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Abstract.  Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play 

an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded 

signals that are from the same source. However, those methods are subjected to the noise effect, particularly 

when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic 

monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the 

measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the 

similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant 

associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the 

location of micro-seismic event can be identified. Individual and statistical identification tests are performed 

with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach 

significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to 

several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods. 
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1. Introduction 
 

Since underground mines continue to evolve at deeper levels with an increasing strength of 

mining activities, a large number of mines all over the world have suffered adverse impacts of 

micro-seismic vibrations. Most micro-seismic activities in mines cannot be felt distinctively. 

However, they actually occur widely and frequently, associated closely with the mining 

engineering activities and the surrounding environment. They may result in the significant 

economic losses, engineering structural damage, and even the gas and coal dust explosion 

(Chalmers 2013, Dong et al. 2014, Zhao et al. 2015, Li et al. 2015a). The successful detection and 

location prediction of micro-seismic activities are of vital importance to ensure the normal 

operation and safety of mines. 

Micro-seismic monitoring in mines is a common way to investigate and control mine disasters. 

It could predict the possible location of mine disasters by monitoring the vibration of mines in real 
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time with arranged sensors (Li et al. 2015b, Li et al. 2016). Among the many micro-seismic source 

locating methods, the method based on Time Delay of Arrival (TDOA) is the most popular one. 

The main idea and procedure behind these methods are that the location of the micro-seismic event 

is determined through analysing the delay in arrival times of recorded seismic waves at spatial 

sensor locations and correlating these delay times with the wave propagation velocity and the 

spatial coordinates of the sensors. Therefore determining the accurate arrival time at each sensor 

and the time delay between seismic wave arrivals at multi sensors are essential for reliably locating 

the micro-seismic source. 

In actual in-situ micro-seismic monitoring, it is often impossible to obtain the precise location 

of every micro-seismic event because there are numerous micro-seismic event records in every 

minute and usually there is no continuous service to immediately examine the site condition and 

determine the true source location. The general engineering practise to define the reference 

location of the micro-seismic event is based on the calculation with the assumed speed model and 

calculated TDOA, which is traditionally determined by the experienced in-situ experts and analyst 

(Saragiotis et al. 2004). 

On the other hand, the automatic methods for identifying TDOA become popular in recent 

decades. There are two different categories of automatic methods, namely, the absolute method 

and the relative method. The absolute method is based on picking up the absolute arrival time of 

the first arrival wave from different sensors. TDOA is obtained as the difference between the 

absolute arrival time instants. To reliably pick up the arrival time instants from recorded noisy 

signals, various techniques have been proposed. The commonly used methods include the neural 

network algorithm (McCormack et al. 1993, Yuksel and Yarar 2015), the fractal dimensions 

techniques (Boschetti et al. 1996, Jiao and Moon 2012), the short time average over long-time 

average ratio (STA/LTA) method, the modified energy ratio technique (Wong et al. 2009, Munro 

2004, Han et al. 2010), etc. The reliability of these approaches is dependent on the accuracy of 

picking up the arrival time instants, sensor network geometry, and the wave propagation velocity 

(Pavlis 1986, Gomberg et al. 1990).  

The relative methods do not require the detection of the absolute arrival time of measured 

waves. TDOA is obtained based on the similarity of two signals that are from the same or 

proximal source. The relative method is developed firstly in the field of analyzing the acoustic 

wave source (Knapp and Carter 1976). In a subsequent study that characterized the similarity of 

the waveforms by cross-correlation function, it was found that when the correlation value is the 

maximum, the time offset is most likely the time delay between the two analysed wave records 

(Carter 1987). The latter study is probably the first time TDOA is calculated by the relative 

method. It was called time delay estimation (TDE) at that time. In the recent two decades, the 

relative method has been applied widely in different areas (Jiang et al. 2013, Zhong et al. 2014, 

Nistor and Buda 2015, Huang and Benesty 2007), such as geophysics, seismology, acoustic, 

satellite navigation, radio, radar, sonar, and ultrasonics. Most of the relative methods for 

identifying TDOA, such as the double-difference algorithm (DDA) (Waldhauser and Ellsworth 

2000), the generalized cross-correlation (GCC) (Knapp and Carter 1976) and generalized cross 

correlation with phase transform (GCC-PHAT) (Kwon et al. 2010), evaluate the similarity of two 

signals by means of the correlation function or cross covariance. The difference in these methods 

lies on adding up the different filtering processing to improve the location identification accuracy, 

such as Fourier technique (Knapp and Carter 1976, Carter 1987, Huang and Jacob 2001), 

autocorrelation filter (He and Zhao 2010) and wavelet technique (Kwon and Chan 1998, Xing et 

al. 2002, Law et al. 2013). The combination of cross-correlation function and Fourier transform 
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allows the analysis of the signals in both the frequency and time domains (Knapp and Carter 1976, 

Carter 1987, Huang and Benesty 2007). This approach reduces the source locating error to a 

certain extent but it can only perform the analysis in the global scale. This limits the accuracy of 

the method in locating the micro-seismic source because one of the most obvious characteristics of 

micro-seismic signals is the non-stationarity and randomness (Xing et al. 2002, Correig and 

Urquizú 2002, Sobolev et al. 2005). The multiple correlation method reduces the influence of 

noise to some extent by using the autocorrelation for computing the cross-correlation. To improve 

the accuracy in locating the micro-seismic source, the wavelet transform correlation based method 

for identifying the TDOA was proposed. The approach is a kind of multi-scale analysis approach 

(Kwon and Chan 1998). Moreover, the combined method could also analyse the signals in both the 

frequency and time domains. Wang and Chu (2001) decomposed the original acoustic signal into a 

series of time-domain signals, and then calculated the cross-correlation between the decomposed 

signals. This method analysed the signals in a specific frequency band, but the time-frequency 

information has not been fully used in the similarity analysis for the determination of the rubbing 

locations. 

