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Abstract.  When conducting seismic assessment of an asymmetric building, it is essential to carry out three-

dimensional analysis considering all the possible directions of seismic input. For this purpose, the author 

proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building 

subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous 

study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular 

elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building 

with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, 

the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings 

with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric 

buildings with bidirectional setback and designed according to strong-column weak beam concept is carried 

out considering various directions of seismic input, and the results compared with those estimated by the 

proposed method. The largest peak displacement estimated by the simplified method agrees well with the 

envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to 

analysed building models is made as well based on pushover analysis results. 
 

Keywords:  asymmetric building; setback; pushover analysis; bidirectional excitation; torsional index; 

angle of incidence of seismic input 

 

 

1. Introduction 
 

Estimating the peak response of buildings that may be subjected to strong ground motion is 

important for good seismic design of new buildings and seismic assessment of existing buildings 

(ATC-40 1996, FEMA 1997. CEN 2004, and ASCE 2007). To analyse a building’s response, the 

building model is subjected to horizontal ground motion acting on each of the main orthogonal 

axes of the building. However, for seismic assessment of asymmetric buildings this procedure may 

be inadequate because the most critical direction of incidence of the seismic input, which would 

produce the largest response, may be different from the direction of the building’s main orthogonal 

axes, and the major component of the ground motion may act in any direction. Therefore, it is 

essential to carry out three-dimensional analyses considering all the possible directions of seismic  
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input. It is widely accepted that the most rigorous method to evaluate the seismic response of a 

building is the nonlinear dynamic (time-history) analysis of a multi-degree-of-freedom (MDOF) 

model. However, it is very time-consuming to evaluate the response of a building under all 

possible seismic intensities and all possible directions of incidence of seismic input. Therefore, it 

may not be suitable for common structural design work carried out in most design offices. 

Simplified nonlinear analysis procedures combine the nonlinear static (pushover) analysis of a 

MDOF model and the response spectrum analysis of an equivalent single-degree-of-freedom 

(SDOF) model (Saiidi and Sozen 1981, Fajfar and Fischinger 1988). These procedures have been 

widely implemented in seismic design codes and seismic evaluation schemes (ATC-40 1996, 

FEMA 1997, CEN 2004, ASCE 2007), and they work well for buildings that oscillate 

predominantly with a single mode. In recent decades, several researchers have tried to extend these 

simplified procedures to improve the seismic performance estimates of buildings with plan and/or 

elevation irregularities, such as Moghadam and Tso (1996, 2000), Chopra and Goel (2004), Fajfar 

et al. (2005), D’Ambrisi et al. (2009), Kristin and Fajfar (2010, 2012), Reyes and Chopra (2011a, 

b), Bhatt and Bento (2011, 2012, 2014), Bosco et al. (2012, 2013, 2015), Manoukas et al. (2012, 

2014), Cimellaro et al. (2014), and Fujii (2011, 2014, 2015, 2016). Recent investigations of the 

extension of this simplified procedure to an irregular structure can be found in Lavan and De 

Stefano (2013) and in Zembaty and De Stefano (2016). Reviews of the research on the seismic 

behaviour of irregular building structures over the last decade can be found in De Stefano and 

Pintucchi (2008), and Anagnostopoulos et al. (2015). Most of these studies focused on the 

extension of the simplified procedure to asymmetric buildings with regular elevation, while a few 

of them studied asymmetric buildings with setbacks (Moghadam and Tso 2000, D’Ambrisi et al. 

2009, and Cimellaro et al. 2014). However, the majority of the buildings in city centres have both 

plan irregularities and vertical irregularities (such as setback); therefore, validation and extension 

of this simplified procedure for buildings with plan and vertical irregularities are needed. 

