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1. Introduction 
 

Functionally graded materials (FGMs) are a class of 

composites that have continuous spatially variation of 

material properties from one surface to another through 

non-uniform distribution of the reinforcement phase, and 

thus eliminating the interlaminar stress concentration found 

in laminated composites that causes many problems like 

delamination, initiation and propagation of cracks because 

of large plastic deformation at the interfaces and so on. 

Typically, FGMs are made of a mixture of ceramics and a 

combination of different metals (Ait Amar Meziane et al. 

2014, Ahouel et al. 2016, Barati and Shahverdi 2016). The 

concept of this material was first introduced in 1984 by a 

group of material scientists in Japan, as ultrahigh 

temperature resistant material for aircraft, space vehicles 

and other engineering applications (Bessaim et al. 2013, 

Besseghier et al. 2017, Bouafia et al. 2017). 

So the main question is an accurate description of 

material properties in the depth direction, to perform a 

satisfactory analysis of the mechanical behavior of FGM 

beams. Many studies on FGM structures have been studied  
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in the literature (Bouderba et al. 2013, Fekrar et al. 2014, 

Bousahla et al. 2014, Hebali et al. 2014, Hamidi et al. 2015, 

Meradjah et al. 2015, Mahi et al. 2015, Larbi Chaht et al. 

2015, Bounouara et al. 2016, Hebali et al. 2016, Chikh et 

al. 2016, Laoufi et al. 2016, El-Haina et al. 2017, Khetir et 

al. 2017, Fahsi et al. 2017, Menasria et al. 2017, Meksi et 

al. 2017). Bresse (1859), Rayleigh (1880), and Timoshenko 

(1921) were the pioneer investigators to include refined 

effects such as the rotatory inertia and shear deformation in 

the beam theory. The wave propagation analysis in beams 

made of FGM is discussed by Chakraborty and 

Gopalakrishnan (2003), by employing the spectral finite 

element method. Using the Euler–Bernoulli beam theory, 

Sankar (2001) presented an elasticity solution for bending 

of functionally graded beams by assuming that the Young’s 

modulus of the beam varies exponentially through the 

thickness. Poisson’s ratio was considered to be constant, 

while Young’s modulus was supposed to change as an 

exponential function. By employing the Airy stress 

function, Zhong and Yu (2007) developed an analytical 

solution for cantilever beams subjected to various types of 

mechanical loadings. Kadoli et al. (2008) investigated the 

bending response of FG beams by utilizing higher order 

shear deformation and numerical method. Ould Larbi et al. 

(2013) presented an efficient shear deformation beam 

theory based on neutral surface position for bending and 

free vibration of FG beams. In the same way, Bourada et al. 

(2015) used the concept of the neutral surface position to 
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develop a simple and refined trigonometric higher-order 

beam theory for bending and vibration behavior of FG 

beams. Yaghoobi and Torabi (2013a) investigated the post-

buckling and nonlinear vibration of imperfect FG beams. 

Yaghoobi and Torabi (2013b) examined analytically the 

large amplitude vibration and post-buckling of FG beams 

resting on non-linear elastic foundations. Yaghoobi et al. 

(2014) studied also the post-buckling and nonlinear free 

vibration response of FG beams resting on nonlinear elastic 

foundation under thermo-mechanical loading using the 

variational iteration method (VIM). A simple refined nth-

order shear deformation theory is presented by Yaghoobi 

and Fereidoon (2014) to discuss the mechanical and thermal 

buckling behaviors of FG plates supported by elastic 

foundation. Chakraverty and Pradhan (2014) studied the 

free vibration of exponential functionally graded 

rectangular plates in thermal environment with general 

boundary conditions. Belabed et al. (2014) proposed an 

efficient and simple higher order shear and normal 

deformation theory for FG plates. Attia et al. (2015) studied 

the free vibration behavior of FG plates with temperature-

dependent properties using various four variable refined 

plate theories. Belkorissat et al. (2015) investigated the 

vibration properties of FG nano-plate using a new nonlocal 

refined four variable model. Ait Atmane et al. (2015) 