TDOA estimation methods based on correlation function analysis play an important role in the 

micro-seismic event monitoring, which make use of the similarity in the recorded signals that are 

from the same source. However, those methods are subjected to the noise effect, particularly when 

the global similarity of the signals is low. This paper proposes a new approach for micro-seismic 

monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse 

the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to 

measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. 

The offset time instant associated with the maximum cross wavelet transform spectrum power is 

identified as TDOA, and then the location of micro-seismic events can be identified. Individual 

and statistical identification tests are performed with measurement data from an in-field mine. 

Identification results demonstrate and compare the robustness and accuracy of the proposed 

approach in locating micro-seismic source in mines with several existing methods such as, cross-

correlation, multi-correlation, STA/LTA and Kurtosis methods.  

 

 

2. Theoretical background of traditional methods 
 
P-wave and S-wave are body waves travelling within the Earth. The difference in arrival time 

of waves can be used to locate a seismic event like an earthquake. P-wave has the highest velocity 

and is therefore the first wave to be recorded. Therefore, P-wave is normally used for micro-

seismic monitoring in mines. Assuming that the travelling speed of the P-wave due to the micro-

seismic event is constant in a homogeneous isotropic medium, Eq. (1) can be obtained for each 

sensor based on the fundamental theory of wave propagation 

       ttvzzyyxx iiii 
222                     (1) 

where (xi, yi, zi) and (x, y, z) denote the spatial coordinates of the ith sensor and the micro-seismic 

source, respectively; v denotes the travelling speed of the P-wave; t and ti respectively represent 

the time instants of the micro-seismic event and the arrival time of the P-wave at the ith sensor 

location. 

Subtracting two equations corresponding to sensors i and j in the form of Eq. (1), Eq. (2) is  
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Sensors Identified event location

1

2

Hyperbola  determined by 

sensors #1,#2

3

Hyperbola  determined by sensors #2,#3

Hyperbola

τ1 τ2

τ1-τ2= constant

(a) (b)

21

 
Fig. 1 The schematic illustration (a) a hyperbola determined by two sensors and their TDOA (b) micro-

seismic event location identification with TDOA in a planar space 

 

 

obtained as  

             jijjjiii ttvzzyyxxzzyyxx 
222222

         (2) 

The propagation speed of the P-wave and the spatial coordinates of those two sensors are 

usually available in practice. The most critical thing in solving Eq. (2) for determination of the 

seismic source coordinates is the accuracy of estimating the arrival time difference (ti-tj), which is 

TDOA. From Eq. (2), a hyperbola trajectory can be obtained with the two sensor locations 1, 2 as 

the foci, as shown in Fig. 1(a). The source location of the micro-seismic event must locate on the 

hyperbolic trajectory so it can be identified by examining the intersection of several hyperbolas. In 

planar space, at least two hyperbolas are needed to determine the source location, as shown in Fig. 

1(b). In the same way, at least three hyperbolas are required to locate the micro-seismic event 

location accurately in a three-dimensional space. In other words, to determine the three unknowns 

x, y, and z in the parabola equation, three independent equations are needed to find the solution. 

Some traditional and typical methods from existing studies will be briefly reviewed here. 

 

2.1 Cross-correlation Method 
 

The cross-correlation method is suitable for identifying and locating the micro-seismic event 

from multi-channel sensor responses. The arrival time instants of both the P wave and S wave can 

be picked up respectively and successively. Cross-correlation function is a real function, which 

could be positive and negative, and can be used to measure the similarity between two signals (Liu 

et al. 2009, Zhang et al. 2013).  

The cross-correlation of two random variables x and y is defined as  

        iyixERxy                             (3) 

where E denotes the expectation in mathematics. For two signals x(i) and y(i) (i=1, 2,..., n), with n 
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equal to the number of data points in the signals, the above formula can be expressed as follows 

      



n

i

xy nyixR
1

i 


                          (4) 

Assuming that s(i) is the true signal from the micro-seismic event, and  x(i) and y(i) are the 

measured signals at the ith and jth sensors respectively, x(i) and y(i) inevitably involve noises and 

can be expressed by adding s(i) with noisy signals w1(i) and w2(i) respectively as  

     iwisix 11                               (5) 

     iwisiy 22                               (6) 

where α and β are two constants related to the wave propagation to those two sensors, τ1 and τ2 are 

the delayed time instants that the wave transmits from the source to those two sensor locations 

respectively. 

