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1. Introduction 

 
Vibration control using a tuned mass damper (TMD), 

which is an effective technique that has been verified by 

numerous analytical methods and experiments, has been 

applied to mechanical, automotive, and structural 

applications (Chung et al. 2013a, Li et al. 2012, Moghaddas 

et al. 2011, Wang et al. 2003). In civil engineering, a TMD 

is mounted on the top floor of high-rise buildings to 

mitigate the amplitude of vibrations caused by seismic 

excitations for preventing discomfort or structural failure 

(Rakicevic et al. 2012, Marano and Greco 2011). The 

frequency of a TMD, which commonly includes a mass, a 

spring, and a damper, is tuned to that of the controlled 

building. When the building is excited  by seismic  
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excitations, the seismic energy is transmitted to the TMD 

and dissipated by the damper. Therefore, the damping of the 

TMD is crucial for reducing a large mass damper stroke. 

However, the damping of a TMD cannot be adjusted in real 

time. An excessive mass damper stroke may be introduced 

when the mass damper is subjected to seismic excitation 

whose frequency content is within its operation range. To 

avoid this problem, the hybrid mass damper (HMD) has 

been proposed. 

The HMD is an active device consisting of an actuator 

and a TMD (Soleymani and Khodadadi 2014, Korkmaz 

2011, Chu et al. 2002, 2005). The active force applied to the 

TMD’s mass in real time is computed based on the 

measured structural responses and an appropriate control 

law. As a result, the mass damper stroke can be adaptively 

controlled by the active force. HMDs generally outperform 

TMDs. However, active devices usually need a large 

driving force and a lot of control energy. To create TMDs 

that can be altered in real time and have low control energy, 

some researchers have proposed the semi-active tune mass 

damper (SATMD). 

SATMDs are TMDs integrated with a semi-active (or 

smart) device. The semi-active device is used to adjust the 

parameters of a TMD, such as damping or stiffness, in real 

time. SATMDs thus usually provide an adjustable passive 
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Abstract.  Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical 

methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a 

TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected 

to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has 

been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured 

structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-

controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage 

mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real 

time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an 

identification test for the transfer function of the pivot driving and control systems is proposed. The identification results 

demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is 

about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of 

experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the 

LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. 

Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper 

stroke than that for the passive TMD. 
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force during seismic excitations. The SATMD is different 

from the HMD in that the adjustable passive force is 

produced by regulating the parameters of a TMD with a 

control law. The control energy required for the SATMD is 

thus generally smaller than that of a HMD and SATMDs 

usually outperform TMDs. 

Depending on the adjustable passive parameters of 

semi-active devices, the majority of the state-of-art 

SATMDs can be classified into two types: damping- and 

stiffness-controllable TMDs. For damping-controllable 

TMDs, the damper of a TMD is replaced by a magneto-

rheological (MR) damper, whose damping force is adjusted 

by controlling the damper’s inner magnet field (Ito et al. 

2015, Lin et al. 2013, Kang et al. 2011). The damping of a 

harvester damper, an electromagnetic device that transforms 

mechanical vibration into electrical energy, is adjusted by 

altering inner resistance (Gonzalez-Buelga et al. 2014, Liu 

et al. 2013). The friction force of a variable-friction damper 

is adjusted by altering the clamping force of a passive 

friction damper (Lin et al. 2010, 2012). Damping-

controllable TMDs are often used to reduce the excessive 

mass damper stroke. Chung et al. (2013b) implemented a 

variable-friction device to control the phase of a TMD for 

minimizing the off-tuned problem. 

Several semi-active devices have been used in stiffness-

controllable TMDs. The stiffness of a semi-active variable-

stiffness device is adjusted by altering the angle of the 

springs, which are arranged in a rhombus shape (Deshmukh 

and Chandiramani 2014, Majcher 2014, Nagarajaiah and 

Sonmez 2007, Nagarajaiah and Varadarajan 2005). The 

frequency of an adaptive-length pendulum smart-tuned 

mass damper is adjusted by changing the current in a shape-

memory alloy (SMA) wire or the effective length of the 

SMA wire (Pasala and Nagarajaiah 2014). The concept of a 

stiffness-controllable TMD is to adjust the stiffness (the 

tuned frequency) of the TMD to achieve better control 

performance. Moreover, the stiffness of a resettable 

variable-stiffness damper (RVSD) is switched on and then 

off at a large stroke (Lin et al. 2015, Chey et al. 2010). By 

resetting the stiffness of the TMD, the stored seismic energy 

can be dissipated. 