From the author’s point of view, there are four possible approaches when considering the 

torsional effect for predicting the peak response of asymmetric buildings. The first approach is a 

combination of nonlinear pushover analysis and linear dynamic analysis (Peruŝ and Fajfar 2005, 

Fajfar et al. 2005). The second approach is a combination of nonlinear pushover analysis 

representing several modal responses with the application of the square-root-of-sum-of-squares 

(SRSS) or complete quadratic combination (CQC) rules, as proposed by Chopra and Goel (2002, 

2004). The third approach combines two pushover analyses and envelopes the results, as proposed 

by Bosco et al. (2012, 2013, 2015). The fourth approach is a combination of the analyses of two 

independent equivalent SDOF models representing the first and second modes and the envelope of 

four pushover analyses that includes the effect of bidirectional excitation (Fujii 2011, 2014), 

assuming that the first and second modes are predominantly (or purely) translational modes. 

The first approach, named the Extended N2 method, is the extended version of the simplified 

procedure proposed by Fajfar and Fischinger (1988). In this procedure, the peak response of each 

frame is estimated using the pushover analysis results multiplied by a “correction factor”, which is 

defined using linear dynamic analysis and pushover analysis results (Peruŝ and Fajfar 2005, Fajfar 

et al. 2005). This approach was verified by Bhatt and Bento (2011). In recent years, the extended 

N2 method was modified by Kristin and Fajfar (2010, 2012) by considering the elastic response 

displacement in both plan and elevation. The modification is expressed as the product of cE and cT, 

where cE is the correction factor in the vertical, and cT is the correction factor in the horizontal 

plane (torsional effect). They assumed that cE does not depend on the position in the horizontal 

plane while cT is independent of the floor level and is determined based on the displacement at the 
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roof (top floor). Bhatt and Bento proposed an extended version of the adaptive capacity spectrum 

method (Bhatt and Bento 2012, 2014). In their studies, the higher-mode effect on the vertical 

distribution of the response displacement is considered by using the displacement-based adaptive 

pushover (DAP) analysis method proposed by Antoniou and Pinho (2004), while the torsional 

effect is considered by applying Fajfar’s approach. The applicability of the extended N2 method to 

an asymmetric building with setback is examined by D’Ambrisi et al. (2009), while Cimellaro et 

al. (2014) proposed a bidirectional pushover analysis (BPA), which is the modified version of the 

extended N2 method that considers simultaneous loading within the pushover analysis, and is 

applied to asymmetric buildings with setback.  

The extended N2 method is based on the assumption that the elastic envelope of lateral 

displacement is conservative with respect to the inelastic envelope, as noted by De Stefano and 

Pintucchi (2010). They pointed out that this assumption may be invalid for structures characterized 

by very high torsional stiffness. Isakovic and Fischinger (2011) performed shaking table tests on a 

reinforced concrete (RC) bridge structure and showed that the extended N2 method failed to 

estimate the peak responses under high seismic intensity because it did not take into account 

changes in the fundamental mode. In the latest version of the extended N2 method proposed by 

Kristin and Fajfar (2010, 2012), their assumptions that cT is independent of the floor level may be 

valid if the centres of mass (CMs) of all the floors lie along the same vertical axis. However, their 

approach may be invalid in case of an asymmetric building with setback where the CMs do not lie 

along the same vertical axis. Additionally, in such a building the definition of cT for the frames 

which do not reach the top floor is questionable, since cT is determined based on the displacement 

at the top floor. 

The second approach, called modal pushover analysis (MPA), was proposed by Chopra and 

Goel (2002) for regular buildings considering the higher-mode effect, and was extended for 

asymmetric buildings (Chopra and Goel 2004). The MPA was further extended by Reyes and 

Chopra (2011a, 2011b) who took into account the effect of bidirectional excitation. In this 

approach, the seismic response is estimated using pushover analysis of a MDOF model with an 

invariant force distribution based on each elastic mode shape, estimation of the peak response of 

the independent equivalent SDOF models, and the combination rules that are usually applied in 

linear analysis (the SRSS or CQC rule). Manoukas et al. (2012) and Manoukas and Avramidis 

(2014) proposed a procedure similar to MPA. The main difference between their procedure and 

MPA is that they considered the effect of bidirectional excitation in the formulation of the 

equivalent SDOF model, while in MPA by Reyes and Chopra (2011a, 2011b) the combination of 

the bidirectional excitation is considered by the SRSS rule. 