Based on the calculation of cross-correlation as shown in Eq. (4), the cross-correlation function 

between x(i) and y(i) can be simplified as follows 

       21   isisERxy                      (7) 

Rxy(τ) would reach the maximum value when τ=τ1-τ2, which means that the delay corresponding 

to the maximum value in the cross-correlation function is the theoretical TDOA between those two 

sensors. 

 

2.2 Multi-correlation method 
 

The above cross-correlation method is not necessarily suitable for non-stationary signals, and 

the noise effect may have a significant influence on the identification accuracy. To overcome this, 

the auto-correlation of signals can be calculated first before obtaining the cross-correlation 

function to suppress the high-frequency noise components in the signals. Through this the white 

noise effect could be eliminated, and the signal-to-noise ratio is improved, which also improves 

the estimation of time delay.  

Considering two signals, x(i) and y(i) as mentioned in Eqs. (5)-(6), the auto-correlation function 

of x(i) and the cross-correlation function of x(i) and y(i), can be expressed respectively as 

      



n

i

xx nkixixkR
1

                          (8) 

      



n

i

xy nkiyixkR
1

                          (9) 

Since micro-seismic signal s(i) is uncorrelated to the noise signal w(i), their cross-correlation 

coefficient is 0. If we define 

      



n

i

njisisjr
1

                            (10) 
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then the following formula can be obtained 

                   
 


n

i

n

i

n

i

xx nkiwiwkirnkiwiwnkisiskR
1 11

   (11)

                   
 


n

i

n

i

n

i

xy nkiwiwkirnkiwiwnkisiskR
1 11

 (12) 

It can be derived from Eqs. (11) and (12), the delay between Rxx and Rxy is τ. Since the 

autocorrelation of the white noise signal w(i) is 0, the signal-to-noise ratio of auto-correlation 

function Rxx(k) and cross-correlation function Rxy(k) is higher than the original signals x(i) and y(i) 

respectively, which makes the estimation of TDOA more accurate. 

 

2.3 STA/LTA method 
 

The above-mentioned methods estimate TDOA with a relative approach, which means that the 

relative difference between the arrival time instants at two sensors is calculated. Short Term 

Averaging/Long Term Averaging (STA/LAT) method belongs to the category of absolute 

methods, where the absolute arrival time of P-wave is identified and TDOA between the arrival 

times at different sensors is obtained by comparing their absolute arrival time instants. STA/LTA 

algorithm is one of the most widely used methods in this category (Earle and Shearer 1994). Two 

different moving time windows along the time axis (one short term and the other long term 

window) are defined, and the corresponding power of the signal within these two time windows 

are calculated to determine the arrival time instant of the micro-seismic event by identifying the 

maximum value in the power ratio of STA/LTA. STA and LTA denote the energies of the 

measured signal due to the micro-seismic events and background signals including noise effect, 

respectively. If the micro-seismic signal is s(i), then STA/LTA at the time instant τ can be 

expressed as 

 

  

  

















LTA

STA

Ni

LTA

Ni

STA

NisCF

NisCF

LTA

STA

/

/

                   (13) 

in which CF is a feature function, which characterizes the amplitude or phase of measured signals 

due to the micro-seismic event, and is usually defined as the absolute value, square or the first 

derivative, etc. The data points in the long term and short term windows are NLTA and NSTA, 

respectively. The merit of this method is the high efficiency, but the selection of the length of the 

time window may affect the estimation accuracy greatly, especially when the noise effect is 

significant. 

 

2.4 Kurtosis method 
 

Kurtosis is a measure of the “tailedness” of the probability distribution of a real-valued random 

variable, which is similar to the concept of skewness. It is a descriptor of the steepness of a 

probability distribution and can be expressed as the fourth standardized moment as follows 
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 
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
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x
xKurt                       (14) 

in which μ(x) and σ(x) are the mean and standard deviation of x respectively. 

The arrival time of the micro-seismic event can be obtained by calculating a series of Kurtosis 

values along a sliding time window of the signal and picking up the time instant corresponding to 

the maximum Kurtosis value (Saragiotis et al. 2002). The disadvantage of this method is that the 

detection is vulnerable to the noise and the selection of the time window. Kurtosis method is a 

kind of absolute method.  

Among the above four existing methods, the first two methods are relative methods, where it is 

not necessary to identify the absolute arrival time of the micro-seismic wave. TDOA can be 

obtained by the maximum value of the cross correlation function of two signals from the same 

source in these two methods. The latter two are absolute methods, where TDOA is calculated 

between the picked absolutely arrival time instants of P wave in the measured signals from sensors 

(Aminzadeh et al. 2011).  

 

 

3. Developed approach based on cross wavelet transform 
 

3.1 Theoretical development 
 

In this study, the source location of a micro-seismic event is identified based on the cross 

wavelet transform. The theoretical background and development of the proposed approach are 

presented here.  