The damping or stiffness of SATMDs is adjusted to 

achieve better control performance. In addition, the 

feasibility of some SATMDs introduced above are 

experimentally verified because the SATMDs consist of a 

control system with a control law and are more complex 

than passive devices. Chu et al. (2017) proposes a stiffness-

controllable TMD called the leverage-type stiffness-

controllable mass damper (LSCMD). The stiffness of the 

LSCMD is made adjustable by implementing a leverage 

mechanism with a movable pivot. The previous study 

demonstrated the LSCMD, HMD, and passive TMD were 

equally effective in reducing the story drift of the controlled 

structure; however, the LSCMD required less demand on 

the damper stroke than the passive TMD did. The LSCMD 

shows better control performance in numerical simulation. 

To experimentally verify the theoretical model and control 

performance of the LSCMD, the objective of this paper is to 

conduct a shaking-table test for the proposed LSCMD. 

The rest of this paper is organized as follows. The 

concept and modeling of the LSCMD are introduced in 

Section 2. The equation of motion of the LSCMD and a 

numerical analysis method for the LSCMD system are 

given in Section 3. Section 4 describes the control law for 

the LSCMD. Sections 5 and 6 describe the prototype 

LSCMD and shaking-table test, respectively. The test 

results and control performance verification of the 

prototype LSCMD are discussed in Section 7. The 

conclusions are given in Section 8. 

 

 

2. Leverage-type stiffness-controllable mass damper 
 
2.1 Concept of LSCMD 
 
In this section, the basic concept of the LSCMD is 

introduced. Fig. 1 depicts the leverage mechanism of the 

LSCMD, which includes a lever arm (member AC) and a 

moveable pivot (point P). Points A and C (the ends of the 

lever arm) are connected to a spring with a constant 

stiffness kd0 attached to a building and a mass damper, 

respectively. The fixed coordinate system in Fig. 1 has its 

origin in the middle of the lever arm. In Fig. 1, xds(t) 

represents the mass damper stroke of the LSCMD; xd0(t) is 

the deformation of the spring; L is the original length of the 

lever arm; xp(t) is the displacement of pivot point P; Fp(t) is 

a force required for driving the pivot. The length of the 

lever arm must be adjustable (e.g., telescopic) to fulfill the 

following conditions: (1) points A and C are constrained to 

move parallel to the Y-axis; (2) point P is constrained to 

move in the X direction. With this configuration, the 

equivalent stiffness of the LSCMD at point C is greater than 

the constant stiffness kd0 when the displacement of pivot 

point P is in the positive direction (xp(t)>0); it is less when 

the displacement of pivot point P is in the negative direction 

(xp(t)<0). Therefore, the equivalent stiffness kd(t) of the 

LSCMD can be adjusted by varying the displacement of 

pivot point P. A stiffness-controllable TMD is thus realized. 

 

 

 
Fig. 1 Leverage mechanism 
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2.2 Modeling of LSCMD system 
 
The governing equation of the LSCMD is derived in this 

section. Fig. 2 illustrates the mathematical model of the 

LSCMD system, where md and cd denote the mass and 

damping coefficient of the LSCMD, respectively; xs(t) 

denotes the story drift of the structure; ks and cs denote the 

stiffness and damping coefficients of the structure, 

respectively; )(txg
  denotes the ground acceleration. Note 

that the equivalent stiffness kd(t) of the LSCMD is further 

divided into two parts 

))(()( 0 txkktk pddd            (1) 

where Δkd(xp(t)) represents a variable stiffness increment, 

which is related with the pivot displacement xp(t). In the 

physical world, the equivalent stiffness kd(t) must be 

positive, but the variable stiffness increment Δkd(xp(t)) can 

be either positive or negative. Thus, the controllability of 

the equivalent stiffness kd(t) of the LSCMD can be 

achieved. As shown in Figs. 1 and 2, the dynamic behavior 

of the LSCMD system can be described by a total of 4-

degree-of-freedom (DOF), containing xs(t), xds(t), xd0(t), and 

xp(t). The geometric relationship shown in Fig. 1 between 

xds(t) and xd0(t) can be given as 

)()
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txL
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d