From the author’s point of view, using the second approach to analyse asymmetric buildings 

with setback presents fewer obstacles than using the first approach. However, the applicability of 

the second approach depends strongly on whether the change in the mode shape in the inelastic 

range is significant. As shown by the author in a previous study (Fujii 2015), the estimated results 

based on the elastic mode shape may provide erroneous results when the change in the mode shape 

is significant. To overcome the shortcoming of MPA, Belejo and Bento (2016) has applied an 

improved modal pushover analysis (IMPA), which is the modified version of MPA by considering 

the change in the mode shape in the inelastic range, to three-storey building (SPEAR building) and 

nine storey building. It is interesting to note that the mode shape in the inelastic range is 

approximated based on conventional (non-adaptive) force-based pushover analysis carried out 

several times in their IMPA, which may be easy to apply for common design work. 

The third approach, which was proposed by Bosco et al. (2012), estimates the peak response at 
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the stiff and flexible-side frames by enveloping two pushover analyses results. Bosco et al. (2015) 

investigated the applicability of this procedure to multi-storey building models with the same 

geometry in each floor. In this procedure, “corrective eccentricity” is the key parameter in the 

pushover analyses. This may be a promising approach because the various possible collapse 

mechanisms resulting from the combination of several modal responses can be properly predicted 

using a combination of different force distributions. However, it may be very difficult to apply this 

directly to buildings with setback. One of the problems is that three parameters - the stiffness, 

strength eccentricities and uncoupled frequency ratio - are needed to calculate the corrective 

eccentricity for each storey; the stiffness eccentricity and uncoupled frequency ratio of each storey 

may be determined as shown in their studies (Bosco et al. 2013). However, estimating the strength 

eccentricity of each storey is difficult because it may depend strongly on the distribution of the 

lateral forces. Another problem arises, as in the first approach, when the CMs of all the floors in a 

building with setback do not lie along the same vertical axis, making it difficult to determine the 

proper corrective eccentricity. 

The fourth approach has fewer obstacles than the other approaches when applied to asymmetric 

buildings with setback. In the first version of the procedure (Fujii 2011), the applicability was 

limited to asymmetric buildings with regular elevation and the same geometry in each floor, 

because the conversion step from the multi-storey building model to an equivalent single-storey 

model was needed. The latest version of this method (Fujii 2014) overcomes this limitation by 

developing the displacement-based mode-adaptive pushover (DB-MAP) analysis for a multi-

storey frame structure, which can account for changes in the mode shape at each nonlinear stage; 

in the latest version, the multi-storey building model can be directly converted to equivalent SDOF 

models. Therefore, theoretically, this procedure should be applicable without any modification, to 

an asymmetric building with setback as long as the building satisfies the following conditions: (a) 

the building oscillates predominantly in a single mode in each set of orthogonal directions, (b) the 

principal directions of the first and second modal responses are almost orthogonal. Thus, this 

approach has the potential to improve the estimate of the response of asymmetric buildings with 

setback. It should be noted that the main differences from MPA procedure proposed by Chopra et 

al. are a) the change of mode shape beyond elastic range is considered (mode-adaptive), b) the 

formulation of equivalent SDOF model is based on the principal direction of the each modal 

response, c) the effects of simultaneous bi-directional excitation is considered by using the 

combinations of four pushover analyses, not SRSS rule.  

In this article, the ability of the pushover-based procedure proposed by the author (Fujii 2014), 

to estimate the peak response of asymmetric buildings with bidirectional setback is assessed. In the 

numerical examples, nonlinear time history analysis of two six-storey asymmetric buildings with 

bidirectional setback and designed according to strong-column weak beam concept is carried out 

and the building’s response to seismic input from various directions is compared with the results 

of the simplified method. 
 

