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1. Introduction 

 

The study of elastic waves finds wider applications in 

seismology, techtonophysics and civil engineering. Seismic 

waves are investigated in order to find the detailed 

information related to the internal structure of earth and are 

used in the explorations of substances such as water, oil and 

mineral deposits. The mathematical study is needed to 

enable us to gain heuristic understanding of various wave 

phenomena.  

Earth is considered as the most complex structured 

elastic body and contains various materials and rocks with 

interesting properties such as fiber-reinforcement, 

anisotropy, heterogeneity, sandiness, porosity etc. The 

knowledge pertinent to the properties of waves in multi-

layered earth’s crust plays its role to understand and predict 

some characteristics in continental margins, mountain roots 

etc. Love waves are the seismic waves that causes the 

horizontal shifting of earth during the earthquake. A wide 

range of basic literatures can be found from Love (1927), 

Biot (1965), Gubbins (1990), Bullen (1963) and Achenbach 

(1973). The motion of the particle of Love wave forms a 

horizontal line perpendicular to the direction of 

propagation. It propagates transversely along surface which 

make us feel directly during earthquake.  

The main idea of introducing a continuous self-

reinforcement at every point of elastic solid was first given  
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by Belfield et al. (1983). A reinforced concrete layer can be 

formed for all conditions of stresses that may occur in 

accordance with principle of mechanics. 

The distinguishable property of reinforced concrete 

layer is that its components (steel & concrete) act together 

as a single body as long as they remain in the elastic state, 

i.e., two constituents are bonded together so that there can 

be no relative displacement between them. The fiber-

reinforced bodies are like a unit of composite materials in 

which the polymer fibers are reinforced by the polymer 

fibers composed by same fiber. Acquiring the characteristics 

of high internal damping, fiber-reinforced materials deter 

noise transmission to neighbouring structures by absorbing 

the vibrational energy. Sengupta and Nath (2001) 

investigated the surface waves in anisotropic fiber-

reinforced elastic solid media. Pradhan et al. (2003) studied 

the dispersion of Love waves in a self-reinforced layer over 

an elastic non-homogeneous half-space. Singh and Singh 

(2004) discussed the propagation of plane waves in fiber-

reinforced elastic media. Chattopadhyay and Singh (2012), 

Chaudhary et al. (2005) demonstrated the behavoiur shear 

waves in self-reinforced media. Recently Kundu et al. 

(2014b) have shown the effect of Love waves in fiber-

reinforced over nonhomogeneous half-space. Tomar and 

Singh (2006) analyzed the effect of corrugation between 

two dissimilar self-reinforced half-spaces on propagation of 

plane SH-waves. In recent works Kakar (2015, 2016) has 

elucidated the SH-wave propagation on heterogeneous and 

anisotropic fiber-reinforced media.  

Khurana and Vasisth (2001) discussed the propagation 

of Love waves in an elastic sandy layer over a fluid-

saturated porous solid half-space taking both the layers as 

prestressed medium. Tomar and Kaur (2007) exhibited the 
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reflection and transmission of a plane SH-wave incident at 

corrugated interface between a dry-sandy half-space and an 

anisotropic elastic half-space. Son and Kang (2012) 

attempted a study on shear waves in a poroelastic 

sandwiched between two elastic media. In the recent study, 

Pal and Ghorai (2015) have shown the Love wave 

dispersion in prestressed sandy layer above anisotropic 

porous half-space under gravity. 

Porous materials are often found beneath the surface of 

the earth in form of sandstone, limestone and other 

sediments permeated by groundwater or oil. A porous media 

is nothing but an assemblage of solid particle and pore 

space. A porous medium is composed by solid skeleton and 

pore space, air, fluid or both. The pore space remains 

connected. The solid skeleton consists of solid matrix and 

empty connected pore space. There are some reasonable 

ground for considering that anisotropy prevails in the 

continents. An obvious instance is that of the materials 

deposited in water. Anisotropy in the earth’s crust and upper 

mantle have significant effects on the propagation of Love 

wave. The dynamical characteristics of structured porous 

media is of great concern. The governing equations of 

motion for liquids saturated porous solids are formulated by 

Biot (1965). Ghorai et al. (2010), Ke et al. (2006) laid an 

emphasis on the surface wave propagations in fluid-

saturated porous medium under certain factors. Boxberg et 

al. (2015) manifested the necessary equations to calculate 

the wave speeds for unsaturated porous media and tested 

the equations for a representative storage scenario. 