For a discrete signal x(t) (t=1, 2,…, N), the continuous wavelet transform with uniform time 

steps δt can be expressed as the convolution of x(n) with the scaled and normalized mother wavelet 

function 

     












N

t

x

s

t
uttx

s

t
suWT

1

0,





                      (15) 

in which u is the translation parameter, s is the scale parameter. The mother wavelet function is 

defined as Morlet wavelet because of its excellent balance between the time and frequency 

localization especially for characteristic extraction (Grinsted et al. 2004). The Morlet wavelet can 

be expressed as 

 
2

0 2

1

4/1

0





 ee

i
                            (16) 

where ω0 is the wavenumber, in this case, ω0=6. η denotes the non-dimensional time.  

The cross wavelet transform of two signals x(t) and y(t) (t=1, 2,..., N) is calculated as 

     suWTsuWTsuWT yxxy ,,,                         (17) 

where “*” indicates the complex conjugation. The cross wavelet spectrum power is defined as 

 
2

, suWT xy . The complex argument arg(WYxy) can be interpreted as the local relative phase 
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between x(t) and y(t) in time frequency space.  

When using cross wavelet transform to identify TDOA between two signals xi (i=1, 2,..., N) and 

yi (i=1, 2,..., N), which are measured by two sensors S1 and S2 due to a micro-seismic event, it is 

assumed that TDOA between signals xi and yi is of k sampling steps, i.e., S2 detects the P-wave 

arrvial from the micro-seismic event k*δt time instants after S1 detects it. This means xi+k (a delay 

with k*δt time instants on the original signal) and yi shall have an excellent similarity, and their 

cross wavelet spectrum power shall also reach the maximum. Based on this fact, the identification 

of TDOA between signals xi and yi is then transformed into an optimization problem to search for 

the k sampling steps corresponding to the maximum value of the following objective function, 

 
2

,max suWTf iki yx

obj
                          (18) 

Wavelet transform has the edge effect due to the signal discontinuity, which may affect the 

transformed data. To overcome this, the Cone of Influence (COI) is introduced in the analysis. 

COI is a region of the wavelet spectrum with its shape similar as a cone. In this study, the area in 

which the cross wavelet spectrum power caused by a discontinuity at the edge has dropped to e-2 of 

the value at the edge.  

The cross wavelet transform spectrum power within the above selected area and a significance 

level is calculated. The null hypothesis is defined for the wavelet power spectrum as follows. It is 

assumed that if a peak in the wavelet power spectrum is significantly above this background 

spectrum, it can be assumed to be a true feature with a certain percent confidence. For example, 

“significant at the 5% level” is equivalent to “the 95 confidence level”. The confidence level λ 

means that when Monte Carlo method is used to calculate the cross wavelet spectrum between  
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Fig. 2 The flow chart of the proposed approach based on cross wavelet transform 
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background noises at one point in time-frequency domain, when the possibility of cross-

correlation coefficient is less than 1-λ, the point belongs to the confidence interval λ. In the 

following sections, the result of power calculated is referred as cross wavelet spectrum power with 

a high confidence. 
 
3.2 Identification procedure 
 

The flowchart of the proposed approach is shown in Fig. 2.  

The above flow chart describes how the proposed approach works. Two signals from Sensors 1 

and 2 are recorded from the same micro-seismic event source. Various processing steps will be 

applied, i.e., adding a delay d, performing wavelet transform, calculating cross wavelet spectrum, 

applying COI and confidence level to select a high confidence level area of cross wavelet 

spectrum, calculating the cross wavelet spectrum power and identifying the delay d̂  with the 

maximum cross wavelet transform spectrum power. TDOA is determined by identifying the 

specific time step that achieves the maximum cross wavelet spectrum power between two sensor 

signals. The specific steps are described as follows 

Step 1: Two sensor signals x(i) and y(i) are acquired from the same micro-seismic event source 

in mines.  

Step 2: After that, a series of time delay dj is added to x(i) respectively. Cross wavelet 

transform with Morlet wavelet function as previously mentioned is performed for two signals 

x(i+di) and y(i), respectively. 

Step 3: Cross wavelet spectrum power is calculated based on the above wavelet transforms in 

Step 2. 

Step 4: After the cross wavelet transform calculation, the selector module is used for selecting 

the spectrum area Ω which has a high confidence. The integrator module is used to calculate the 

power of spectrum area Ω.  

Step 5: Lastly, comparing the obtained cross wavelet transform power values from step 4 under 

different introduced delays dj in previous steps, the time delay that leads to the maximum cross 

wavelet spectrum power is obtained as the TDOA between sensor signals x(i) and y(i). When more 

than three TDOA from several sensors are determined, the location of the micro-seismic event can 

be obtained with the available travelling speed of the P wave, which is usually measured in-site 

and assumed to be a constant value in this study. 

 

 

4. Micro-seismic event monitoring with in-situ records 
 

4.1 Site conditions 
 

The micro-seismic monitoring data used in this study were acquired from the Yongshaba mine 

in Kailin, Guizhou Province, China. The surface elevation of the phosphate mine is +1350 meters 

above the sea level, and the mining depth has reached to 700 m. The orebody is mainly brown 

phosphate rock, and the lithology is hard and compact. The density, tensile strength, uniaxial 

compressive strength, Young’s modulus, Poisson’s ratio, shear strength and internal friction angle 

are 3.22 t/m3, 4.46 MPa, 147.89 MPa, 29.21 GPa, 0.25, 36.67 MPa, and 41.94°, respectively. The 

existence of more than twenty intensive faults and three dikes lead to the poor stability of 

Yongshaba mine, especially in the mining area under the Jin Yang highway, which is one of the 
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key areas for micro-seismic monitoring. Considering the engineering geology in the mining area, 

the in-situ conditions and the available budget and equipment, a digital micro-seismic monitoring 

system with 32 channels developed by Integrated Seismic System (ISS) Company in South Africa 

was installed in the mine. Institute of Mine Seismology (IMS) 14 Hz borehole geophones are used. 