 

2. Outline of the simplified procedure 
 

An outline of the simplified procedure for estimating the “largest” peak response is 

summarized in Fig. 1. The asymmetric building considered in this study is an N-storey building, 

with 3N degrees of freedom (3N-DOFs). All the frames of the asymmetric building are oriented in 

the X or Y directions, which are orthogonal. Another set of orthogonal axes U and V in the X-Y  
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Fig. 1 Outline of the simplified procedure for estimating the peak response of an asymmetrical building 

(Fujii 2014) 

 
 
plane is considered, with the U-axis being the principal axis of the first modal response (Fujii 

2011, 2014). The fundamental assumptions of the proposed procedure are as follows: 
1) The spectra of the two horizontal ground-motion components are assumed to be identical to 
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the response spectrum of the major components. 

2) The building oscillates predominantly in a single mode in each set of orthogonal directions. 

3) The principal directions of the first and second modal responses are almost orthogonal. 

Details of the procedure can be found in Fujii (2014, 2015). 

 
 

3. Buildings and ground motion data 
 

3.1 Building data 
 

3.1.1 Description of model buildings 
In this study, two RC six-storey asymmetric buildings were investigated. Figs. 2 and 3 show the 

plans of each floor level and the elevations and overview of Models 1 and 2. 

The height of the first storey is 4.0 m and the upper storeys are 3.2 m high. The floor mass mj 

and moment of inertia Ij (j=1–6) are determined assuming a unit mass of 1.2 t/m2. The cross 

sections of the beams are 400×1100 mm at level Z0 (foundation level), and at levels Z1 to Z6 they 

are 400×700 mm. The cross sections of all the columns are 600×600 mm. The compression 

strength of the concrete, σB, is assumed to be 24 N/mm2. In addition, SD 345 steel (yield strength: 

σy=345 N/mm2) is used for the longitudinal reinforcement while SD 295 steel (σy=295 N/mm2) is 

used for the shear reinforcement. Each frame structure is designed according to the strong-column  

 

 

 
(a) Plan of each floor level 

 
 

(b) Elevation (c) Overview 

Fig. 2 Model of the building used in the comparative analysis (Model 1) 
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(a) Plan of each floor level 

  
(b) Elevation (c) Overview 

Fig. 3 Model of the building used in the comparative analysis (Model 2) 

 

 

weak-beam concept; the longitudinal reinforcements of the concrete sections are determined so 

that potential hinges are located at all the beam ends (except at the foundation level) and at the foot 

of the columns in the first storey.  

The list of longitudinal reinforcement of members are shown in Appendix. The model assumes 

that sufficient shear reinforcement is provided to prevent premature shear failure. 

 

3.1.2 Mathematical modelling 
The building structures are modelled as a pseudo three-dimensional frame model, in which the 

floor diaphragms are assumed to be rigid in their own planes with no out-of-plane stiffness, and 

the frames oriented in the X and Y directions are modelled independently. A one-component 

model, with one nonlinear flexural spring at each end and one shear spring in the middle of the 

line element is used for all the beams and columns. At the end of each member, rigid zones are 

assumed, and the rigid zone length is assumed to be half the depth of the intersecting member 

minus one-fourth of the depth of the considered member. To determine the flexibility of the 

nonlinear flexural springs, an anti-symmetric curvature distribution is assumed for all the beams 

and columns. 

Fig. 4 shows the moment-otation relationship of each nonlinear flexural spring. The envelopes 

of the flexural springs of each member are assumed to be symmetric in both the positive and 

negative loading directions. In Fig. 4(a), the crack moment Mc, yield moment My, and the secant 

stiffness degradation ratio at the yield point αy are calculated according to the AIJ Design  
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(a) Envelope (b) Hysteresis rule 

Fig. 4 Moment-rotation relationship of nonlinear flexural spring 

 

 

Guideline (AIJ 1999); note that the range of αy is 0.178-0.307 for the beams and 0.275-0.402 for 

all the columns. The shear behaviour of all the members and the axial behaviour of the columns 

are assumed to remain elastic, and the effects of biaxial bending and axial-flexural interaction are 

ignored. The torsional stiffness of the members is also ignored. No second-order effect (e.g., the P-