          (2) 

Consequently, the 4-DOF of the LSCMD system are 

reduced to three (xs(t), xds(t), and xp(t)). Next, after knowing 

the total number of DOFs, the governing equation of the 

LSCMD system can be derived by using Lagrange’s 

equation of motion which can be expressed as 

k

k k

d
( ) Q

dt q q

 
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 

£ £

  

(k=1, 2, 3)       (3) 

where £ =(T-V) represents Lagrangian with T and V 

represents the total kinetic energy and potential energy of 

the system, respectively, i.e. 

 

 

 
Fig. 2 Mathematical model of LSCMD system 
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Also, in Eq. (3), qk represents the k
th

 DOF in a 

generalized coordinate system, and Qk represents 

corresponding non-conservative force for the k
th

 DOF. If 

q1=xds, q2=xs and q3=xp are assigned, we have 

1 d dsQ c x  , 2 s sQ c x  , 
3 pQ F      (6) 

Substituting Eqs. (4)-(6) in Eq. (3), it shall lead to the 

following governing equations for the LSCMD system 
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In Eq. (7), M, C, and K represent the mass, damping, 

and stiffness matrices of the LSCMD system, respectively; 

uc(t) represents the semi-active control force; s  and r  

represent the semi-active control force and seismic force 

placement vectors, respectively. Note that in vector x(t), 

xs(t) represents the story drift of the structure, and xds(t) 

represents the mass damper stroke of the LSCMD instead of 

relative-to-ground displacement. Fp(t) represents the driving 

force of the pivot. As shown in Eq. (1), the equivalent 

stiffness kd(t) of the LSCMD is divided into two parts. 

Therefore, the matrix K contains the constant stiffness kd0 

and the variable stiffness increment Δkd(xp(t)) is treated as 

the source of the semi-active control force. The semi-active 

control force uc(t) shown in Eq. (7) can be expressed as 

)())(()( txtxktu dspdc           (11) 

The relation between the variable stiffness increment 

Δkd(xp(t)) and the pivot displacement xp(t) can be described 

as (Lu et al. 2012) 
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3. Numerical analysis method for LSCMD system 
 
In this section, a numerical analysis method that 

considers control delay time is introduced. First, Eq. (7) can 

be rewritten as a continuous-time state-space equation 

)()()()( dccgcc ttutxtt  SEzAz     (13) 
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z(t) is a 4×1 state vector; Ac is a 4×4 continuous-time 

system state matrix; Ec is a 4×1 continuous-time seismic 

force placement matrix; Sc is a 4×1 continuous-time semi-

active control force placement matrix. Note that uc(t-td) 

represents a delayed semi-active control force and td 

represents the delay time of the semi-active control force. In 

order to simulate responses of the LSCMD system in 

discrete time, the continuous-time state-space equation 

shown in Eq. (13) must be transformed into a discrete-time 

equation. Chu et al. (2005) proposed a discrete-time state-

space equation that considers control delay time. According 

to the study, the discrete delay time td and the discrete-time 

state-space equation of the LSCMD system can be 

respectively written as 

( )dt m t               (15) 
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In the above equations, Δt is the sampling time of the 

system; ( 1 , N ) is an integer that denotes the 

integer part of the delay time; m ( 0 1m  , Rm ) is a 

real number that denotes the decimal part of the delay time; 

k is the time step; Ad represents the discrete-time system 

state matrix; Ed represents the discrete-time seismic force 

placement matrix; Sd1 and Sd2 represent the discrete-time 

control force placement matrices, which are related with the 

power of Ad to the order of the real number m. 