studied a computational shear displacement model for 

vibrational analysis of functionally graded beams with 

porosities. Beldjelili et al. (2016) analyzed the hygro-

thermo-mechanical bending response of S-FGM plates 

resting on variable elastic foundations using a four-variable 

trigonometric plate theory. Bellifa et al. (2016) presented 

static bending and dynamic analysis of FG plates using a 

simple shear deformation theory and the concept the neutral 

surface position. Bouderba et al. (2016) studied the thermal 

stability of FG sandwich plates using a simple shear 

deformation theory. Houari et al. (2016) presented a new 

simple three-unknown sinusoidal shear deformation theory 

for FG plates. Barka et al. (2016) analyzed the thermal post-

buckling behavior of imperfect temperature-dependent 

sandwich FGM plates resting on Pasternak elastic 

foundation. Bousahla et al. (2016) investigated the thermal 

stability of plates with functionally graded coefficient of 

thermal expansion. Ait Atmane et al (2016) studied the 

effect of thickness stretching and porosity on mechanical 

response of a functionally graded beams resting on elastic 

foundations. Benbakhti et al. (2016) presented a new five 

unknown quasi-3D type HSDT for thermomechanical 

bending analysis of FGM sandwich plates. Draiche et al. 

(2016) used a refined theory with stretching effect for the 

flexure analysis of laminated composite plates. Bennoun et 

al. (2016) studied the vibration response of FG sandwich 

plates using a novel five variable refined plate theory. 

Benchohra et al. (2017) developed a new quasi-3D 

sinusoidal shear deformation theory for FG plates. Chikh et 

al. (2017) investigated the thermal buckling of cross-ply 

laminated plates using a simplified HSDT. Bellifa et al. 

(2017) proposed a nonlocal zeroth-order shear deformation 

theory for nonlinear postbuckling of nanobeams. Klouche et 

al. (2017) presented an original single variable shear 

deformation theory for buckling analysis of thick isotropic 

plates. Benahmed et al. (2017) developed a novel quasi-3D 

hyperbolic shear deformation theory for FG thick 

rectangular plates on elastic foundation. 

The wave propagation studies are also important to 

understand the dynamic characteristics of FGM structure at 

higher frequencies due to their various real world 

applications. Structural health monitoring or detection of 

damage is one such important application. As wave 

propagation deals with higher frequencies, diagnostic waves 

can be employed to predict the presence of even minute 

defects, which occur at initiation of damage and propagate 

them till the failure of the FGM structure. In many aircraft 

structures, the undesired vibration and noise transmit from 

the source to the other parts in form of wave propagation 

and this requires control or reduction, which is again an 

important application of wave propagation studies.  

The study of the wave propagation in the FG structures 

has received also much attention from various researchers. 

Chen et al. (2007) studied the dispersion behavior of waves 

in functionally graded plates with material properties 

varying along the thickness direction. Han and Liu (2002) 

investigated SH waves in FG plates, where the material 

property variation was assumed to be a piecewise quadratic 

function in the thickness direction. Han et al. (2001) 

proposed an analytical-numerical method for analyzing the 

wave characteristics in FG cylinders. Han et al. (2002) also 

proposed a numerical method to study the transient wave in 

FG plates excited by impact loads. Sun and Luo (2011a) 

also studied the wave propagation and dynamic response of 

rectangular functionally graded material plates with 

completed clamped supports under impulsive load. 

Considering the thermal effects and temperature-dependent 

material properties, Sun and Luo (2011b) investigated the 

wave propagation of an infinite functionally graded plate 

using the higher-order shear deformation plate theory.  

However, in FGM fabrication, micro voids or porosities 

can occur within the materials during the process of 

sintering. This is due to the great difference in the 

temperatures of solidification of the various material 

constituents (Zhu et al. 2001). Wattanasakulpong et al. 

(2012) also gave the discussion on porosities happening in 

side FGM samples fabricated by a multi-step sequential 

infiltration technique. Therefore, it is important to take in to 

account the porosity effect when designing FGM structures 

subjected to dynamic loadings. Recently, Wattanasakulpong 

and Ungbhakorn (2014) studied linear and nonlinear 

vibration problems of elastically end restrained FG beams 

having porosities. Ait Yahia et al. (2015) studied wave 

propagation in order to compare different shear theories and 

porosities solution in FG plates. Boukhari et al. (2016) 

introduced An efficient shear deformation theory for wave 

propagation of functionally graded material plates. 

Considering FG structural members, it is evident from 

the above discussed literature that there is a lack of studies 

on wave propagation in FG beam having porosities. Thus, 

the objective of this work is to investigate the influence of 

many parameters on the wave propagation of a FG beam 

having porosities. The displacement fields of the proposed 

theories are chosen based on a cubic variation in the in-

plane displacements through the thickness. The proposed  
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Fig. 1 Coordinates and geometry of functionally 

graded beam 

 

 

shear deformation theory is efficient method because it 

permits us to show the effect of both bending and shear 

components and this is carried out by dividing the 

transverse displacement into the bending and shear parts. 