Δ effect) is considered. For the hysteresis model of the nonlinear flexural spring, the Muto 

hysteresis model (Muto et al. 1974) with one modification (Fig. 4(b)) is used. Specifically, the 

unloading stiffness after yielding decreases in proportion to μ−0.5 (where μ is the ductility ratio of 

the flexural spring) to represent the degradation of the unloading stiffness after yielding of the RC 

members. Note that in the formulation of the DB-MAP analysis presented in Fujii (2014), the 

perfectly symmetric behaviour of all nonlinear springs in structural model is assumed. To satisfy 

this assumption, the moment-rotation relationship of all nonlinear flexural springs are assumed 

perfectly symmetric and the average value of Mc, My, and αy in positive and negative loading are 

used in this study. 

The base shear coefficients obtained from the planar pushover analysis in the X and Y 

directions, which are the values when the displacement at level Z6 (top floor) reaches 1% of the 

total height HN (=20.0 m), were 0.347 and 0.348, respectively, for both Models 1 and 2. The 

damping matrix is assumed to be proportional to the instant stiffness matrix with 3% of the critical 

damping for the first mode. 

 

3.1.3 Natural modes of the building models 
Figs. 5 and 6 show the natural modes of the building models in the elastic range. Here, Tie (i: 

the natural mode number) is the ith natural period in the elastic range, ψie is the angle of incidence 

of the principal direction of the ith modal response in the elastic range (with its tangent given by 

Eq. (1)), mie
* is the ith effective (equivalent) modal mass ratio with respect to the principal 

direction of the ith modal responses given by Eq. (2), and Rρie is the torsional index of the ith mode 

(Fujii 2014) in the elastic range defined by Eq. (3) 

tan ie j Yjie j Xjie

j j

m m     ,                          (1) 

 

2 2

*

2 2 2

1
j Xjie j Yjie

j j

ie

j j Xjie j Yjie j jie

j j j j

m m

m
m m m I

 

  

   
   

    
 

 

   
,                     (2) 
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 2 2 2

ie j jie j Xjie j Yjie

j j j

R I m m   

 
  

 
   .                    (3) 

In Eqs. (1)-(3),  1 1 1X ie XNie Y ie YNie ie Nie      
T

ieφ  is the ith natural mode vector in 

the elastic range. The principal direction of the ith modal response is the direction which maximize 

the ith effective modal mass ratio, and corresponds to the direction of base shear of the ith mode. 

The ratio mie
* is that to evaluate the contribution of the ith modal response to the whole response 

when the unidirectional excitation acts in the principal direction of the ith modal response, and mie
* 

must have a value from 0 to 1; if mie
* is close to one, the ith modal response is predominant, while 

if mie
* is close to zero, the contribution of the ith modal response is very small. The torsional index 

Rρie is zero when the ith mode is purely translational (
2 0j jie

j

I   ).  

The relation between mie
* and Rρie is clear when Eq. (2) is rewritten in form of Eq. (4) 

 

2 2

*

2 2 2

1 1

1

j Xjie j Yjie

j j

ie

j j Xjie j Yjie ie

j j j

m m

m
m m m R

 

 

   
   

     
 

 

  
.                 (4) 

From this equation it is seen that the ratio mie
* is close to zero when the torsional index Rρie is 

significantly large. Therefore, as discussed in previous studies (Fujii 2014, 2016), the terms 

“predominantly translational” and “predominantly torsional” are defined using the index Rρie; the 

“predominantly translational” mode is the mode when Rρie<1, while the “predominantly torsional” 

mode is the mode when Rρie>1. Note that the definition of ψie, mie
* and Rρie shown in Eqs. (1)-(3) is 

extended in case the building oscillates beyond the elastic range later in section 5, by replacing the 

the ith natural mode vector in the elastic range to that in each nonlinear stage.  

