross section of the bar 

L bar embedment length 

L0 anchorage length 

R hook radius 

Es elastic steel modulus 

Eh secant steel modulus of the hardening branch 

s abscissa along the hooked end 

x abscissa along the straight bar 

σ stress along the embedded bar 

τd bond strength 

uL slip at the free end of embedded bar 

u0 slip at the embedded end 

u1  

x1 d 

εy steel yield strain 

εp steel strain at the end of plateau; 
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ε
*
 pseudo-strain along the embedded bar 

Agt steel deformation at the maximum stress 

Ly length of embedded bar yielded 

kh* normalized stiffness of the linear spring (hook) 
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