The governing equations of the wave propagation in the FG 

beam are derived by using the Hamilton’s principle. The 

analytic dispersion relations of the FG beam are obtained by 

solving an eigenvalue problem. The dispersion and phase 

velocity curves of the wave propagation in FG beam having 

porosities are plotted. The influences of the volume fraction 

index, the depth of beam and porosity volume fraction on 

the dispersion and phase velocity of the wave propagation 

in the FG beam are clearly discussed. 

 

 

2. Functionally graded plates with porosities 
 

In this part, a FG beam fabricated from a mixture of 

metal and a ceramic, is considered (Fig. 1). The material 

characteristics of the FG beam are considered to change 

continuously within the thickness of the beam. In this work, 

an imperfect beam is supposed to contain porosities 

spreading across the depth due to defect during fabrication. 

The porosity volume fraction, α (α<<1) is assumed to vary 

evenly among the metal and ceramic. The modified rule of 

mixture proposed by Wattanasakulpong and Ungbhakorn 

(2014) is employed as 
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With Vm+Vc=1, and the power law of volume fraction of 

the ceramic is expressed by 
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All properties of the imperfect FGM can be obtained as 
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It is noted that the positive real number N(0N) is the 

gradient index, and z is the distance from the mid-plane of 

the FG beam. When N is set to zero, the FG beam becomes 

fully ceramic. However, when this index takes higher 

values, the beam becomes fully metal. 

Thus, the Young’s modulus (E) and material density (ρ) 

can be obtained from Eq. (3) as 
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In this study, Poisson’s ratio (ν) is considered to be 

constant (Tounsi et al. 2013, Zidi et al. 2014, Taibi et al. 

2015, Zemri et al. 2015, Mouffoki et al. 2017, Zidi et al. 

2017). The material properties of a perfect FG beam can be 

evaluated by setting α zero. 

Another scenario of porosity variation can be obtained 

for imperfect FGM samples which contain almost porosities 

spreading around the middle zone of the cross-section and 

the amount of porosity seems to be on the reduction to zero 

at the upper and lower faces of the cross-section. Based on 

the principle of the multi-step sequential infiltration method 

that can be utilized to fabricate FGM samples 

(Wattanasakulpong et al. 2012), the porosities mostly occur 

at the middle zone. At this zone, it is difficult to infiltrate 

the materials completely, while at the upper and lower 

zones, the process of material infiltration can be established 

easier and leaves less porosity. By considering this scenario, 

Eqs. (4)-(5) are replaced by the following forms 
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3. Fundamental equations 
 

3.1 Basic assumptions and constitutive equations 
    

The displacement fields of various shear deformation 

beam theories are chosen based on following assumptions: 

(1) the axial and transverse displacements are partitioned 

into bending and shear components; (2) the bending 

component of axial displacement is similar to that given by 

the classical beam theory (CBT); and (3) the shear 

component of axial displacement gives rise to the higher-

order variation of shear strain and hence to shear stress 

through the depth of the beam in such a way that shear 

stress vanishes on the top and bottom surfaces. Based on 

these assumptions, the displacement fields of various 

higher-order shear deformation beam theories are given in a 

general form as 

x

w
zf

x

w
ztxutzxu sb


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
 )(),(),,( 0

 (8a) 

),(),(),,( txwtxwtzxw sb   (8b) 

where u0 is the mid-plane displacement of the beam in the x 

direction, wb and ws are the bending and shear components 

of transverse displacement, respectively; and f(z) is a shape 

function determining the distribution of the transverse shear 
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strain and shear stress through the depth of the beam. The 

shape functions f(z) are chosen to satisfy the stress-free 

boundary conditions on the top and bottom surfaces of the 

beam, thus a shear correction factor is not required. In this 

study, these shape functions are chosen based on the third-

order shear deformation theory (TSDT) of Reddy (2000). 

This equation is expressed as 

2
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4
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The nonzero linear strains associated with the 

displacement field in Eq. (8) are 
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By assuming that the material of FG beam obeys 

Hooke’s law, the stresses in the beam become 
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(13) 

where (σx, τxz) and (εx, γxz) are the stress and strain 

components, respectively. Using the material properties 

defined in Eq. (4), stiffness coefficients, Cij, can be 

expressed as 
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3.2 Governing equations 
 
Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as 
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where δU is the variation of strain energy; and δK is the 

variation of kinetic energy. 