As shown in Figs. 5 and 6, the principal directions of the first three modes are not along the X 

and Y axes in any of the building models. In both building models, the first mode is predominantly 

translational (Rρ1e<1), the second mode is almost purely translational (Rρ2e<<1), while the third 

mode is predominantly torsional (Rρ3e>1); the angles between the principal directions of the first 

two modes is close to 90° (90.5° for Model 1, and 90.0° for Model 2). 

It should be also pointed out that from Figs. 5 and 6, when these buildings oscillate in the first 

mode, the larger displacement is expected at frames Y6 and X1 in Model 1, while in Model 2 the 

larger displacement is expected at frames Y1 and X1. Therefore, in Model 1 frames Y6 and X1  
 

 

 
Fig. 5 Shapes of the first three modes of the building models in the elastic range (Model 1) 
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Fig. 6 Shapes of the first three modes of the building models in the elastic range (Model 2) 

 
 
may be considered as “flexible-edge” frames, while frames Y1 and X6 may be considered as “stiff-

edge” frames. Similarly in Model 2, frames Y1 and X1 may be considered as “flexible-edge” 

frames, while frames Y6 and X6 may be considered as “stiff-edge” frames. 

 
3.2 Ground motion data 
 

In this study, the seismic excitation was considered to be bidirectional in the X-Y plane, and 

three sets of artificial ground motions (referred to as Art-001, 002 and 003) were generated.  

The target elastic response spectrum of the “major” components with 5% critical damping, 

pSAξ(T, 0.05), determined from the Building Standard Law of Japan (BCJ, 2010) which takes into 

account the soil condition, was calculated using Eq. (5) as a function of T, the natural period of the 

SDOF model 

 

 

24.8 48 m s : 0.16s

,0.05 12.0 : 0.16s 0.576s

12.0 0.576 : 0.576s

p A

T T

S T T

T T



  


  
 

                  (5) 

The target elastic response spectrum of the “minor” components, pSAζ(T, 0.05) is reduced by the 

parameter γ. According to López et al. (2006), the ratio of the two responses varies between 0.63 

and 0.81, with an average ratio of 0.70. Therefore, the parameter γ was set to 0.7 in this study. 

 

 

  
(a) “Major” component (b) “Minor” component 

Fig. 7 Elastic pseudo acceleration response spectra for simulated ground motions 
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The phase angle is given by uniform random values, and to consider the time-dependent 

amplitude of ground motions, the Jenning type envelope function e(t) proposed by the Building 

Centre of Japan 

  

 

  

2
5 : 0s 5s

1 :5s 35s

exp 0.027 35 :35s 120s

t t

e t t

t t

  


  
    


.                    (6) 

Fig. 7 shows the elastic response spectra for the major and minor acceleration components of 

the artificial ground motion with 5% critical damping.  

 

 

4. Analysis results 
 

4.1 Estimation of the largest peak response using the simplified procedure 
 

Estimates of the largest peak response of the first and second mode responses derived by the 

equivalent linearization technique (steps 2 and 4) are shown in Figs. 8(a) and (b). The intersection 

points of the capacity curve and demand curve represent the predicted peak response. The 

estimated peak equivalent displacement and acceleration of the first mode, D1U
*
max and A1U

*
max and 

those of the second mode, D2V
*
max and A2V

*
max, respectively, are shown in these figures. 

To estimate the peak responses at each frame, the force distributions used in the pushover 

analyses (step 5) should be determined. Fig. 9 shows the first- and second-mode vectors 

corresponding to the estimated peak equivalent displacement of the first mode D1U
*

max, 1Uie
1ie
φ  

and 2Vie
2ie
φ . The combined force distributions used for the pushover analyses can then be 

determined according to Eq. (7) 

 
 

 

* *

1 1 max 2 2 max

* *

1 1 max 2 2 max

0.5

0.5

Uie U Vie V

Uie U Vie V

A A

A A

    


   

±

U 1ie 2ie

±

V 1ie 2ie

P M φ φ

P M φ φ
,                  (7) 

 

1 10 0

, ,

0 0N N

m I

m I

     
     

  
     
          

0

0 0 0

0

M 0 0

M 0 M 0 M I

0 0 I

,              (8) 

where M is the mass matrix of the building model. The combined force distribution used in step 5 

is shown in Fig. 10. Note that in this figure the vertical distributions of the horizontal forces and 

moments are not invert-triangular shape, unlike the mode shape shown in Fig. 9. This is because 

the mass and moment of inertia of the floor differs significantly at each floor. 

