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1. Introduction 
 

Seismic analysis is a subset of structural analysis in 

which dynamic response of a building structure (or non-

building structures such as bridges, etc.) against the 

earthquake is examined.  This analysis is a part of the 

structural engineering, the earthquake engineering and 

seismic retrofitting of the structures which should be 

constructed in earthquake prone zones. 

Liang and Parra-Montesinos (2004) studied seismic 

behavior of four reinforced concrete column-steel beam 

under various ground motions using experimental tests. 

Cheng and Chen (2004) and Changwang et al. (2010) 

studied seismic behavior of steel reinforced concrete 

column-steel truss beam. They developed a design formula 

for shear strength of the structure subjected to seismic 

activities using experimental tests. The effect of cumulative 

damage on the seismic behavior of steel tube-reinforced 

concrete (ST-RC) columns through experimental testing 

was investigated by Ji et al. (2014). Six large-scale ST-RC 

column specimens were subjected to high axial forces and 

cyclic lateral loading. The effect of plastic hinge relocation 

on the potential damage of a reinforced concrete frame 

subjected to different seismic levels was studied by Cao and 

Ronagh (2014) based on current seismic designs. The 

optimal seismic retrofit method that uses FRP jackets for 

shear-critical RC frames was presented by Choi et al. 

(2014). This optimal method uses non-dominated sorting  
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genetic algorithm-II (NSGA-II) to optimize the two 

conflicting objective functions of the retrofit cost as well as 

the seismic performance, simultaneously. They examined 

various parameters like, failure mode, hysteresis curves, 

ductility and reduction of stiffness. Liu et al. (2016) focused 

on the study of seismic behavior of steel reinforced concrete 

special-shaped column-beam joints. Six specimens, which 

are designed according to the principle of strong-member 

and weak-joint core, are tested under low cyclic reversed 

load. 

In none of the above articles, the nanocomposite 

structure is considered. Wuite and Adali (2005) performed 

stress analysis of carbon nanotubes (CNTs) reinforced 

beams. They concluded that using CNTs as reinforcing 

phase can increase the stiffness and the stability of the 

system. Also, Matsunaga (2007) examined stability of the 

composite cylindrical shell using third-order shear 

deformation theory (TSDT). Formica et al. (2010) analyzed 

vibration behavior of CNTs reinforced composites. They 

employed an equivalent continuum model based on 

Eshelby-Mori-Tanaka model to obtain the material 

properties of the composite. Liew et al. (2014) studied 

postbuckling of nanocomposite cylindrical panels. They 

used the extended rule of mixture to estimate the effective 

material properties of the nanocomposite structure. They 

also applied a meshless approach to examine the 

postbuckling response of the nanocomposite cylindrical 

panel. In another similar work, Lei et al. (2014) studied 

dynamic stability of a CNTs reinforced functionally graded 

(FG) cylindrical panel. They used Eshelby-Mori-Tanaka 

model to estimate effective material properties of the 

resulting nanocomposite structure and also employed Ritz 

method to distinguish the instability regions of the structure. 

Static Buckling analysis of CNTs reinforced micro plates is 
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carried out by Kolahchi et al. (2013). They derived the 

governing equations of the structure based on Mindlin plate 

theory and using Hamilton’s principle. They obtained 

buckling load of the structure by applying differential 

quadrature method (DQM). Dynamic response of FG 

circular cylindrical shells is examined by Davar et al. 

(2013). They developed the mathematical formulation of 

the structure according to first order shear deformation 

theory (FSDT) and Love’s first approximation theory. 

Nonlinear vibration of laminated cylindrical shells is 

analyzed by Shen and Yang (2014). They examined the 

influences of temperature variation, shell geometric 

parameter and applied voltage on the linear and nonlinear 

vibration of the structure. Kolahchi et al. (2016) 

investigated dynamic stability of FG-CNTs reinforced 

plates. The material properties of the plate are assumed to 

be a function of temperature and the structure is considered 

resting on orthotropic elastomeric medium. Jafarian Arani 

and Kolahchi (2016) presented a mathematical model for 

buckling analysis of a CNTs reinforced concrete column. 