The variation of strain energy of the beam is stated as 
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where the stress resultants N, M, and S are defined by 
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The variation of kinetic energy is expressed as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t; and (I0, I1, 

J1, I2, J2, K2) are mass inertias defined as  
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Substituting the expressions for δU and δK from Eqs. 

(16) and (18) into Eq. (15) and integrating by parts, and 

collecting the coefficients of δu0, δwb and δws, the following 

equations of motion of the beam are obtained 
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By substituting Eq. (10) into Eq. (13) and the 

subsequent results into Eq. (17), the stress resultants are 

obtained as 
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and 
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where A11, B11, D11, B
s
11, D

s
11, H

s
11 are the plate stiffness, 

defined by 
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By substituting Eq. (21) into Eq. (20), the governing 

equations can be expressed in terms of displacements (u0, 

wb and ws) as 
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4. Dispersion relations  
  

We assume solutions for u0, wb and ws representing 

propagating waves in the x direction with the form 
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where U; Wb and Ws are the coefficients of the wave 

amplitude, k is the wave number of wave propagation along 

x-axis direction , ω is the frequency. 

Substituting Eq. (25) into Eq. (24), we obtain 

       02  MK   (26) 

Where  

    ,,,
T

sb WWU  (27a) 

 


















332313

232212

131211

aaa

aaa

aaa

K

,  

 


















332313

232212

131211

mmm

mmm

mmm

M  (27b) 

in which 

2

1111 kAa 
 

11

3

12 Bkia 
 

11

3

21 Bkia 
 

3

1113 kBia s
 
3

1131 kBia s
 

4

1122 kDa 
 

4

1123 kDa s
 

 2

155

4

11133 kAkHa ss 
 

011 Im 
 

kIim 112   , kIim 121   
kJim 113  , 

kJim 131 
 

32

2

2023 mkJIm 
 

2

2033 kKIm  , 
2

2022 kIIm 
 

(27c) 

The dispersion relations of wave propagation in the 

functionally graded beam are given by 

    0  2  MK   (28) 

The roots of Eq. (26) can be expressed as 

)(11 kW ,

 

)(22 kW  and

 

)(33 kW  (29) 

They correspond to the wave modes M0, M1 and M2  

 
(a) M0 Mode 

 
(b) M1 Mode 

 
(c) M2 Mode 

Fig. 2 The dispersion curves of the different perfect 

functionally graded beams 

 

 

respectively. The wave modes M0 and M2 correspond to the 

flexural wave, the wave mode M1 corresponds to the 

extensional wave.  

The phase velocity of wave propagation in the 

functionally graded plate can be expressed as 
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 (30) 

The group velocity of wave propagation in the 

functionally graded beam can be expressed as 
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5. Numerical results and discussion 
 

In this section, a FG beam made from Si3N4/SUS304, 

whose material properties are: E=348.43 GPa, ρ=2370  
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(a) M0 Mode 

 
(b) M1 Mode 

 
(c) M2 Mode 

Fig. 3 The phase velocity curves of the different perfect 

functionally graded beams 

 

 

kg/m
3
, ν=0.3 for Si3N4 and E= 201.04 GPa, ρ= 8166 kg/m

3
, 

ν=0.3 for SUS304, are chosen. The depth of the FG beam is 

0.02 m. The analysis based on the present TSDT is carried 

out using MAPLE.  

 

5.1 Flawless FG beam 
 

Type A: Perfect beam 
First, FG beams without porosity are considered. Figs. 2 

and 3 present respectively the dispersion curves and the 

phase velocity curves of the different perfect functionally 

graded beams. These curves have been obtained using the 

3
rd

 order shear deformation theory. From the dispersion 

curves for all the wave modes (M0, M1 ,and M2), presented 

in Fig. 2, the higher the dispersion parameter is, the higher 

the frequency of the waves propagation in the perfect 

functionally graded beams is, whatever is the power law 

index. However, the increase of the power law index leads 

 
(a) M0 Mode 

 
(b) M1 Mode 

 
(c) M2 Mode 

Fig. 4 Influence of the depth of the perfect beam on the 

frequency 

 

 

to a decrease of the frequency. As
 
a

 
consequence,

 
the 

maximal
 
frequency

 
is

 
obtained

 
for

 
a

 
full

 
ceramic

 
beam (N=0). 

Fig. 3 presents the phase velocity curves of the different 

perfect functionally graded beams obtained using a 3
rd

 order 

shear deformation beam theory for different values of the 

power-law index n. It can be concluded from this curve, that 

the phase velocity decreases when the power law index 

increases for the same wave number k. The phase velocity 

for the extensional mode M1 of the isotropic beam (N=0) is 

constant contrary to the one of the non homogenous beam 

(N≠0). It can also be concluded that the phase velocity is 

maximal for the full ceramic beam (N=0). 