 

 

4. Control Law for LSCMD 
 
Eqs. (11) and (12) show that the semi-active control 

force uc(t) is related to the pivot displacement xp(t). The 

determination of the pivot displacement xp(t) is explained in 

this section. Chu et al. (2002, 2008) proposed a semi-active 

control law based on the discrete-time direct output-

feedback optimal control algorithm with delayed control 

force. Similar to LQR control, the proposed feedback gain 

matrix is determined by using an iterative method to solve 

simultaneously Lyapunov equations that consider the 

control delay time. Then, the semi-active control law is 

used to determine an active force ][ku  

[ ] [ ]u k kGDz              (19) 

where G represents a feedback gain matrix computed based 

on the proposed active control law and D represents a 

sensor placement matrix. Then, the active force ][ku  

shown in Eq. (19) is treated as the target control force for 

the LSCMD and assumed to be equal to the semi-active 

control force uc[k]. The target stiffness increment ][kkd  

is determined as the active force ][ku  divided by the mass 

damper stroke xds 
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Note that xds[k-1] (delay of one step) is the mass damper 

stroke at the k-1 time step. The delay time of sensors is thus 

considered. Moreover, Eq. (12) can be rewritten as 
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The target pivot displacement )(txp  can be solved 

using Eqs. (20) and (21). However, the target pivot 

displacement ][kxp  shown in Eq. (21) is an ideal value. 

The pivot displacement xp[k] may not be able to achieve the 

target pivot displacement ][kxp  in practice. The pivot 

displacement xp[k] should to be limited as 
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Fig. 3 Driving and control systems of prototype LSCMD 
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where xp,max and xp,min represent the upper and lower bounds 

of the pivot displacement, respectively. The pivot 

displacement xp[k] of the LSCMD can be determined by 

using Eqs. (20)-(22). 

 

 

5. Prototype LSCMD 
 
5.1 Prototype LSCMD 
 
Fig. 3 depicts the leverage mechanism of the prototype 

LSCMD and its driving and control systems. The driving 

system drives the pivot to a target position. The components 

of the system are: a servo motor, a lead screw, and a linear 

bearing. The servo motor provides a torsional force to the 

lead screw, which drives the pivot to a target position. The 

linear bearing constrains the movement direction of the 

pivot. The control system sends pivot displacement 

commands to the driving system. The components of the 

control system are: a computer, a data conversion card, and 

a servo motor controller. The data conversion card 

(installed in the computer) converts analog signals to digital 

signals or vice versa. The computer computes the pivot 

displacement command based on the converted measured 

structural responses and the proposed control law and sends 

it to the servo motor controller through the conversion card. 

Fig. 4 shows the motor controller of the prototype 

LSCMD. As shown, the servo motor controller consists of a 

programmable logic controller (PLC), a servo motor driver, 

and a power supply. The PLC is to transform the received 

control signal which is an analog voltage between +10V 

and -10V into a pulse command. Then, the pulse command 

is sent to the servo driver to generate a pulse signal which is 

used to drive the servo motor. 

 

5.2 Identification of driving and control systems 
 

As described above, the pivot displacement of the 

prototype LSCMD is to determine the stiffness increment 

Δkd. Therefore, the performance of the driving and control 

systems is very important for the prototype LSCMD. A 

transfer function (or called frequency response function) 

which describes the relation between input and output 

signals can be utilized. To identify the transfer function 

 

 

 
Fig. 4 Servo motor controller of prototype LSCMD 

of the driving and control systems, the white-noise signal is 

adopted to the systems as control command xp,r while the 

pivot displacement xp,m is measured. The time histories of 

the control command xp,r and measured pivot displacement 

xp,m of a test are shown in Fig. 5, respectively. The 

bandwidth of the white noise shown in Fig. 5(a) is 0-50 Hz. 

By taking Fourier transforms of xp,r and xp,m, the transfer 

function H(ω) of the system can be computed by 
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where, H(ω) is complex number and the phase angle ϕH can 

be determined by 

))((Re
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(24) 

where, Re(H(ω)) and Im(H(ω)) represents the real part and 

image part of H(ω), respectively. Fig. 6 illustrates the 

corresponding identified results. Subplots (a) and (b) is the 

normalized amplitude and phase angle of the identified 

transfer function. In ideal condition, the normalized 

amplitude is 1 and the phase angle is zero. This means the 

control system can exactly achieve the control command. 