Kielczyn’ski et al. (2012) focused on the study regarding 

effect of viscous liquid loading on Love wave propagation. 

Kakar and Kakar (2015a) have well documented the 

torsional wave transmission on prestressed inhomogeneous 

medium. Chen et al. (2012) framed how transverse waves 

transmit through a plane interface between isotropic elastic 

and unsaturated porous elastic solid half-spaces.  

Duly motivated by several evidences described which 

the geophysicist and civil engineers encounter during 

analysing the seismic waves, the authors incorporated the 

problem of propagation of Love wave where the crustal 

layer constituted with fiber-reinforced and dry sandy layer 

with semi-infinite prestressed porous substrate. 

 

 

2. Formulation of the problem 
 
We have considered a fiber-reinforced layer of h1 

thickness lying over a dry sandy layer of finite thickness  

 

 

 
Fig. 1 Geometry of the problem 

h2 and a prestressed porous half-space.The free surface of 

the fiber-reinforced layer is considered to be traction free. 

The z -axis is taken vertically downwards in the porous 

half-space. The x-axis is taken along the direction in which 

the wave propagates. 

 

 

3. Dynamics of fiber-reinforced medium 
 

The governing equation which represents a fiber-

reinforced elastic body along the preferred direction a  is 

given by Spencer (1972) 
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are 

infinitesimal strain components. τij are components of stress 

vector, ai are components of a  and may be a function of 

position. Indices take the values 1,2,3 and the convention of 

summation is applied.  L T   is also the reinforced 

anisotropic elastic parameters with dimension of stress. ui

 = 1,2,3i  are the displacement vector components of a  

with respect to the all referred to rectangular Cartesian 

coordinate system such that 
2 2 2

1 2 3 =1 a a a . Also α and β 

are the specific stress components to take into account 

different layers for concrete part of the composite materials. 

In absence of body forces the eqn. of motion for a fiber-

reinforced layer is given by
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where ρ is material density of the fiber-reinforced layer. 
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Using relations (3), the Eq. (2) becomes 
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We assume the harmonic solution of (4) as 

     
2 , , =

ik x ct
u x z t z e  (5) 
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where k is the wave number and c is the phase velocity. On 

substituting the relation (5) in Eq. (4) we get 
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where = kc &
2
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 is the shear wave velocity of 

the fiber-reinforced layer. The solution of the (6) can be 

expressed as 
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and 
0

c


 denotes the phase velocity ratio. 

From (5) & (7), the displacement equation for the fiber-

reinforced layer is given by 
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where A, B are arbitrary constants. 

 
 

4. Solution for the dry sandy layer 
 

Neglecting the body forces, the equation of motion for 

the Love wave propagating in a dry sandy elastic medium is 

given by Tomar and Kaur (2007) as 
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where v1 is the y-component of the displacement vector μ1, 

ρ1, η are the rigidity, density and the sandiness of the 

medium. Precisely when η>1 the layer corresponds to the 

sandy materials &η=1 corresponds to isotropic elastic solid. 

Considering 
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 as the shear wave velocity the Eq. 

(9) takes the form 
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Using the method of separation of variables and taking 
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The solution of Eq. (10) can be written as  
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5. Dynamics for prestressed porous substratum 

 

We consider a prestressed anisotropic porous half-space. 

Let  2 2 2, ,u v w
 

are the components of the displacement 

vector of the solid and , ,x y zU V W  are the same of the liquid 

part of the porous material in the direction of x, y, z- 

respectively. 

Neglecting the viscosity of water the dynamic equations 

of motion in a porous layer under the compressive initial 

stress P′, i.e., in the absence of body forces can be written 

as Biot (1965) 
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where τij (i, j=1,2,3) are the incremental stress components 

of solid &   is the stress vector for liquid part of the 

porous material. 