Figs. 4-5 present respectively the influence of the 

dispersion and the phase velocity in the perfect FG beam in 

function of the depth, using a third order shear deformation 

theory. The wave number is here taken equal to k=10. From 

these figures, the similarities in the dispersion and phase 

velocity evolutions can be put into evidence. 
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(a) M0 Mode 

 
(b) M1 Mode 

 
(c) M2 Mode 

Fig. 5 Influence of the depth of the perfect beam on the 

phase velocity 

 

 

For the M0 mode, the increase in the beam depth leads to 

an increase of the frequency as well as the phase velocity. 

For the M1 mode, the increase in the beam depth has no 

influence on the frequency and the phase velocity. 

On the contrary, for the M2 mode, the increase in the 

beam depth leads to a decrease of both the frequency and 

the phase velocity. 

 

Type B: Imperfect beam 
This part s devoted to the investigation of wave 

propagation in porous FG beam functionally using TSDT 

theory. 

Two types of porosity distributions (even and uneven) 

across the beam thickness are considered here according to 

Eqs. (4) and (5)or Eqs. (6) and (7).  

In Figs. 6 and 7, we present a comparison between two 

solutions of porosity by plotting the variation of frequency  

 

Fig. 6 Influence of low parameter material of the imperfect 

beam on the frequency 

 

 

Fig. 7 Influence of low parameter material of the imperfect 

beam on the phase velocity 

 

 

and phase velocities, versus material parameter n. The 

porosity coefficient is taken α=0.1, whereas the wave 

coefficient is k=10 rad/m and the thickness of the beam is 

h=0.01 m. It can be seen that the vibration characteristics 

(frequency or phase velocity) decrease with the increase of 

the power law index. The two solutions of porosity provide 

almost the same results with a slight difference in favor of 

the first solution described by Eqs. (4) and (5). It can be 

noticed from Figs. 6 and 7 that the difference between 

solution I and solution II is very small. This is due to 

distributions of porosity across thickness. Indeed the linear 

distribution of porosity (solution II) and constant 

distribution (solution I) of porosity are not considerably 

different to induce a high different in results. 

Figs. 8 and 9 show the dispersion curves of the 

frequency and the phase velocity, respectively, as function 

of the wave number. Three values of porosity parameter are 

considered. The value of the power law index is taken N=2 

and the deep of the beam is 0,002 m. Since the shapes of the 

two solutions of porosity are identical we consider only the 

first solution. 

It can be seen that the porosity has a considerable effect 

on the frequency of the wave propagation in the FG beam 

for large wave numbers (k), especially for the extensional 

wave mode M1. Indeed, the frequency and phase velocities 

are reduced when the porosity increases. It can be noticed 

also from Fig. 8 that at low wave numbers, the frequencies 

do not differ much in the case of modes M0 and M1. This is 

due to the fact that these two modes are related to the 

flexural and extensional wave. However, for mode M2 at 

intermediate wave numbers the frequencies seem less  
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(a) M0 Mode 

 
(b) M1 Mode 

 
(c) M2 Mode 

Fig. 8 Influence of porosity parameter on the frequency of 

imperfect FG beams for various wave numbers 

 

 

influenced by porosity, because this mode is related to 

flexural wave and it contributed also to the shear mode 

(Ws). With the exception of the flexural wave mode M2, the 

phase velocities are proportional to the porosity. 

It can be concluded also that the influence of the 

porosity on the phase velocity is not considerable for the 

smaller wave number k, but this influence becomes 

significant with increasing the wave number. 

 

 
6. Conclusions 
 

In this research, the wave propagation of the FG porous 

beams with two porosity distributions is investigated using 

an efficient shear deformation theory. Material’s properties 

are considered to be varied in the thickness direction based 

on modified rule of mixture. The governing equations of the 

wave propagation in the porous FG beam are derived within 

 
(a) M0 Mode 

 
(b) M1 Mode 

 
(c) M2 Mode 

Fig. 9 Influence of porosity parameter on the phase velocity 

of imperfect FG beams for various wave numbers 

 

 

the framework of third-order shear deformation beam 

theory and by employing Hamilton’s principle. The analytic 

dispersion relation of the porous FG beam is obtained by 

solving an eigenvalue problem. From the current work, it 

can be stated that the effect of the volume fraction 

distributions and porosity volume index on wave 

propagation in the FG beam is significant. 
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