They simulated the problem based on Euler Bernoulli and 

Timoshenko beam theories. Alibeigloo (2016) employed 

theory of piezo-elasticity to study bending behavior of FG-

CNTs reinforced composite cylindrical panels. They used 

an analytical method to study the effect of CNT volume 

fraction, temperature variation and applied voltage on the 

bending behavior of the system. Feng et al. (2017a) studied 

the nonlinear bending behavior of a novel class of multi-

layer polymer nanocomposite beams reinforced with 

graphene platelets (GPLs) that are non-uniformly 

distributed along the thickness direction. Feng et al. (2017b) 

studied the nonlinear free vibration of a multi-layer polymer 

nanocomposite beam reinforced by graphene platelets 

(GPLs) non-uniformly distributed along the thickness 

direction. 

For the first time, dynamic response of NFRP 

strengthened concrete beams subjected to seismic excitation 

is studied in the present research. So, the results of this 

research are of great importance in Civil Engineering. The 

concrete beam is modeled by applying HSDBT and the 

effective material properties of the NFRP layer are obtained 

based on Mori-Tanaka model. The dynamic displacement of 

structure is calculated by HDQM in conjunction with 

Newmark method. The effect of nanotechnology on the 

dynamic response of the structure can be examined by 

changing the volume fraction of nanofibers in the resulting 

composite. 

 

 
2. Mathematical model 
 

In this section, the governing equations of the NFRP 

strengthened concrete beams are derived by applying 

HSDBT to analyze the dynamic behavior of the structure.  

Fig. 1 illustrates a hollow circular concrete beam 

subjected to the earthquake loads with outer radius of R0, 

inner radius of Ri and thickness of hc which strengthened by 

a NFRP layer with thickness of hf. 

By applying HSDBT, the displacements fields are 

defined as below [21] 

 

Fig. 1 A schematic figure for concrete columns with NFRP layer 

under seismic load 
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where U, V and W are the respective translation 

displacements of a point at the mid-plane of the beam in the 

longitudinal x, transverse y and thickness z directions. Also, 

ϕ denotes the rotation of the cross section area and (z) is 

the shape function of the beam which is considered as 

follows 
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in which h = hf + hc. However, the strain-displacement 

relations of the structure are given as below 
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The constitutive equations of the orthotropic beam are 

considered as below 

,11 xx

c

xx C    (5) 

,44 xz

c

xz C    (6) 

Where C11 and C44 are the elastic constants of the 

concrete beam. Also, the constitutive equations of the NFRP 

layer are defined as follows 

,11 xx

f

xx Q    (7) 

,44 xz

f

xz Q    (8) 

in which Q11 and Q44 are the elastic constants of the NFRP 

layer. To obtain the effective material properties of the 

NFRP layer and to consider the agglomeration effect, Mori-
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Tanaka model is employed which is introduced in the next 

section. 

 

 

3. Mori-Tanaka model 
 

In this section, material properties of resin epoxy 

polymer reinforced by carbon nanofibers are obtained based 

on micro-mechanical approach. Em and vm are considered as 

Young’s modulus and Poisson’s ratio of the polymer, 

respectively. The stress-strain relations of the equivalent 

composite material are given as below [22] 
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where k, l, m, n and p are known as Hill’s elastic moduli so 

that, k is plane-strain bulk modulus normal to the fiber 

direction, n is the uniaxial tension modulus in the 

longitudinal direction of the fiber, l is the associated cross 

modulus, m and p are the shear moduli in planes normal and 

parallel to the fiber direction, respectively. It should be 

noted that the mentioned constants depends on the elastic 

constants of the material. For example, Q11=k+m. By 

applying Mori-Tanaka model, Hill’s elastic moduli can be 

obtained as follows [22] 
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in which kr, lr, nr, pr and mr are Hill’s elastic moduli of the 

reinforcing phase of the composite material. Finally by 

substituting Eq. (10) into Eq. (9), the stiffness matrix can be 

obtained. The experimental results show that the uniform 

distribution of the nanofibers is rarely achievable [23]. It is 

observed that the most of the nanofibers centralized in the 

regions throughout the matrix. These regions are assumed 

to be in spherical shapes which known as “inclusions” with 

different material properties from the surrounding regions. 