They are omni-directional and can be installed at any angle, with a usable frequency bandwidth of 

between 8 Hz (-3dB point) and 2000 Hz and a small distortion less than 0.3%. 

The sensor placement configuration in orebody is shown in Fig. 3, and the coordinates of 

sensors are given in Table 1. The World Geodetic System 84 (WGS84) is adopted in the sensor 

location measurement. The spatial coordinate system O-XYZ is defined with the origin of the 

coordinate system O located at the Earth's centre of mass. The coordinate axis X is along the 

intersecting lines of the first meridian plane and the surface of the equator taking the east as the 

positive direction. The Z axis corresponds to the rotation axis of the earth with the north taken as 

the positive direction. The Y axis is perpendicular to the XZ plane to build the right-handed 

system. The resolution of the coordinate system is 1m. The coordinates of the sensors in Table 1 

are defined in the above coordinate system. In total, twenty-eight sensors have been installed in 

this area, marked as the red triangles with the sensor number as shown in Fig. 3. Two of them are 

tri-axial sensors, denoted as T1 and T2, and placed at over 700 m below the Yongshaba mine 

surface. The other twenty-six are single-axis sensors, which are numbered from 1 to 26, are evenly 

distributed in the three dikes #1, #2 and #3. The experimental data recorded by ten stable sensors, 

i.e., 1, 2, 3, 4, 8, 9, 12, 17, 18 and 22, are used to verify the proposed approach.  

The identification of TDOA with recorded time histories from an individual micro-seismic 

event is conducted in section 4.2, and the statistical identification with measurements from 

multiple events is also performed in section 4.3 to analyse the robustness and reliability of the 

proposed approach. 

 

 
Table 1 Coordinates of placed sensors in Yongshaba mine 

Sensor No. Location and coordinate Sensor No. Location and coordinate 

T1 (381077.08,2996000.01 ,931.60) T2 (381211.18,2996464.83,931.60) 

1 (380971.24,2995790.77,931.60) 2 (381092.19,2996243.18,931.60) 

3 (381299.97 ,2996630.72 ,931.60) 4 (381377.60 ,2996790.61 ,931.60) 

5 (381447.91 ,2996915.33 ,931.60) 6 (381382.46 ,2997072.65 ,931.60) 

7 (381317.12 ,2997244.78 ,931.60) 8 (381302.91 ,2997376.85 ,931.60) 

9 (381277.24 ,2997590.28 ,931.60) 10 (381260.63 ,2997779.54 ,931.60) 

11 (381612.53 ,2997810.08 ,1081.60) 12 (381606.62 ,2997647.03 ,1081.60) 

13 (381684.58 ,2997460.55 ,1081.60) 14 (381621.00 ,2997310.74 ,1081.60) 

15 (381690.19 ,2997074.72 ,1081.60) 16 (381573.54 ,2996951.43 ,1081.60) 

17 (381472.07 ,2996783.25 ,1081.60) 18 (381400.84 ,2996632.61 ,1081.60) 

19 (381369.99,2996436.86 ,1081.60) 20 (381398.59 ,2996275.20 ,1081.60) 

21 (381305.20 ,2996087.08 ,1081.60) 22 (381274.89 ,2995856.38 ,1081.60) 

23 (381732.06 ,2998077.64 ,1121.60) 24 (381707.72 ,2997975.13 ,1121.60) 

25 (381685.80 ,2997859.31 ,1121.60) 26 (381701.09 ,2997716.63 ,1121.60) 
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Fig. 3 The sensor placement configuration in Kailin phosphorate mine 

 

 

4.2 Individual validation 
 

As mentioned in Section 2, TDOA can also be estimated by the cross-correlation function 

based methods. Here, a case study is presented to compare the efficiency of the proposed approach 

with the cross-correlation function method, and demonstrate the superiority of the proposed 

approach against the noise effect in the recorded measurements. The cross-correlation method and 

the proposed approach are used separately with the same data, which are recorded from two 

sensors No. 1 and 12 under a micro-seismic event in the above-mentioned phosphorate mine. The 

distance between sensors No.1 and No.12 is 1967.72 m, and the relative location of sensors No.12 

to sensors No.1 is (635.38, 1856.26, 150.00). The sampling duration of those two signals is 1.5 s, 

and the sampling frequency is 6000 Hz. The measured waves from those two sensors are shown in 

Fig. 4.  

