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1. Introduction 
 

To consider physical phenomena it has been needed to 

prepare a mathematical model. Usually these models are in 

nonlinear case. Nonlinear oscillators are wildly used form 

physical and engineering problems. It an easy task to have 

exact solutions for linear engineering problems, but in 

nonlinear problems its hard to prepare an exact solution and 

in some cases its impossible. There are many numerical 

methods for solving nonlinear engineering problems. Many 

researchers have been working on different analytical and 

semi- analytical solutions for nonlinear engineering 

problems in recent years. One of the traditional analytical 

methods is perturbation technique, which has many 

shortcomings. Perturbation technique is useful only for 

weak nonlinear problems not high nonlinear ones. The new 

proposed approaches have been studied recently to over 

come the shortcomings of traditional methods such as: 

Harmonic balance method (Huseyin et al. 1991, Civalek 

2013, 2006, Lau et al. 1983), Hamiltonian approach (He 

2010, Xu 2010), Energy balance method (Jamshidi et al. 

2010, Mehdipour 2010, He 2002), Homotopy perturbation 

method (Shaban et al. 2010), Hamiltonian approach (He 

2010, Xu 2010), Energy balance method (Jamshidi et al. 

2010, Mehdipour 2010, He 2002), Max-Min approach 

(Zeng et al. 2009), and the other analytical and numerical 

(Sedighi et al. 2016, 2015, Bayat et al. 2015a, b, 2016, Cai 

and Liu 2011, Wu 2011, Bayat et al. 2012, Cunedioglu and 

Beylergil 2014). Among of above methods, Energy Balance 

Method (EBM) and Hamiltonian approach (HA) have been 

considered in this paper to solve high nonlinear problems. 

The most benefit of analytical approaches are preparing a 

great understanding from the behavior of the system and 

considering the effects of different parameters on response  
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of the problem. 

The results of these two approaches are compared with 

the numerical solution using Runge-Kutta’s algorithm. 

The paper has been organized as follows: 

Mathematical problem is studied and the governing 

equation of the problem is developed. Basic idea of 

Hamiltonian approach and Energy balance method have 

been described, then applications of Hamiltonian Approach 

and  Energy Balance Method have been studied in detailed 

procedure to illustrate the applicability and accuracy of 

these methods. Some comparisons between analytical and 

numerical solutions have done and tabulated. Eventually, 

we have conclude the contains of the most significant 

findings of the paper. 

 

 

2. Thin circular sector cylinder formulation 
 

Swinging oscillation of thin circular sector cylinder In 

this condition a thin circular sector cylinder is considered as 

Shown in Fig. 1. As before thin circular sector cylinder rolls 

in an oscillatory motion back and for thon a flat stationary 

support, with no sliding effect. Governing equation of the 

oscillation is as follow (Shaban et al. 2010) 

          

   

2 2cos 2 sin sin 0

0 , 0 0,

R Ry R y gy

A

    
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   

 
 (1) 

Where the geometrical parameters are shown in Fig. 1. 

The height of mass center obtained as below 
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
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Introducing the dimensionless time variable 
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Fig. 1 Geometric parameters of the 

homogeneous thin circular sector cylinder 

 

 

Eq. (57) becomes 

       

   

2cos 2 sin sin 0

0 , 0 0.

R gy

y R
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 (4) 

And by introducing the dimensionless geometrical 

parameter 

 siny

R





   (5) 

Eq. (60) becomes 
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3. Basic idea of Hamiltonian Approach (HA) 
 

Recently, He (2010) has proposed the Hamiltonian 

approach to overcome the shortcomings of the energy 

balance method. This approach is a kind of energy method 

with a vast application in conservative oscillatory systems. 

In order to clarify this approach, consider the following 

general oscillator 

 , , 0f      (7) 

With initial conditions 

   0 , 0 0.A    (8) 

Oscillatory systems contain two important physical 

parameters, i.e., the frequency ω and the amplitude of 

oscillation A. It is easy to establish a variational principle 

for Eq. (1), which reads 

   
/ 4

2

0

1

2

T

J F dt  
 

   
 

  (9) 

Where Tis period of the nonlinear oscillator, F f


 
 . 

In the Eq. (3), 
21

2
  is kinetic energy and  F 

potential energy, so the Eq. (3) is the least Lagrangian 

action, from which we can immediately obtain its 

Hamiltonian, which reads 

21
( ) ( ) constant

2
H F      (10) 

From Eq. (4), we have 

0
H

A





 (11) 

Introducing a new function,  H  , defined as 

4

2
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1 1
( ) ( )
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T

H u F dt TH 
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Eq. (5) is, then, equivalent to the following one 

0
H

A T

  
    

 (13) 

or 

 
0

1

H

A 

  
 

   
 (14) 

From Eq. (8) we can obtain approximate frequency-

amplitude relationship of a nonlinear oscillator. 