The stress vector   is related to the fluid pressure p 

by the relation -  =fp, where f is the porosity of the media. 

The angular components xw  , yw & zw  are defined as 
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The mass coefficient ρ11, ρ12, ρ22 are related to the 

density ρ’, ρs & ρw of the layer, solid & liquid respectively 

 11 12 11 22= 1 ,   =  s wf f       (15) 

The mass density of the bulk material is 
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These mass coefficients also obey the following 

inequalities 
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where A, F, C, N & L are elastic constants for the medium, 

in particular N&L are the shear moduli of the anisotropic 

layer in x&z- directions respectively 
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The positive quantity Q is the measure of coupling 

between the change of volume of solid and liquid. The 

dynamical Eq. (13) have been constructed by coupling the 

Biot’s dynamics for a poro-elastic medium. 

For the propagation of the Love waves, we know that 

the direction of the displacement of the particle is parallel to 

the plane of propagation. 

The displacement along the x- axis &z-axis vanishes as 

well as the rate of change along y-axis remains absent. 

i.e., we have 
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These conditions will yield the strain components 

eyz&exy only and the others will remain zero. Thus 
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Substituting the relations (21) in Eq. (13), the equations 

of motion which are not automatically satisfied are 
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Since  2 2= , ,v v x z t ,  = , ,yV V x z t
 

and using the 

relations from (20) & (21) the above Eq. (22) transforms 

into  
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Hence the above Eq. (23) can be written as 
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From the above Eq. (25), we found that the velocity of 

the shear wave along x-direction is 2
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The shear wave velocity in the porous medium along the 

x-direction can be expressed as 
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β2 is the velocity of the shear wave in the corresponding 

prestress free, non-porous, anisotropic elastic medium at x-

direction. 

=
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  is the non-dimensional parameter due to the 

prestress P’ & 
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are the non-dimensional parameters for the material of 

porous layer as obtained by Biot (1965). 

Thus, we get the following as 

(i) if 1d  the medium is non-porous solid 

(ii) if 0d  the layer is fluid 

(iii) if 0 < <1d  the layer is poro-elastic 

For the Love wave propagation along x-direction the 

solution of Eq. (25) may be taken as  

622



 

Love waves in dry sandy layer sandwiched between fiber-reinforced medium and prestressed porous half-space 
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Putting the above value at Eq. (25) we get  
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Therefore, the solution of Eq. (29) takes of the form 
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where A4&B4 are arbitrary independent constants. As we are 

interested in the solution of Eq. (29) which is bounded and 

vanishes as z . 

So the required solution can taken as 
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The above indicates the displacement of a prestressed 

porous substratum where 
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& k  is the wave number. 

 

 

6. Boundary conditions 
 

i) At 1 2= ( ) z h h , i.e., the surface of the fiber-

reinforced layer is free from any load implies the stress 

component τ23 must be zero, i.e. 

0
2 = 0




v

z
  (32) 

ii) The stress components must be continuous at the 

interface of the media 

a) At z=-h2, i.e., along the interface of fiber-reinforced 

and dry sandy layer 

23 23= t  (33) 

b) At 0z  , i.e., along the interrface of fiber- reinforced 

layer and prestressed porous media 

23 23=t   (34) 

iii) The displacement components must be continuous at 

the interface of the media 

a) At 2z h  , i.e., along the interface of fiber-

reinforced and dry sandy layer 

0 1=v v  (35) 

b) At 0z  , i.e., along the interface of fiber- reinforced 

layer and prestressed porous media 

1 2=v v  (36) 

Using the boundary condition (i) on the Eq. (8) we get 

       1 1 2 2 1 2
1 2 = 0

 
  

ikm h h ikm h h
Q m R Ae Q m R Be  (37) 

Applying the boundary condition [ii(a)] on Eqs. (8) & 

(12) we get 

    
   

 

1 2
1

2 2
2 1 2 2 2

1 2 2 2

sin

= 0

ikm h

T T
ikm h

A ik Q m R e B ik

Q m R e s C s h

s Dcos s h

   