The cross-correlation function of these two signals is calculated, and TDOA is obtained by 

identifying the time offset corresponding to the maxima in the cross-correlation function. As 

shown in Fig. 5(a), TDOA is identified as 0.166 s when using the original signals without 

artificially added white noise. However, as shown several peaks exist in the cross-correlation 

function, indicating that a tiny time offset may induce a significant change in the cross-correlation, 

which also means this method is susceptible to noise. When an extra 10 db white noise is added to 

the original signals, the local maximum point becomes the global maximum point and TDOA is 

identified as 0.203 s, as shown in Fig. 5(b). This demonstrates that the noise has a significant 

effect on the identification accuracy of TDOA when using cross-correlation method.  
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Fig. 4 Original signals measured in a real micro-seismic event by sensors No.1 and No.12 
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Fig. 5 Cross-correlation function of measured signals: (a) without noise effect (b) with 10 

dB artificial white noise 
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Meanwhile the proposed approach based on cross wavelet transform is used to analyse the 

above signals. The merits of wavelet transform are to capture the multi-scale information and 

reflect the signal characteristics in both the time and frequency scales. Then a specific frequency 

range is used for the identification as a filter function, and the time offset according to the 

maximum power of the cross wavelet transform spectrum would indicate the estimation of TDOA. 

It should be noted that a frequency band with the cut-off frequency of 2 Hz and 256 Hz are used in 

the calculation for the sake of removing the high-frequency noise components. These cut-off 

frequencies sufficiently cover the frequency range of the micro-seismic signals, which is usually in 

the band from 50-200 Hz (Li et al. 2008, Lu et al. 2008). 

The original signals and the corresponding continuous wavelet transform spectrum are shown 

in Fig. 6. It should be noted that the thick black contour designates the 5% significance level 

against the red noise, and the COI where edge effects might distort the spectrum is shown as a  

 

 

 
Fig. 6 The original signals and their continuous wavelet power spectrum  

 

 
Fig. 7 The shifted signals and their continuous wavelet power spectrum 
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lighter shade. The 5% significance level and COI are applied in computing the wavelet transform 

spectrum to improve the edge effect.  

When the first signal is delayed by 0.166 s, the shifted signals and their associated continuous 

wavelet transform spectrum are shown in Fig. 7. It can be observed that the region with a larger 

energy in the wavelet transform spectrum is also moved with the delay. 

Similar to the idea of using cross-correlation function to identify TDOA, the cross wavelet 

transform power is calculated here. The offset time instant corresponding to the maximum cross 

wavelet spectrum power is detected as TDOA, and the location of the micro-seismic event is 

determined with three TDOAs. The cross wavelet transforms between those two original and 

shifted signals as shown in Fig. 6 and Fig. 7 are computed, and their spectrums are shown in Fig. 

8(a) and Fig. 8(b), respectively. Comparing the energy intensities as shown in Fig. 8(a) and Fig. 

8(b), the total cross wavelet spectrum power decreases significantly, indicating those two signals 

with an added delay are losing their similarity and having a worse correlation.  

It is worth noting that the closer the delay of the two signals to the true TDOA, the larger the 

power of cross wavelet spectrum. This shows that the cross wavelet spectrum power would be an 

alternative good index to evaluate the similarity of two recorded signals and identify TDOA. One 

special merit of the wavelet analysis is keeping both the time and frequency information. 

Therefore, a better estimation of TDOA can be obtained in the micro-seismic monitoring. 

The proposed approach is applied to analyse the signals in Fig. 4. The curve of the cross 

wavelet spectrum power with 95% significance level under different time offsets is shown in Fig. 

9. When the originally recorded signals are analysed, the detection result is shown in Fig. 9(a). 

One obvious peak is found, and TDOA is identified as 0.166 s, which is exactly equal to the 

identified value from the cross-correlation method as shown in Fig. 5(a). When an extra artificial 

10dB white noise is added to the recorded signals, the cross wavelet spectrum power is still 

smooth, and only one obvious peak is observed. TDOA is also identified as 0.166s, which is the 

same as that identified with original signals. These results demonstrate that the proposed method is 

less influenced by noise effect in identifying the TDOA compared with the existing cross-

correlation method.  

 

 

  
(a) Cross wavelet transform of two original 

signals as shown in Fig. 6 

(b) Cross wavelet spectrum of two shifted 

signals as shown in Fig. 7 

Fig. 8 Comparison of cross wavelet transform spectrum with the original and shifted signals 
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∆t=-0.166

∆t=-0.166

 
Fig. 9 Cross wavelet transform spectrum power: (a) using original signals (b) using 

signals smeared with 10dB white noised 

 

 

Furthermore, the event source is located by the recorded signals from sensors No. 1, 12, 22 and 

the calculated TDOA among those three sensor locations. Reference TDOA value defined in this 

study is picked manually by an independent experienced analyst and the reference location is 

calculated with Eq. (2) and the Quasi-Newton method. It should be noted that the determined 

micro-seismic location might not be the exactly real location of the event. However, this is the 

general practice to define the baseline TDOA and location (Saragiotis et al. 2004). Those TDOA 

and subsequently obtained location will be used as the reference for comparing the performance of 

different methods in this paper. 

The cross-correlation method and the proposed approach are used respectively to process the 

data and identify the source location for comparison. The reference values of TDOA, identified 

values with the cross-correlation method and the proposed approach, and the identified event 

source location are given in Table 2. The P-wave speed in the site was measured as 5349.47 m/s. 