 

 

4. Basic idea of Energy Balance Method (EBM) 
 

In the present paper, we consider a general nonlinear 

oscillator in the Form (He 2008) 

 ( ) 0f t    (15) 

In which  and t are generalized dimensionless 

displacement and time variables, respectively. Its variational 

principle can be easily obtained 

    1 2

20

t

J F dt      (16) 

Where 
2

T



  is period of the nonlinear oscillator, 

    .F f d     

Its Hamiltonian, therefore, can be written in the form 

   1 2

2
H F F A     (17) 

Or 

     1 2

2
0t F F A       (18) 

Oscillatory systems contain two important physical 

parameters, i.e.. 
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The frequency  and the amplitude of oscillation A. So 

let us consider such initial conditions 

   0 , 0 0A    (19) 

We use the following trial function to determine the 

angular frequency  

   cost A t   (20) 

Substituting (13) into θ term of (11), yield 

        2 2 21
sin cos 0

2
t A t F A t F A        (21) 

If, by chance, the exact solution had been chosen as the 

trial function, then it would be possible to make  zero for 

all values of t by appropriate choice of  . Since Eq. (13) is 

only an approximation to the exact solution,   cannot be 

made zero everywhere. Collocation at 4t  gives 

    
2 2
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Its period can be written in the form 
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5. Application 
 

5.1 Solution using HA 
 

By using the Taylor’s series expansion for  cos ( )t ,

 sin ( )t we can re-write Eq. (6) in the following form 

   

   

2 41 1

2 24
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The Hamiltonian of Eq. (22) is constructed as 

2
2 2 2 2 4 2 41 1

2 24 2 24
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H

 
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Integrating Eq. (21) with respect to t from 0 to T/4, we 

have 

/4
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Assume that the solution can be expressed as 

   cost A t   (27) 

Substituting Eq. (25) into Eq. (24), we obtain 
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Solving the above equation, an approximate frequency 

as a function of amplitude equal to 

 

 

2
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
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Hence, the approximate solution can be readily obtained 
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5.2 Solution using EBM 
 

By using the Taylor’s series expansion for  cos ( )t ,

 sin ( )t  the variational formulation can be obtain from 

Eq. (6) as follows 

2
2 2 2 2 4 2 41 1

2 240 2 24
( ) .

t g g
J dt
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Its Hamiltonian, therefore, can be written in the form 
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or 
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We will use the trial function to determine the angular 

frequency  , i.e. 

   cost A t   (35) 

If we substitute (35) into (34), it results the following 

residual equation 
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If we collocate at 4t   we obtain 
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This leads to the following result 
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According to Eqs. (35) and (38), we can obtain the 

following approximate solution 
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6. Results and discussions 
 

The important step in this paper is comparison of the 

analytical solutions and numerical ones. The results of 

Hamiltonian approach and Energy balance method are 

compared with the numerical one (Runge-kutta algorithm). 

Table 1 is the comparison of important parameters on the 

frequency of the systems (A,  , g). The maximum error 

between the results are less than 1.7 % for different values 

of (A,  , g). Fig. 2 is the comparison of the behavior of 

the system for two different cases: 

(a): 6, 2, 9.81A g      

(b): 4, 12, 9.81A g       

From the figure, the behavior of the oscillation is cyclic. 

To show the effects of the important parameters such as 

angel and amplitude, we have developed the Fig 3. 

Different angels from 12 to 2 are studied in this 

figure. Fig. 4, is the sensitive analysis between the 

important parameters ( , , )A   . 

 

Table 1 Comparison of frequency corresponding to various 

parameters of system 

A   g (HA) (EBM) RK4 
Error % 

HA 

Error % 

EBM 

12  6  9.81 8.50100 8.49939 8.51288 0.13948 0.15849 

8  4  9.81 5.39311 5.39087 5.40454 0.21136 0.25284 

6  2  9.81 2.17381 2.17315 2.17422 0.01860 0.04925 

4  12  9.81 5.29230 5.25979 5.32158 0.55009 1.16116 

3  8  9.81 3.82760 3.79573 3.84757 0.51898 1.34753 

2  3  9.81 1.95909 1.93793 1.97154 0.63169 1.70495 

 

 

(a) 

 

(b) 

Fig. 2 Comparison of time history response of the 

analytical solution and numerical solution for 

(a): 6, 2, 9.81A g     , 

(b): 4, 12, 9.81A g      

 

 

It is obvious from the figures and tables the Hamiltonian 

approach and Energy balance method have an excellent 

agreement with the numerical solution and quickly 

convergent and valid for a wide range of vibration 

amplitudes and initial conditions. 
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time
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Fig. 3 The effects of angel and amplitude on the 

nonlinear frequency 

 

 
Fig. 4 Sensitivity analysis of nonlinear frequency 

 

 

7. Conclusions 
 

In this paper, two new analytical approaches called: 

Hamiltonian approaches and Energy balance method were 

studied in detailed. High nonlinear problem of the thin 

circular cylinder had been studied. It has been proved that 

the Hamiltonian approach and Energy Balance Method are 

clearly effective, convenient and does not require any 

linearization or small perturbation, and adequately accurate 

for nonlinear problems in physics and engineering. It has 

illustrated that the results of HA and EBM are in an 

excellent agreement with those obtained by the numerical 

one. These method scan be easily extended to any nonlinear 

oscillator without any difficulty.  
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Appendix A: Basic idea of Runge-Kutta’s 
Method  

 

For the numerical approach to verify the analytic 

solution, the fourth RK (Runge-Kutta) method has been 

used. This iterative algorithm is written in the form of the 

following formulation 

   0 0, ,f t t      (A.1) 

  is an unknown function of time t which we would 

like to approximate. Then RK4 method is given for this 

problem as below 
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 (A.2) 

forn=0,1,2,3,..., using 
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 (A.3) 

Where 
1n 
 is the RK4 approximation of  1nt 

. The 

fourth-order Runge-Kutta method requires four evaluations 

of the right hand side per step h.  
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