  

    (38) 

From the boundary condition [ii(b)] and using it on (12) 

& (31) we get  

1 2 4 = 0s D L A kq   (39) 

Applying the boundary condition [iii(a)] on Eqs. (8) & 

(12) we get  

   1 2 2 2
2 2 2 2sin = 0  

ikm h ikm h
Ae Be Ccos s h D s h  (40) 

From the boundary condition [iii(b)] and using it on (12) 

& (31) we get  

4 = 0C A  (41) 

Eliminating 
4, , ,  & A B C D A  from Eqs. (37) to (41) we 

get 

       

     

   

   

1 1 2 2 1 2
1 2

1 2 2 2
1 2

1 2 2 2

1 2 2 2 1 2 2 2

1 2

2 2 2 2

0 0

0 0

0 0 0
sin cos 0

00
sin 0

1 0 1

ikm h h ikm h h

ikm h ikm h

T T

ikm h ikm h

Q m R e Q m R e

ik Q m R e ik Q m R e

e e

s s h s s h
s L kq

cos s h s h

   

 
 

 
 

 

 
 




 
 

which implies 

 
1 2 1

2 2

2 2 2 2

1 2 1

tan

tan =

tan

  
   

  

  
  

  

T

T

T
s k Lq T kh

R
s h

T
s LT k q kh

R

  

  

  

the above equation reduces to 

2

2 2

1

2

1 12

1

2
2 2

1 12

1

tan 1 =

1 tan

1 tan

T

T

c
kh

c T
Lq T kh

R

c T
L q T kh

R



 


  


 
 

  

  
   

  

    
     

    

 
(42) 

which is the dispersion equation of Love type waves. 

Where 
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2

2

2

2

12
= =

 
        

 

P
c d N

c
q d

L d





 

 

and 

2
2 2

1 2

0

=1 1 ,    =
  

     
   

L

T

c
P a T Q R P



 
  

 

 

7. Particular cases 
 
7.1 Case I 

If we take 1 2 3=1, = 0, = 0 a a a & 0L T    which 

implies 1, 0, 1  P Q R  then the dispersion Eq. (42) 

reduces to 

2

2 2

1

2 2

1 2 2

1 2

2 2

0 12 2

0 0

2 2
2 2

1 02 2

1 2

2 2

12 2

0 0
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1
1

1 tan 1

1
1

1 tan 1

c
kh

c Nd c
L

L d

c c
kh

c Nd c
L

L d

c c
kh






 


 


  

 

 

 
 

  
  

    
 

 
   

 

   
      

   
 

  
 
 

 

(43) 

which is the Love type wave equation in homogeneous 

layer and free from fiber-reinforcement.  

 
7.2 Case II 
 

If =1  i.e., when the intermediate layer becomes 

isotropic elastic solid material, the dispersion Eq. (42) of 

Love type wave becomes 

2
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2 2

1 2 2
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2
2

22
02

12

0

2 2
2

1 2 2

1 2

2
2

22
02

12

0

tan 1 =

1
1

tan

1
1

tan

T

T

c
kh

c Nd c
L

L d

c
Q R P

c
Q R P kh

R

c Nd c
L

L d

c
Q R P

c
Q R P kh

R






 







 

 





 
 

  
  

    
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  
   

    
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 
 
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 
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(44) 

7.3 Case III 
 

When d=1&P’=0 i.e., ξ=0 then the Eq. (42) transforms 

into 

2
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(45) 

which is the dispersion equation of Love type waves in non-

porous, prestress free semi-infinite medium. 

 
7.4 Case IV 
 

When = 0P & 2 N L   the dispersion Eq. (42) 

converts to 
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(46) 

which is the dispersion equation of Love type waves in 

homogeneous elastic layer free from prestress.  

 
7.5 Case V 
 

Combining all the cases,when 0 L T   ,  
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0, 0, 1  P Q R =1 & =1, = 0,d   2N L  
 

the Eq. (42) transfers into 
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(47) 

which is the dispersion equation of Love type wave when 

the upper layer is homogeneous and free from 

reinforcement, intermediate layer is isotropic elastic and the 

lower half-space is homogeneous, non-porous and prestress 

free.  