When taking the calculated source location with reference TDOA values as the baseline 

coordinates of the source event, noted as (xr, yr, zr), the absolute location error is defined as  

     222
error location Absolute ririri zzyyxx            (19) 

where (xi, yi, zi) are the spatial coordinates of the identified source location. The absolute locating 

error of the proposed approach is calculated as 8.9 m, while the error of the cross-correlation 

method is 172.5 m. This demonstrates that the proposed approach significantly improves the 

identification accuracy for the micro-seismic event monitoring and source locating with the in-situ 

measured records from an individual event. 
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Table 2 TDOA obtained by cross-correlation method and the proposed approach in an individual test 

Sensors No. Reference Cross-correlation The proposed approach 

1 & 12 -166 ms -203 ms -166 ms 

1 & 18 45 ms 58 ms 47 ms 

12 & 22 -26 ms -17 ms -25 ms 

Identified 

source location 

(380949.5, 2996534.7, 

875.9) 
(381060.9, 2996595.7, 992.6) (380955.1, 2996535.2, 882.8) 

 

 

Besides the above example to demonstrate the accuracy and performance of the proposed 

approach against the noise effect, the statistical verification will be performed with recorded in-

field data from multiple micro-seismic events.  

 

4.3 Statistical verification 
 

In this section, recorded data from ten sensors, namely No. 1, 2, 3, 4, 8, 9, 12, 17, 18, and 22, 

under five real micro-seismic events are analysed. Any two of those ten sensors could be used to 

identify a TDOA, therefore forty-five TDOAs can be obtained under an event. For five separate 

micro-seismic events, two hundred and twenty-five TDOAs will be obtained totally and used for 

investigating the statistical identification accuracy with the proposed approach and those existing 

methods presented in Section 2, i.e., cross-correlation method, multi-correlation method, 

STA/LTA method and Kurtosis method. When defining the parameters for these methods, the 

number of samples of the long term windows NLTA and the short term windows NSTA are assigned 

as 1000 and 500 samples respectively in STA/LTA method. The length of the sliding window N is 

set as 200 samples for Kurtosis method.  

The difference between the identified TDOA τidentified and the reference TDOA τref is defined as 

the absolute identification error as follows  

refidentified  TDOA inerror  Absolute                  (20) 

The mean value and standard deviation of the absolute identification errors are calculated. For a 

sequence ei(i=1,…,N), the mean value and standard deviation are respectively calculated as 





N

i

ie
N 1

1
                             (21) 

 

1

1

2









N

e

S

N

i

i 

                          (22) 

The statistical results of absolute errors of TDOA with different approaches are listed in Table 

3. The mean value and standard deviation by the four existing methods and the proposed approach 

are listed, which are marked as A (Cross-correlation method), B (Multi-correlation method), C 

(STA/LTA method), D (Kurtosis method) and E (The proposed approach). Four additional 

artificial noise levels with Signal to Noise Ratio (SNR)=infinite (i.e., no noise effect), 20 dB, 10 

dB and 5 dB are considered. For noisy cases, the extra noise effect is added on the originally 

1158



 

 

 

 

 

 

Micro-seismic monitoring in mines based on cross wavelet transform 

recorded data to further verify the robustness of the proposed approach. 

Results in Table 3 demonstrate that the proposed approach gives the smallest mean value and 

standard deviation of the identification errors among all the five methods. The results also clearly 

show that the proposed approach is less sensitive to noise effect than the other four existing 

methods. Fig. 10 shows the box plot of the error analysis results. The bottom and top of the box 

denote the first and third quartiles, respectively, and the band inside the box denotes the mean 

value. The two ends of the dashed line represent the minimum and the maximum values of the 

absolute error. As shown in Fig. 10, the error of identification results with the four existing 

approaches, namely A, B, C and D, are obviously increasing with the severity of noise, indicating 

those methods are significantly affected by noise effect. The Kurtosis method is the most sensitive 

to the noise and then the Cross-correlation method. STA/LTA and the multiple-correlation  

 

 
Table 3 Statistical results of absolute errors (unit: ms) of TDOA under different artificial noise level 

Method 
SNR 

Items 

+inf (No artificial 

noise) 
20 dB 10 dB 5 dB 

Cross-correlation 

(A) 

Mean 3.2 3.7 5.7 12.8 

standard deviation 5.6 6.5 7.3 18.5 

Multi-correlation 

(B) 

Mean 2.4 3.7 5.1 11.6 

standard deviation 4.4 4.6 6.6 15.9 

STA/LTA 

(C) 

Mean 5.9 6.2 9.4 14.8 

standard deviation 8.2 12.5 16.1 23.3 

Kurtosis 

(D) 

Mean 3.1 5.7 8.5 14.3 

standard deviation 6.2 7.5 12.1 31.5 

The proposed 

approach 

(E) 

Mean 1.5 2.1 1.9 2.1 

standard deviation 2.1 2.7 3.2 3.4 

 

 
Fig. 10 Errors in TDOA of statistical identification results with different approaches 
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methods have the similar performance to the influence of noise effect. The proposed approach is 

also affected by the noise in recorded signals, but at a less extent, indicating it is more robust 

compared with the other four existing methods. 