As shown in Fig. 6(a), the driving system can function 

normally in 0-1 Hz and Fig. 6(b) shows the delay time of 

the driving system is about 0.1 s. 
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(b) Measured pivot displacement 

Fig. 5 Time histories of input and output signals of driving 

and control systems 
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(a) Normalized amplitude 

 

(b) Phase angle 

Fig. 6 Identification transfer function results of Fig. 5 

 
 

6. Shaking-table test for prototype LSCMD 
 
To experimentally verify the derived discrete-time state-

space equation in Section 3 and the feasibility of the 

LSCMD, a shaking-table test was thus conducted for a 

prototype LSCMD fabricated based on the concept given in 

Section 2. The shaking-table test setup, the design of 

feedback, and the selection of ground excitations are 

described in this section. 

 
6.1 Test setup 
 
Fig. 7 shows a photograph of the shaking-table test 

system for the LSCMD system. The LSCMD system 

consists of the prototype LSCMD and a rolling structure. 

The rolling structure includes a mass block, four rolling 

wheels, and four curved rail bearings. Table 1 lists the 

identified system parameters of the rolling structure, passive 

TMD and the prototype LSCMD, respectively, which were 

obtained from system identification tests before the 

shaking-table test. These parameters were also used for 

calculating the optimal control gain described in Section 4 

and the numerical simulations. As shown in Table 1, the 

natural frequency of the rolling structure is identified to be 

0.37 Hz, which is common for a high-rise structure. Note 

that the friction effect of the rolling structure is considered 

as an equivalent viscous damping ratio of 2%. To determine 

the frequency ratio and damping ratio for the passive part of 

the prototype LSCMD, the optimization formulas proposed 

by Warburton (1982) are utilized 

(1 0.5 )

1

D

opt

D










, 

)5.01)(1(4

)25.01(
,

dd

dd
optd









 (25) 

Using Eq. (25), the optimal frequency ratio γopt and the 

damping ratio ζd,opt with a mass ratio of 0.1 are 0.89 and 

15%, respectively. The identified frequency ratio of the 

LSCMD shown in Table 1 is 0.87. The friction effect of the 

prototype LSCMD system is also identified as an equivalent 

viscous damping ratio of 17%. Both values (0.87 and 17%) 

are close to the optimal parameters. Therefore, the 

unactivated LSCMD (i.e., xp(t)=0) is approximately an 

optimal passive TMD system. The combined modal 

frequencies and modal damping ratios of the unactivated 

LSCMD are also tabulated in Table 1. Moreover, for 

practical concerns, the range of pivot displacement is 

restrained by the upper bound xp,max and lower bound xp,min 

to prevent the instability caused by the driving system.  

The instrumentation of the prototype LSCMD for the 

shaking-table test is also shown in Fig. 7. Velocity sensors 

and accelerometers were installed on the rolling structure 

 

 

Table 1 Parametric values of LSCMD system 

 Parameter Value 

Rolling 

structure 

Mass, sm (kg) 580 

Damping coefficient, cs (N.s/m) 53.93 

Stiffness, sk  (N/m) 3134.70 

Damping ratio, s (%) 2 

Natural frequency, s (Hz) 0.37 

Passive 

TMD 

(unactivated 

LSCMD) 

Mass ratio, sdd mm /  0.1 

Damping ratio, d  (%) 17 

Spring stiffness, 0dk  (N/m) 236.17 

Frequency ratio, sd  /  0.87 

Modal frequencies 1

2





 
 
 

(Hz) 
0.3

0.4

 
 
 

 

Modal damping ratios 1

2





 
 
 

(%) 
9

9

 
 
 

 

LSCMD 

Length of lever arm, L (m) 0.274 

Range of frequency ratio,  

(γmin, γmax)  
(0.71, 1.06) 

Range of controllable stiffness, 

(kd,min, kd,max)  

(0.67kd0, 

1.4965kd0) 

Range of pivot displacement, 

(xp,min, xp,max) (m) 

(-0.0137, 

0.0138) 
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Fig. 7 Setup of shaking-table test for LSCMD system 

 

 

and the prototype LSCMD. Moreover, an accelerometer 

was installed on the shaking table to measure the ground 

acceleration. Linear variable differential transformers 

(LVDTs) were installed to measure the pivot displacement 

xp, the LSCMD stroke xds, and the story drift xs of the 

rolling structure. 