Vr is the total volume of nanofibers and is defined as 

,inclusion m

r r rV V V   (11) 

in which inclusion

rV  and m

rV  represent the volume of the 

CNTs inside the inclusion and polymer matrix, respectively. 

The agglomeration effect can be considered based on the 

micro-mechanical model by introducing the two following 

parameters 
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The average volume fraction Cr of nanofibers in the 

composite material is given as follows 

.r
r

V
C

V
  (14) 

The volume fraction of nanofibers inside the inclusion 
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We assume that nanofibers are transversely isotropic and 

the orientation of them is randomly. Hence, the inclusion is 

considered to be isotropic and the effective bulk modulus K 

and shear modulus G may be written as below 
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in which Kin and Kout are the effective bulk modulus of the 

inclusion and the matrix outside the inclusion, respectively. 

Also, Gin and Gout are the effective shear modulus of the 

inclusion and the matrix outside the inclusion, respectively 

and are given as follows 
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where , ,r r r    and r  can be obtained as 
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Km and Gm are the bulk and shear moduli of the matrix 

phase which are defined as below 
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Moreover, α and β in Eqs. (17) and (18) are given as 

follows 
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Therefore, the effective Young’s modulus E and 

Poisson’s ratio v of the composite material are given by 
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4. Energy method 
 

To derive the governing equations of the structure by 

employing energy method and using Hamilton’s principle, 

the work done by external forces is equated to the strain 

energy and kinetic energy stored in the structure. The 

potential strain energy stored in the structure is given as 

follows 
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where  Ac and Af are the cross section area of the concrete 

beam and NFRP layer, respectively. By substituting Eqs. (3) 

and (4) into Eq. (34) we have 
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By defining the in-plane stress resultants as follows 
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Eq. (35) can be rewritten as below 

,

2

1

2

1

2

2

2

2

0

2

dx
x

W
Q

xx

W
F

x

W
M

x

W

x

U
NU

xx

x

L

x






























































































































  




 
(40) 

244



 

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory 

By substituting Eqs. (5)-(8) into Eqs. (36)-(39), the 

stress resultants of the beam take the following form 
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The kinetic energy of the structure are defined as below 
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By substituting Eq. (1) into Eq. (52) we have 
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By defining the inertia moment terms as 
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Eq. (53) can be rewritten as below 
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The external work due the earthquake can be calculated 

as follows 
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(56) 

where m and a(t) are the mass and acceleration of the earth, 

respectively. To extract the governing equations of motion, 

Hamilton’s principle is expressed as follows [24, 25] 
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Where δ denotes the variational operator. By 

considering Eqs. (40), (55) and (56), the first variations of 

the potential strain energy, the kinetic energy and the 

external work are presented as below 

,
2

2

2

2

0

dx
x

W
Q

xx

W
F

x

W
M

x

W

x

W

x

U
NU

xx

x

L

x
























































































  







 (58) 

00

2 2 2 2

1 2

2 2

3

2 2 2

4

L U U W W
K I

t t t t

U W U W W W
I I

t x t t x t x t x t

U W U W
I

t x t t t x t t

W W W
I

x t x t t x

 


  

   

 

  
  
  

   
      
   

    
        

    

 
  
 

   
 

   

     
  

         

     
   

       

   
  

      



2

2 2

5 ,

W

t x t t

W W
I dx

x t t x t t

 

  

  
    

  

  
      

 


  

   
  

     

 

(59) 

245



 