Furthermore, the locations of five micro-seismic events are identified to demonstrate the 

accuracy of the proposed approach in micro-seismic event source locating. For every single 

seismic event, any four sensors selected from the above mentioned ten sensors can be used to 

identify the event location. Different combinations with three sensors from those ten sensors will 

give different identification results. Therefore 210 location results can be obtained for each event. 

Approaches A, B, C, D and E are used to calculate the source location respectively, and the 

standard deviation of the predicted absolute source locations is given in Table 4.  

For one event, the locations computed by different sensor combinations are (xi,yi,zi) 

(i=1,...,210), then the centre point (𝑥̅, 𝑦̅, 𝑧̅) can be calculated by  

𝑥̅ =
∑ 𝑥𝑖
𝑁
𝑖=1

N

𝑦̅ =
∑ 𝑦𝑖
𝑁
𝑖=1

N

𝑧̅ =
∑ 𝑧𝑖
𝑁
𝑖=1

N

                               (23) 

In Table 4, the STD is the standard deviation (see equation (22)) of di, where di is  

d𝑖 = √(𝑥𝑖 − 𝑥̅)2 + (𝑦𝑖 − 𝑦̅)2 + (𝑧𝑖 − 𝑧̅)2                 (24) 

It can be observed from Table 4 that the standard deviation of the proposed approach is the 

smallest among all the methods, which indicates that the proposed method is more accurate and 

reliable with a small variation in the predicted source locations. 

In addition to investigating the robustness and reliability of the existing methods and the 

proposed approach, the error analysis on the identification results of the source locations is also 

conducted. Eq. (19) is used to calculate the identification error of the source location. The 

statistical results of identification errors of the source locations are shown in Table 5 and Fig. 11. 

It can be observed that the proposed approach significantly outperforms the other four existing 

methods on the identification accuracy of source location of the micro-seismic events with a much 

smaller mean error and standard deviation. 

As shown in Fig. 11, the proposed approach gives the best estimation of the locations of those 

five micro-seismic events. The medium and maximum location error is the smallest compared with 

the other methods. It also shows a stable performance compared with the other four methods since 

the observed Quartile Deviation (the difference of the first quartile value and the third quartile 

value) of the location error is insignificant.  
 

 

Table 4 The standard deviation (unit: m) of identified source locations 

 
Event 1 Event 2 Event 3 Event 4 Event 5 

A 26.88 29.39 17.12 22.85 17.60 

B 10.76 11.56 19.92 18.58 12.13 

C 17.99 15.17 16.01 15.27 12.93 

D 16.07 17.39 15.62 12.05 13.29 

E 5.39 6.23 14.02 5.76 9.90 
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Table 5 Absolute errors (unit: m) of micro-seismic event location in the statistical identification results 

Method 
      Event ID 

Items 
Event 1 Event 2 Event 3 Event 4 Event 5 

A 
mean 55.16 28.76 33.28 43.15 53.50 

standard deviation 66.28 38.14 23.67 32.43 51.71 

B 
mean 26.79 16.25 20.81 26.41 21.89 

standard deviation 25.46 11.02 27.52 33.26 24.31 

C 
mean 28.91 11.89 26.45 18.71 16.98 

standard deviation 26.25 22.65 13.82 31.16 13.16 

D 
mean 26.41 18.34 28.97 29.68 31.62 

standard deviation 23.27 18.91 21.06 21.29 38.66 

E 
mean 8.03 5.68 11.21 15.62 14.39 

standard deviation 16.57 9.39 14.32 20.23 10.07 

 

 
Fig. 11 Errors in event location of statistical identification results with different approaches 

 

 

The above verification results demonstrate the proposed method is much less sensitive to the 

noise effect, more reliable and robust than the other existing automatic picking methods. The 

effectiveness and superiority of the proposed approach in micro-seismic monitoring is well 

proved. 

 

 

5. Conclusions 
 

This paper proposes a new micro-seismic monitoring approach based on cross wavelet 
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transform. The proposed approach transforms time series into time-frequency domain and can 

achieve multi-scale analysis for a better identification of TDOA by cross wavelet transform and 

spectral analysis. The theoretical background of several typical methods to identify TDOA is 

reviewed, and the main idea and flowchart of the proposed approach are presented. The cross 

wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the 

cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale 

dimension and subsequently identify TDOA. The offset time instant corresponding to the 

maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of 

micro-seismic events can be identified. Individual and statistical verifications are performed with 

recorded data from a mine in China. The results demonstrate that the proposed method gives more 

accurate identification of micro-seismic location, and is less sensitive to noise effect, as compared 

to the four other existing methods.  

It is the first time that cross wavelet transform spectrum is used to identify TDOA and then to 

locate the micro-seismic event. It not only preserves the advantage of traditional relative methods 

by avoiding the errors introduced by manually picking up the first arrival wave, but also utilizes 

the advantages of wavelet analysis methods, which provides a time-frequency multi-scale analysis. 

It has both frequency resolution and time resolution, which is of vital importance to analyse the 

nonstationary signals. Analysis results with in-situ measurement records demonstrate that the 

proposed approach outperforms other methods with a more accurate and reliable micro-seismic 

event location identification result. 
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