 
7.6 Case VI 
 

If we take h1=0 i.e., in the absence of fiber-reinforced 

layer the Eq. (42) reduces to 

2

2 22
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
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

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 (48) 

which is the classical equation of Love wave.  

 
7.7 Case VII 
 

When 2 = 0h  i.e., in the absence of dry sandy layer the 

dispersion Eq. (42) reduces to 
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 (49) 

 

 

which is also the classical equation of Love wave. 

 

 

8. Numerical calculations & discussion 
 

In order to elaborate the effect of fiber-reinforcement, 

anisotropy, sandiness & porosity on the dispersion of Love 

waves numerical computations have been introduced with 

different values of parameters. The following illustrations 

have been performed by considering the values of 

reinforcement parameters & density of upper layer from 

Kundu et al. (2014a), rigidity and density of dry sandy layer 

from Gubbins (1990), whereas the parameters for the 

porous medium are taken from Chattaraj and Samal (2013). 

The effect of parameters have been explored in Figs. 2-

6. All of the figures have been plotted with vertical axis as 

dimensionless phase velocity c/β1 against horizontal axis as 

dimensionless wave number kH. 

Figure 2 explores the effect of reinforcement parameters 

in the fiber-reinforced medium in presence of compressive 

initial stress in the substratum. The curves are plotted 

considering the different values of reinforcement 

 

 

 
Fig. 2 Dimensionless phase velocity c/β1 against 

dimensionless wave number kH  for different values 

of 
2

1a &
2

3a  

 

Table 1 Values of various dimensionless parameters for the dispersion Eq. (42) 

Fiber-reinforced 

medium 

 
9 2= 7.07 10 /L N m  

 
9 2= 3.5 10 /T N m  

 
3

0 =1600 /kg m  
   

Dry Sandy medium 
 

---- 
 

10 2

1 = 6.54 10 / N m  
 

3

1 = 3409 /kg m  
   

Prestressed porous 

medium 

 10 2= 0.1387 10 /L N m   
3 3

11 =1.926137 10 / Kg m    

 10 2= 0.2774 10 /N N m   
3 3

12 = 0.002137 10 /  Kg m   = 0.26f  

   
3 3

22 = 0.215337 10 / Kg m    
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Fig. 3 Dimensionless phase velocity c/β1 against 

dimensionless wave number kH for different values of 

h1/h2 

 

 
Fig. 4 Dimensionless phase velocity c/β1 against 

dimensionless wave number kH for different values of 

η 

 

 
Fig. 5 Dimensionless phase velocity c/β1 against 

dimensionless wave number kH for different values of 

porosity parameter d 

 

 
Fig. 6 Dimensionless phase velocity c/β1 against 

dimensionless wave number kH for different values of 

both compressive prestress ξ & porosity parameter d 

 

 

parameters a1, a3 and with fixed values of h1/h2, sandiness, 

porosity & prestress as 0.1, 1.8, 0.9012 & 0.2 respectively. 

The values of 2

1a & 2

3a  for curve 1, curve 2, curve 3, curve 

4, curve 5 and curve 6 are taken as 0.25, 0.35, 0.45, 0.55, 

0.65 and 0.75 and 0.75, 0.65, 0.55, 0.45, 0.35 and 0.25 

respectively. From that figure we can conclude that the 

velocity of Love wave increases with increase of a1 and 

decrease of a3.  

Fig. 3 demonstrates the effect of h1/h2 i.e., the ratio of 

the thickness of fiber-reinforced & dry sandy media on the 

phase velocity of Love wave with the fixed values of 

reinforcement parameters, sandiness, prestress & porosity 

as (0.25, 0.75), 2, 0.2 & 0.9012 respectively. The values of 

h1/h2 for curve 1, curve 2, curve 3 and curve 4 have been 

taken as 0.10, 0.15, 0.20 and 0.25 respectively. The curves 

show that the phase velocity of Love wave decreases with 

the increase h1/h2.  