Sajad Shariati Rad and Mahmood Rabani Bidgoli 
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Now, by substituting Eqs. (58)-(60) into Eq. (57), the 

motion equations of the structure are obtained as follows 
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By substituting Eqs. (41)-(44) into Eqs. (61)-(63), the 

governing equations of the system are expressed as follows 
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Also, the boundary conditions of the structure are 

considered as below 
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5. Solution procedure 
 

In this study, HDQM is applied to examine the dynamic 

behavior of the structure. In this numerical method, the 

governing differential equations of the structure turn into a 

set of first order algebraic equations by applying the 

weighting coefficients. According to HDQ method, a 

derivative of a function at a given discrete point will be 

approximated as a weighted linear sum of the function 

values at all discrete points chosen in the solution domain. 

The one-dimensional derivative of the function can be 

expressed as follows [26] 
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 (71) 

Where f(x) is the mentioned function, N denotes number 

of grid points, xi is a sample point of the function domain, fi 

is the value of the function at ith sample point and Cij 

indicates the weighting coefficients. So, choosing the grid 

points and weighting coefficients is an important factor in 

the accuracy of the results. The grid points are considered 

by Chebyshev polynomials as follows 

1
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 (72) 

Based on Chebyshev polynomials, the grid points are 

closer together near the borders and in distant parts of the 

borders they away from each other. The weighting 

coefficients may be calculated by the following simple 

algebraic relations 
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Fig. 2 Acceleration history of Kobe earthquake 
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Also, the higher-order derivatives are considered as 
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By distributing the grid points in the domain based on 

Eq. (72) and by substituting Eq. (71) into the governing 

equations, we have  
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in which [KL], [KNL] and [M] indicate linear part of the 

stiffness matrix, nonlinear part of the stiffness matrix and 

the mass matrix, respectively. Also, {db} and {dd} denote 

boundary and domain points, respectively. To obtain the 

time response of the structure subjected to the earthquake 

loads Newmark method [27] is applied in the time domain. 

Based on this method, Eq. (76) is considered in the general 

form as below 
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where subscript i+1denotes the time t=ti+1, K
*
(di+1) and Qi+1  

are the effective stiffness matrix and the effective load 

vector which are given as  

,)()( 1011

* CMdKKdK iNLLi   
 (78) 
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where [27] 
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 (80) 

where =0.5 and =0.25. By applying the iteration method, 

Eq. (77) is solved at any time step and modified velocity 

and acceleration vectors are computed as follows 

,)( 32101 iiiii ddddd      (81) 

,1761   iiii dddd    (82) 

 Then for the next time step, the modified velocity and 

acceleration vectors in Eqs. (81) and (82) are applied and all 

the mentioned procedures are repeated. 

 
 
6. Numerical results 
 

In this section, the effect of various parameters on the 

dynamic response of the NFRP strengthened concrete beam 

under seismic load is examined. The outer radius and the 

inner radius of the concrete beam are R0= 205 mm and 

Ri=56 mm, respectively and the length of the beam is L=3 

m. The elastic moduli of concrete, epoxy resin and carbon 

nanofiber are Ec=20 GPa, Ef=25 GPa and Er=1 TPa, 

respectively. In this study, the influences of NFRP layer, 

carbon nanofiber volume fraction, geometric parameters 

and boundary conditions on the dynamic displacement of 

the structure are investigated. The earthquake acceleration 

is considered based on Kobe earthquake that the distribution 

of acceleration in 30 seconds is shown in Fig. 2. 

 

6.1 Convergence of HDQM 

 

Figs. 3(a)-(d) shows the convergence of HDQM in 

evaluating the maximum deflection of the structure versus 

time.  