The distribution of the estimated relative peak horizontal displacement at each frame in the X  

and Y directions is shown in Fig. 11. The envelope of the four pushover analyses results is the 

predicted peak response at each frame. In Fig. 11(a), the predicted peak responses were determined 

from the results of the pushover analyses using PV
+ and PV

− for most of the frames in the case of 

Model 1, while for Model 2 (Fig. 11(b)), the predicted peak responses were determined from all 

four pushover analyses results. 

 

431



 

 

 

 

 

 

Kenji Fujii 

  
(a) Model 1 (b) Model 2 

Fig. 8 Estimates of the peak responses of the first and second modes calculated by the equivalent 

linearization technique 

 

  
(a) Model 1 (b) Model 2 

Fig. 9 First- and second-mode vectors corresponding to the predicted peak response 

 

  
(a) Model 1 (b) Model 2 

Fig. 10 Combined force distributions used in step 5 

432



 

 

 

 

 

 

Assessment of pushover-based method to a building with bidirectional setback 

 

  
(a) Model 1 (b) Model 2 

Fig. 11 Distribution of the peak relative horizontal displacements at each frame estimated by the envelope of 

the four pushover analyses results 

 

 
4.2 Nonlinear dynamic analysis results 
 
4.2.1 Nonlinear dynamic analysis cases 
To evaluate the ability of the simplified procedure to predict the peak displacement response of 

asymmetric buildings with bidirectional setback, nonlinear dynamic (time-history) analyses were 

performed in the following steps. First, nonlinear dynamic analyses were carried out for seismic 

input with various angles of incidence. Then, the envelopes of the peak responses for each angle 

were obtained from the maximum of the peak responses obtained for three artificial ground motion 

sets in each angle. Finally, the envelopes of the peak response were compared with the peak 

responses estimated by the simplified procedure (section 4.1). 

Note that the angle of incidence of the “major” component with respect to the X axis, ψ, varies 

at 15° intervals from (ψ1−90°) to (ψ1+90°), where ψ1 is the angle of incidence of the U axis 

corresponding to D1U
*
max: ψ1=−36.6° for Model 1 while ψ1=89.1° for Model 2. Therefore, 3×13=39 

cases were considered for the nonlinear dynamic analyses for each building model. 

 
4.2.2 Variation of the peak response with changes in the angle of incidence of the seismic 

input 
Fig. 12 shows the variation of the peak relative horizontal displacement (from basement) of the 

frames in the X and Y directions with changes in the angle of incidence of the seismic input for 

Model 1. In this figure, the peak displacement of frames Y6, X1 at level Z6 and X6 at level Z3 are 

shown. 

In Model 1, the largest peak of frame Y6 occurs in the case of ψ=ψ1=−36.6°, which is the 

principal direction of the first mode corresponding to the predicted peak response. However, the 

largest peak response of frame X1 occurs when ψ=−111.6°, and that of frame X6 occurs when 

ψ=−96.6°. 
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Fig. 12 Variation of the peak relative horizontal displacement of Model 1 with changing angle of incidence 

of the “major” component for three ground motions Art-001–003. Dashed blue line shows peak 

displacement estimated by the simplified method 

 

 
Fig. 13 Variation of the peak relative horizontal displacement of Model 2 with changing angle of incidence 

of the “major” component for three ground motions Art-001–003. Dashed blue line shows peak 

displacement estimated by the simplified method 

 

 

Fig. 13 shows the variation of the peak relative horizontal displacement of the frames in the X 

and Y directions with changes in the angle of incidence of the seismic input for Model 2. In this 

figure, the peak displacement of frames Y1, X1 at level Z6 and Y6 at level Z3 are shown. 