Fig. 4 specifies the influence of sandiness parameter η 

of the dry sandy layer on the propagation of Love wave. 

The curves are plotted taking the different values of the 

sandiness parameter η and with constant values of 

reinforcement parameters, ratio of thickness of layers, 

porosity & prestress as (0.25, 0.75), 0.3, 0.9012 & 0.2 

respectively. The values of   are taken as 1.5, 2, 2.5, 3 for 

the curves 1, 2, 3, 4 respectively. From the figure we can 

conclude that as the sandiness increases the velocity of the 

Love wave decreases accordingly.  

Fig. 5 traces the influence of porosity parameter d on the 

phase velocity of Love wave. The curves are plotted using 

the values of the porosity for the substratum with fixed 

values of reinforcement parameters, sandiness, h1/h2& 

prestress as (0.25, 0.75), 7, 0.2 & 0.2 respectively. The 

values of d  are taken as 0.9012, 0.8012, 0.7012, 0.6012 

and are shown by the curves 1, 2, 3, 4 respectively. From 

the figure we can conclude that the phase velocity of Love 

wave decreases with the decrease of porosity of the 

substratum. 

Fig. 6 signifies the joint effect of prestress & porosity on 

the concerned medium. The curves are plotted taking the 
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increasing values of both d& prestress (ξ) with some 

constant values of reinforcement parameters, sandiness 

&h1/h2 as (0.25, 0.75), 4 & 0.7 respectively. The values for 

ξ are taken as 0.1, 0.2, 0.3, 0.4 & 0.5 whereas the values of 

porosity parameter d are taken as 0.5012, 0.6012, 0.7012, 

0.8012 & 0.9012 are represented in curves 1, 2, 3, 4 & 5 

respectively. It is worthy to mention that the curves clarify 

the fact that the increase of both prestress & porosity 

parameters jointly increase the velocity of Love wave.  

 
 
9. Conclusions 

 

Considering the presence of prestress in the substratum, 

the influence of reinforce parameters on propagation of 

Love wave has been discussed theoretically by introducing 

a three layered earth model. Dispersion equation are 

deduced in case of 

(i) upper layer is homogeneous free from reinforcement 

(ii) intermediate layer converts into isotropic elastic 

solid material 

(iii) lower substratum is free from porosity & prestress 

(iv) lower substratum is homogeneous & stress free 

(v) upper layer is homogeneous and free from 

reinforcement, intermediate layer is isotropic elastic, lower 

half-space is homogeneous, non-porous and prestress free 

(vi) upper layer is neglected 

(vii) intermediate layer is neglected. 

The mathematical model investigates the propagation of 

Love waves in sandy medium sandwiched between fiber-

reinforced and prestressed porous media in detail. Solution 

for the all the media have been deduced separately in 

compact form. Phase velocity for the Love waves has been 

computed numerically and the effect of different parameters 

are studied graphically using MATLAB software. From the 

comparative study of above Figs. 2-6 we conclude that  

(1) Dimensionless phase velocity c/β1 of Love wave 

decreases with the increase of dimensionless wave number 

kH 

(2) Phase velocity of Love wave increases when 

reinforcement parameters 2

1a  increases where 2

3a  

decreases 

(3) Phase velocity of Love wave decreases with gradual 

increase of the sandiness parameter 

(4) Dimensionless phase velocity of Love wave 

decreases when the ratio of the thickness of layers h1/h2 

increases 

(5) Phase velocity of Love wave decreases with the 

subsequent decrease of porosity parameter d 

(6) Dimensionless velocity of Love wave increases 

when both the values of porosity parameter d and prestress 

ξ increases. 

Finally our computed dispersion equation coincides with 

the classical dispersion equation of Love wave when any of 

the two layer is neglected. The results may help in the 

selection of proper structural materials concerned with civil 

engineering. The outcomes of the study projects a 

theoretical framework of the proposed model and can reveal 

the propagation characteristics of Love waves with a clear 

insight in exploring the natural resources lying in form of 

mineral deposits beneath the earth’s surface. Moreover the 

results from this investigation can be utilized in designing 

disaster-resistant heavy constructions along the seashores.  
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