As it can be seen, with increasing the number of grid 

points N, the maximum deflection of the structure 

decreases. For example, the maximum deflections of the 

structure for the number of grid points (N) of 7, 11, 15 and 

17 are equal to 0.14, 0.06, 0.016 and 0015, respectively. It 

can be found that by increasing the number of grid points, 

the decay ratio of the dynamic deflection decreases as far as 

at N=17 the dynamic deflection converges. It means that the 

increasing of the number of grid points does not affect the 

amount of the dynamic displacement of the structure after 

N=17. So, the results presented below are based on the 

number of grid points 17 for HDQ solution method. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3 Convergence and accuracy of HDQM 

 

Fig. 4 Comparison of analytical and numerical results 

 

 

6.2 Validation of results 
 

Given that no similar work has been done to validate the 

present study, so, it has been tried to examine the results 

without considering the nonlinear terms of the governing 

equations and by comparing the linear dynamic response of 

the structure which obtained by two various solution 

methods. The results of the analytical and numerical (HDQ) 

methods are depicted in Fig. 4. As it can be observed, the 

results of numerical and analytical methods are identical 

and therefore, the obtained results are accurate and 

acceptable. 

 

6.3 Effect of NFRP layer on the dynamic response 
 

Figs. 5 (a)-(d) illustrate the effect of NFRP layer on the 

dynamic deflection versus time and various thicknesses of 

the NFRP layer.  

As it can be observed, the structure without NFRP layer has 

a greater dynamic deflection with respect to the concrete 

beam covered with a NFRP layer. The reason is that the 

NFRP layer increases the stiffness of the structure. Fig. 5(a) 

shows the maximum dynamic deflection of the structure 

without NFRP layer equal to 0.059 while by applying the 

NFRP layer with thicknesses of 30, 60 and 90 mm, the 

maximum dynamic displacement of the structure is 0.0207, 

0.0053 and 0.0045, respectively. By comparing the results, 

we can say that using the NFRP layer with thicknesses of 

30, 60 and 90 mm decreases the maximum dynamic 

displacement of the structure up to 64.9, 91.02 and 92.37% 

which is a remarkable result in the dynamic designing of the 

structures. Also it should be noted that the excessive 

increasing of the NFRP layer (hf>60 mm) increases costs 

while it does not have a noticeable effect on 

the dynamic response of the structure. Hence, the NFRP 

layer with thickness of 60 mm is the best choice for the 

present structure. 

 

6.4 Effect of carbon nanofibers on the dynamic 
response 

 

As mentioned in the previous sections, the NFRP is 

reinforced by carbon nanofibers instead of macro fibers. In  
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(a) 

 

(b) 

 

(c) 

 
(d) 

Fig. 5 The effect of NFRP layer on the dynamic deflection 

of the structure 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6 The effect of nanofibers volume percent on the 

dynamic deflection of the structure 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7 The effect of nanofibers agglomeration on the 

dynamic deflection of the structure 

this section, the effect of nanofibers volume percent on the 

dynamic response of the structure is studied. 

Figs. 6(a)-(d) shows the dynamic deflection of the 

structure versus time for different values of nanofibers 

volume fraction as cr=0, cr=0.1, cr=0.2 and cr=0.34, 

respectively. It is apparent that the maximum dynamic 

displacement of the structure is equals to 0.0176 for the 

case of cr=0 (without nanofibers). By applying nanofibers 

with volume fractions of 0.1, 0.2 and 0.34, the amount of 

maximum dynamic displacement is 0.0159, 0.0113 and 

0.0139, respectively. Therefore, using nanofibers with 

volume fractions of 0.1 and 0.2 increases the stiffness of the 

structure and reduces the maximum displacement of 

structure 9.65 and 35.79 percent, respectively. 

It is also worth to mention that the volume percent of 

0.34 is an optimum value since before 0.34 percent, the 

deflection is decreased while for after 0.34 percent, the 

deflection increases. So it can be concluded that with 

increasing the volume fraction of nanofibers, the dynamic 

deflection of the system decreases and it is because of the 

increasing of the stiffness of the structure. 

The agglomeration effect of nanofibers on the dynamic 

deflection of the structure versus time is illustrated in Figs. 