 

6.2 Design of feedback gains 

 

The control method described in Section 4 (see Eqs. 

(20) and (21)) computes the target pivot displacement 

)(txp  with a feedback gain matrix G. Table 2 shows the 

control parameters of the LSCMD, which include the 

design parameters and the determined discrete-time control 

gain matrix G .The chosen control delay time td of the 

LSCMD is 0.1 s, which was obtained from the identified 

transfer function described in Section 5.2. In the design of 

the weight matrix Q, both of the potential energy and 

kinetic energy can be chosen. However, the objective of the 

LSCMD is to mitigate the peak stroke and story drift which 

are related to the potential energy. Therefore, only the 

potential energy is considered in the weight matrix Q. The 

LQR control using full state feedback may be a challenge 

for a structural system with a large number of DOFs, 

because a large amount of sensors is required for computing 

the control force. For this reason, a LQR control with direct 

output-feedback which requires only some choosed state 

variables of the controlled system is more suitable. In this 

study, the LSCMD stroke and its velocity are selected to be 

the feedback measurements of the controlled system. In the 

case, the sensor placement matrix for the LSCMD is 

0 1 0 0

0 0 0 1

 
  
 

D               (26) 

 

6.3 Selection of ground excitations 
 

The following two types of ground excitation were 

considered in the experiment: (1) white-noise earthquake  

(peak ground acceleration (PGA)=120 gal); (2) 1999 

Table 2 Control parameters of LSCMD 

Parameter Value 

Weighting factors 

used in LQR 

controller design 

Q  








00

0K
 

R  10-4 

Control delay time, dt  (s) 0.1 

Control gain matrix, G  [N/m, N·s/m] [8.6319, -9.8663] 

 

 

Chi-Chi (station TCU076) earthquake (PGA=120 gal). The 

allowable mass damper stroke of the prototype LSCMD is 

limited about 100 mm, so the PGA of the ground excitations 

is considered based on the stroke limitation. The 

experimental results of the passive TMD under the white-

noise and Chi-Chi earthquakes are used to verify the 

optimal parameters of the passive TMD which are derived 

for white-noise earthquakes (Warburton 1982). The 

comparisons of experimental results under the two 

earthquakes between the passive TMD and the LSCMD are 

used to verify the control performance of the LSCMD. Figs. 

8 and 9 depict the waveforms and frequency spectra of the 

two earthquakes which are the measured ground 

accelerations in the shaking-table test, respectively Fig. 8 

shows that the ground motion of the white-noise earthquake 

has high intensity in the frequency range of 1-30 Hz. Fig. 9 

shows that the ground motion of the Chi-Chi earthquake has 

high intensity in the frequency range of 1-10 Hz. 

 
 

 
Fig. 8 Time histories and frequency spectra of white-

noise earthquake (PGA=120 gal) 

 

 
Fig. 9 Time histories and frequency spectra of 1999 Chi-

Chi (TCU076) earthquake (PGA=120 gal) 
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7. Test results and discussion 
 
7.1 Comparison of experimental and simulating 

results 
 
In this section, a comparison of the experimental and 

simulating results is conducted to verify the proposed 

LSCMD theoretical model and numerical analysis method. 

The simulating results are obtained using the numerical 

analysis method described in Section 2 and the parameters 

listed in Tables 1 and 2. The sampling rate used in the 

numerical analysis is 200 Hz, which is the same as that of 

the data acquisition system in the shaking-table test. 

Figs. 10 and 11 compare the simulating results and 

experimental results for the white-noise and Chi-Chi 

earthquakes, respectively. The figures show the time 

histories of the story drift xs(t), mass damper stroke xds(t), 

pivot displacement xp(t), and the hysteresis loop of the 

LSCMD, which represents the relationship between xds(t) 

and the semi-active control force uc(t). The semi-active 

control force uc(t) was computed from the measured pivot 

displacement and mass damper stroke (see Eqs. (11) and 

(12)). 