7(a)-(d). As it can be observed, by considering the 

agglomeration effect, the stiffness of the structure reduces 

while the dynamic displacement increases. For example, in 

the absence of the agglomeration effect (=0), the 

maximum dynamic deflection of the structure is 0.0152 

while for =0.9 the maximum dynamic deflection is 0.0207. 

The results reveal that the existence of the 

agglomeration changes the maximum dynamic 

displacement of the structure up to 36.18%. Since during 

the process of nanocomposite manufacturing, the uniform 

distribution for nanofibers in the matrix is impossible, so 

the results of this figure can be very remarkable. 

 

6.5 Effect of geometric parameters of beam on the 
dynamic response 
 

The effect of outer radius to the inner radius ratio of the 

concrete beam on the dynamic response versus time is 

shown in Figs. 8(a)-(d). It can be seen that with an increase 

in outer to inner radius ratio of the concrete beam, the 

structure becomes softer and the dynamic deflection of the 

system increases. The maximum dynamic displacements for 

the outer to inner radius ratio of 2, 4, 6 and 8 are 0.00053, 

0.0192, 0.0407 and 0.0585, respectively. For example, with 

increasing the outer to inner radius ratio from 6 to 8, the 

maximum displacement increases up to 43.76%. 

Figs. 9(a)-(d) present the effect of the beam length on 

the dynamic deflection of the structure versus time. It can 

be found that with increasing the length, the displacement 

of the structure increases. It is because of the reduction of 

the stiffness of the system when the beam becomes longer.  

For instance, an increase in the length of the beam from 2 m 

to 3 m leads to an increase in the maximum displacement of 

the structure up to 52.21%. 

 
6.6 Effect of boundary conditions on dynamic 

response 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8 The effect of outer to inner radius ratio of the 

concrete column on the dynamic deflection of the structure 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9 The effect of column length on the dynamic 

deflection of the structure 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 10 The effect of boundary conditions on the 

dynamic deflection of the structure 

Figs. 10 (a)-(d) illustrate the effect of various boundary 

conditions on the dynamic response versus time. Four 

boundary conditions including clamped-clamped, clamped-

simply, simply-simply and free-simply supported are 

considered. The maximum dynamic deflections of the 

structure for clamped-clamped, clamped-simply supported, 

simply-simply supported and free-simply supported 

boundary conditions are 0.0042, 0.0072, 0.0155 and 0.0311, 

respectively.  

As it can be observed, boundary conditions have a 

significant effect on the dynamic response of the system so 

that the structure with clamped-clamped boundary condition 

has the lowest displacement with respect to the other 

boundary conditions. It is because of the stronger constraint 

of the clamped boundary which gives the structure with 

higher stiffness. 

 

 

7. Conclusions 
 

In this research, the dynamic response of the NFRP 

strengthened concrete beams subjected to seismic ground 

excitation was studied by applying HDQM and Newmark 

method. The structure was modeled based on HSDBT and 

the agglomeration effect of nanofibers was considered using 

Mori-Tanaka model. By employing the nonlinear strain-

displacement relations, energy formulation and Hamilton’s 

principle, the governing equations of motion were derived. 

The main goal in this study was the analysis of the effect of 

NFRP layer, volume fraction of nanofibers, agglomeration, 

geometric parameters of beam and various boundary 

conditions on the dynamic displacement of the structure. 

The remarkable results can be listed as below 

1. The structure without NFRP layer has a greater 

dynamic deflection with respect to the concrete beam 

covered with a NFRP layer. 

2. By comparing the results, we can say that using the 

NFRP layer with thicknesses of 30, 60 and 90 mm 

decreases the maximum dynamic displacement of the 

structure up to 64.9%, 91.02% and 92.37%. 

3. The excessive increasing of the NFRP layer (hf>60 

mm) increases costs while it does not have a noticeable 

effect on the dynamic response of the structure. 

4. Using nanofibers with volume fractions of 0.1 and 

0.2, increases the stiffness of the structure and decreases 

the maximum displacement of 9.65% and 35.79%.  