Figs. 10 and 11 show that: (1) in subplots (a) and (b), the 

experimental results of the LSCMD system can be 

simulated by the theoretical model; (2) in subplot (c), the 

pivot displacement can be manipulated as expected by the 

control law during the whole control process; (3) in subplot 

(d), the compatible results prove that the semi-active control 

force uc(t) and variable stiffness increment Δkd(t) are 

regulated by controlling the pivot displacement xp(t), even if 

there is a minor deviation between the experimental and 

simulating hysteresis loops of the LSCMD. Additionally, 

the equivalent damping does not cause a larger deviation in 

the system’s responses, as shown in subplots (a) and (b). 

The pivot is driven by the servo motor, the major drawback 

is the servo motor produced a large amounts of electrical 

noise which are high frequency signals and interfere with 

sensor signals. The high frequency and small amplitude 

oscillation shown in the experimental results of a long-

period structure may be caused by the electrical noise. 

 

 

 

(a) Story drift 

Fig. 10 Comparison of simulating and 

experimental results for LSCMD 

(white-noise earthquake, PGA=120 gal) 

 
(b) Mass damper stroke 

 

(c) Pivot displacement 

 
(d) Hysteresis loop 

Fig. 10 Continued 

 

 

(a) Story drift 

Fig. 11 Comparison of simulating and 

experimental results for LSCMD 

(Chi-Chi (TCU076) earthquake, PGA=120 gal) 
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(b) Mass damper stroke 

 

(c) Pivot displacement 

 
(d) Hysteresis loop 

Fig. 11 Continued 

 

 

Fig. 12 compares the commanded and measured pivot 

displacements for the same tests in Figs. 10 and 11. Even 

there is a spike in the vicinity of 1.3 Hz of the identified 

normalized amplitude as shown in Fig. 6(a), Fig. 12 

demonstrates that the measured pivot displacement is able 

to closely follow the control command determined by the 

control law. Although the minor oscillation can be observed 

in the pivot displacement that may be amplified due to the 

noise, the upper and lower bounds of the pivot displacement 

can be regulated well since the dominated frequencies of 

the LSCMD stroke and its velocity are within the vicinities 

of 0.3 Hz and 0.4 Hz as tabulated in Table 1, respectively. 

This proves that the driving and control systems have good 

performance for the current long-period (0.37 Hz) 

specimen, further lead-lag compensator can be adopted to 

improve the undesirable frequency responses when a short-

period main structure specimen will be used. In the  

 

(a) White-noise earthquake 

 
(b) Chi-Chi (TCU076) earthquake 

Fig. 12 Comparison of command and measured 

pivot displacement. 

 

 

following section, the control performance of the LSCMD 

will be evaluated. 

 

7.2 Evaluation of LSCMD control performance 
 
In order to evaluate the control performance of the 

LSCMD, the experimental results of the prototype LSCMD 

are compared with those of a passive TMD system. The 

parameters of the passive TMD system, which are the same 

as those of the LSCMD (see Tables 1 and 2), were tested 

using a shaking table with the same earthquakes. Figs. 13 

and 14 show the time history comparisons of the LSCMD 

and passive TMD systems under the two earthquakes, 

respectively. The story drift xs(t) is shown in subplot (a) and 

the mass damper stroke is shown in subplot (b). As 

indicated in Figs. 13 and 14, the LSCMD and passive TMD 

systems have almost the same peak story drift. However, 

the peak strokes of the LSCMD (77 and 57 mm), shown in 

Figs. 13(b) and 14(b), are suppressed than those of the 

passive TMD (90 and 66 mm) by about 14 %. This 

demonstrates that the mass damper stroke of the LSCMD 

was successfully alleviated by adjusting the LSCMD 

stiffness with the active control law. However, the control 

performance of the LSCMD is not significant because of 

the large damping at its passive mode. The same 

conclusions can be found in a detailed numerical 

investigations (Chu et al. 2017). 