5. In the absence of the agglomeration effect (=0), the 

maximum dynamic deflection of the structure was 

0.0152 while for =0.9 the maximum dynamic 

deflection was 0.0207. The results reveal that the 

existence of the agglomeration changes the maximum 

dynamic displacement of the structure up to 36.18%. 

6. By increasing the length of the beam, the 

displacement of the structure increases. It was because 

of the decreasing of the stiffness of the system when the 

beam becomes longer. For instance, an increase in the 

length of the beam from 2 m to 3 m leads to an increase 

in the maximum displacement of the structure up to 

52.21%. 

7. Boundary conditions have a significant effect on the 
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dynamic response of the system so that the structure 

with clamped-clamped boundary condition has the 

lowest displacement with respect to the other boundary 

conditions. 

8. It was also worth to mention that the volume percent 

of 0.34 is an optimum value since before 0.34%, the 

deflection is decreased while for after 0.34%, the 

deflection increases. 

 

 

References 
 

Alibeigloo, A. (2016), “Thermoelastic analysis of functionally 

graded carbon nanotube reinforced composite cylindrical panel 

embedded in piezoelectric sensor and actuator layers”, Compos. 

Part B: Eng., 98, 225-243. 

Cao, V.V. and Ronagh, H.R. (2014), “Reducing the potential 

seismic damage of reinforced concrete frames using plastic 

hinge relocation by FRP”, Compos. Part B: Eng., 60, 688-696. 

Changwang, Y., Jinqing, J. and Ju, Z. (2010), “Seismic behavior of 

steel reinforced ultra high strength concrete column and 

reinforced concrete beam connection”, Trans. Tianjin Univ., 

16(4), 309-316. 

Cheng, C. and Chen, C. (2004), “Seismic behavior of steel beam 

and reinforced concrete column connections”, J. Construct. 

Steel Res., 61(5), 587-606. 

Choi, S.W., Yousok, K. and Park, H.S. (2014), “Multi-objective 

seismic retrofit method for using FRP jackets in shear-critical 

reinforced concrete frames”, Compos. Part B: Eng., 56, 207-

216. 

Davar, A., Khalili, S.M.R. and Malekzadeh Fard, K.(2013), 

“Dynamic response of functionally graded circular cylindrical 

shells subjected to radial impulse load”, Int. J. Mech. 

Mater.Des., 9(1), 65-81. 

Feng, C., Kitipornchai, S. and Yang, J. (2017a), “Nonlinear 

bending of polymer nanocomposite beams reinforced with non-

uniformly distributed graphene platelets (GPLs)”,Compos. Part 

B: Eng., 110, 132-140. 

Feng, C., Kitipornchai, S. and Yang, J. (2017b), “Nonlinear free 

vibration of functionally graded polymer composite beams 

reinforced with graphene nanoplatelets (GPLs)”, Eng. Struct., 

140, 110-119.  

Formica, G., Lacarbonara, W. and Alessi, R. (2010), “Vibrations of 

carbon nanotube reinforced composites”, J. Sound Vib., 

329(10), 1875-1889. 

Jafarian Arani, A. and Kolahchi, R. (2016), “Buckling analysis of 

embedded concrete columns armed with carbon nanotubes”, 

Comput. Concrete, 17(5), 567-578. 

Ji, X., Zhang, M., Kang, H., Qian, J. and Hu, H. (2014), “Effect of 

cumulative seismic damage to steel tube-reinforced concrete 

composite columns”, Earthq. Struct., 7(2), 179-200. 

Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, 

M.H. (2013), “A nonlocal nonlinear analysis for buckling in 

embedded FG-SWCNT-reinforced microplates subjected to 

magnetic field”, J. Mech. Sci. Tech., 29(9), 3669-3677. 

Kolahchi, R., Safari, M. and Esmailpour, M. (2016), “Dynamic 

stability analysis of temperature-dependent functionally graded 

CNT-reinforced visco-plates resting on orthotropic elastomeric 

medium”, Compos. Struct., 150, 255-265. 

Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), “Dynamic 

stability analysis of carbon nanotube-reinforced functionally 

graded cylindrical panels using the element-free kp-Ritz 

method”, Compos. Struct., 113, 328-338. 

Liang, X. and Parra-Montesinos, G.J. (2004), “Seismic behavior of 

reinforced concrete column-steel beam subassemblies and frame 

systems”, J. Struct. Eng., 130(2), 310-319. 

Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), 

“Postbuckling of carbon nanotube-reinforced functionally 

graded cylindrical panels under axial compression using a 

meshless approach”, Comput. Method. Appl. M., 268, 1-17. 

Liu, Z.Q., Xue, J.Y. and Zhao, H.T. (2016), “Seismic behavior of 

steel reinforced concrete special-shaped column-beam joints”, 

Earthq. Struct., 11(4), 665-680. 

Matsunaga, H. (2007), “Vibration and buckling of cross-ply 

laminated composite circular cylindrical shells according to a 

global higher-order theory”, Int. J. Mech.Sci., 49(9), 1060-1075. 

Mori, T. and Tanaka, K. (1973), “Average stress in matrix and 

average elastic energy of materials with misfitting inclusions”, 

Acta Metall., 21(5), 571-574. 

Shen, H.S. and Yang, D.Q. (2014), “Nonlinear vibration of 

anisotropic laminated cylindrical shells with piezoelectric fiber 

reinforced composite actuators”, Ocean Eng., 80, 36-49. 

Shu, C. and Xue, H. (1997), “Explicit computations of weighting 

coefficients in the harmonic differential quadrature”, J. Sound 

Vib., 204(3), 549-555. 

Simsek, M. (2010), “Non-linear vibration analysis of a 

functionally graded Timoshenko beam under action of a moving 

harmonic load”, Compos. Struct., 92(10), 2532-2546. 

Simsek, M. and Reddy, J.N. (2013), “A unified higher order beam 

theory for buckling of a functionally graded microbeam 

embedded in elastic medium using modified couple stress 

theory”, Compos. Struct., 101, 47-58. 

Wuite, J. and Adali, S. (2005), “Deflection and stress behaviour of 

nanocomposite reinforced beams using a multiscale analysis”, 

Compos. Struct., 71(3), 388-396. 

 

 

CC 

253

http://www.sciencedirect.com/science/article/pii/S1359836813007786
http://www.sciencedirect.com/science/article/pii/S1359836813007786
http://www.sciencedirect.com/science/journal/13598368
http://www.sciencedirect.com/science/journal/13598368/60/supp/C
http://www.sciencedirect.com/science/article/pii/S1359836813004575
http://www.sciencedirect.com/science/article/pii/S1359836813004575
http://www.sciencedirect.com/science/article/pii/S1359836813004575
http://www.sciencedirect.com/science/journal/13598368/56/supp/C
http://www.sciencedirect.com/science/article/pii/S1359836816312550
http://www.sciencedirect.com/science/article/pii/S1359836816312550
http://www.sciencedirect.com/science/article/pii/S1359836816312550
http://www.sciencedirect.com/science/journal/13598368
http://www.sciencedirect.com/science/journal/13598368
http://www.sciencedirect.com/science/journal/13598368/110/supp/C
http://www.sciencedirect.com/science/article/pii/S0141029616308446#!
http://www.sciencedirect.com/science/article/pii/S0141029616308446#!
http://www.sciencedirect.com/science/article/pii/S0141029616308446#!
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DMatsunaga,%2520Hiroyuki%26authorID%3D7202180881%26md5%3D13ef4bbf446c217db1e1c0f8146d4b87&_acct=C000063161&_version=1&_userid=4449806&md5=b3336fc76d15f18725f592895ae626b3
http://www.sciencedirect.com/science/journal/00207403


 