Because the limitation of the LSCMD stoke, the 

LSCMD with large PGA earthquakes can not be tested. To  
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Table 3 Comparison of peak and RMS responses for 

different TMD systems 

Earthquake System 

Responses* 

Story drift 

sx (mm) 

TMD stroke 

dsx (mm) 

Peak RMS Peak RMS 

White Noise 

(PGA = 

300gal) 

Uncontrolled 
247 

(1.00) 

91 

(1.00) 
-- -- 

Passive TMD 
101 

(0.41) 

40 

(0.44) 

249 

(1.00) 

99 

(1.00) 

LSCMD 
108 

(0.44) 

41 

(0.45) 

231 

(0.93) 

86 

(0.87) 

Chi-Chi 

TCU076 

(PGA = 

300gal) 

Uncontrolled 
106 

(1.00) 

34 

(1.00) 
-- -- 

Passive TMD 
87 

(0.82) 

19 

(0.56) 

178 

(1.00) 

50 

(1.00) 

LSCMD 
89 

(0.84) 

19 

(0.56) 

156 

(0.88) 

42 

(0.84) 

El Centro 

(PGA = 

300gal) 

Uncontrolled 
370 

(1.00) 

189 

(1.00) 
-- -- 

Passive TMD 
224 

(0.61) 

63 

(0.33) 

560 

(1.00) 

187 

(1.00) 

LSCMD 
237 

(0.64) 

72 

(0.38) 

473 

(0.84) 

167 

(0.89) 

Northridge 

(PGA = 

300gal) 

Uncontrolled 
341 

(1.00) 

137 

(1.00) 
-- -- 

Passive TMD 
230 

(0.67) 

57 

(0.42) 

573 

(1.00) 

143 

(1.00) 

LSCMD 
231 

(0.68) 

59 

(0.43) 

491 

(0.86) 

123 

(0.86) 

*A value in parenthesis represents the response ratio of a 

specific system over the uncontrolled or passive response 

 

 

(a) Story drift 

 
(b) Mass damper stroke 

Fig. 13 Comparison of LSCMD and passive TMD 

(white-noise earthquake, PGA=120 gal) 
 

 

(a) Story drift 

 
(b) Mass damper stroke 

Fig. 14 Comparison of LSCMD and passive TMD 

(Chi-Chi (TCU076) earthquake, PGA=120 gal) 

 

 

verify the control performance of the prototype LSCMD, 

the responses of the LSCMD system under four types of 

earthquakes with PGA=300 gal are simulated. The four 

types of recorded ground excitations includes (1) White 

Noise and 1999 Chi-Chi earthquake which are recorded in 

the shaking table tests; (2) 1940 El Centro earthquake and 

1994 Northridge earthquake which are the famous far-field 

and near-fault earthquakes. Table 3 compares the peak and 

root-mean-square (RMS) response values of the three 

systems: uncontrolled, the passive TMD and the LSCMD. 

As shown in Table 3, a value in parenthesis represents the 

peak and RMS response ratio of a specific system over the 

uncontrolled or passive response. The table indicates that 

(1) both passive TMD and LSCMD systems have almost 

the same reduction on peak and RMS story drift by about 

16%-59% in the four earthquakes; (2) when compared to 

the passive TMD system, the LSCMD is able to reduce the 

peak and RMS TMD stroke by about 7%-16%. This shows 

that even with the inherent damping ratio 0.17, a better 

performance on TMD stroke reduction still can be achieved 

by the LSCMD. 

 
 

8. Conclusions 
 

In order to verify the feasibility of a SATMD under 

earthquake excitations, a variable-stiffness tuned mass 

damper that utilized a leverage mechanism was fabricated 

and tested by a shaking-table test in this study. The 
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proposed LSCMD has a lever arm with a movable pivot. 

The ratio of the lever arm can be varied by adjusting the 

pivot displacement. As a result, the equivalent stiffness of 

the LSCMD can be controlled in real time, making the 

LSCMD more adaptive than a passive TMD. Before 

performing the shaking-table test, the system parameters 

and the transfer function of the LSCMD were identified. An 

active control law (the optimal control with direct output-

feedback and consideration of the control delay time) was 

implemented to compute the target semi-active force, which 

is used to determine the target pivot displacement for the 

LSCMD. The comparisons of experimental and theoretical 

results of the LSCMD system demonstrate that the shaking-

table results of the LSCMD system can be simulated by the 

theoretical model and the time histories of both the story 

drift and mass damper stroke are predicted well. The 

comparisons of the LSCMD and passive TMD system 

demonstrate that the LSCMD led to less demand on the 

damper stroke than the passive TMD did. 
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