In Model 2, the largest peak response of frame X1 in level Z6 occurs when ψ=74.1°, which is 

between the principal direction of the first mode in the elastic range ψ1e (=63.6°) and that 

corresponding to the predicted peak response ψ1 (=89.1°). However, the largest peak response of 

frame Y1 occurs when ψ=14.1°, and that of frame Y6 occurs when ψ=164.1°. Thus, the variation 

of the peak response with varying angle of incidence of the seismic input depends on each frame. 

 

4.2.3 Comparison of the peak response predicted by the simplified procedure with that of 
the dynamic analysis results 

Fig. 14 compares the peak relative horizontal displacement at each frame estimated by the 

simplified procedure with that obtained from the envelope of the dynamic analyses results. For 

Model 1 (Fig. 14(a)), the largest peak response estimated by the simplified method is conservative 

except for frames X5 and X6 in level Z3. However, for Model 2 (Fig. 14(b)) the largest peak 

response agrees very well with the envelope of the dynamic analysis results. 
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(a) Model-1 (b) Model-2 

Fig. 14 Comparison of the peak relative horizontal displacement estimated by the simplified procedure at 

each frame with that derived by the dynamic analysis method 

 

  
(a) Model-1 (b) Model-2 

Fig. 15 Comparison of the interstorey drift of frames in the X and Y direction estimated by the simplified 

procedure at each frame with that derived by the dynamic analysis method 

 

 

Fig. 15 shows the peak interstorey drift for Model 1 (Fig. 15(a)) and Model 2 (Fig. 15(b)), 

obtained from the envelope of dynamic analyses results, along with the estimates of the simplified 

procedure.  

In Model 1, the estimated peak response of frames Y6 and X1, where the largest response 

occurs in the X and Y directions, respectively, agrees well with the envelope of the dynamic 

analysis results. However, the peak response estimated by the simplified procedure for frame X6 is 

notably smaller than that derived by the dynamic analysis envelope. In Model 2, the peak 
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responses of frames Y1 and X1 estimated by the two methods are in good agreement. For frame 

Y6, the peak response predicted by the simplified procedure is smaller than the envelope of 

dynamic analysis results; however, the difference between the two methods is small. 

These results show that the largest peak response of the two building models investigated in 

this study is satisfactorily predicted by the simplified procedure, especially the peak response of 

“flexible-edge” frames. Note that the underestimation of “stiff-edge” frame in one direction (frame 

X6 in Model 1 and frame Y6 in Model 2) is because the contribution of modes higher than the 

third mode is neglected in this simplified procedure, as discussed in the previous study (Fujii 

2014): in the frame at “stiff-edge”, the contribution of the third mode is significant. 

 

 

5. Suitability assessment of the simplified procedure based on pushover analysis 
results 

 

As described in Fujii (2014), there are two critical assumptions in the simplified procedure: (1) 

the building oscillates predominantly in one mode in each set of orthogonal directions, and (2) the 

principal directions of the first and second modal responses are almost orthogonal. In this 

following part, the suitability of the simplified procedure to the two building models are examined 

from the point of these two assumptions. 

From the DB-MAP analysis results in step 1 of the simplified procedure, the second and third 

modes at loading step n, n 2
φ  and n 3

φ , respectively, were calculated in terms of the displacement 

vector at step n, nd, and the second and third modes in the elastic range, 2e
φ  and 3e

φ  respectively, 

as Eqs. (9) and (10) 

    
T T

2e n 1 2e n

n 2 2e n 1 2e nT T

n 1 n 1 n n

φ M φ φ M d
φ φ φ φ d

φ M φ d M d
,                (9) 

      
T T T T

3e n 1 3e n 2 3e n 3e n 2

n 3 3e n 1 n 2 3e n n 2T T T T

n 1 n 1 n 2 n 2 n n n 2 n 2

φ M φ φ M φ φ M d φ M φ
φ φ φ φ φ d φ

φ M φ φ M φ d M d φ M φ
.    (10) 

Next, the ith effective modal mass ratio with respect to the principal direction of the ith modal 

response at loading step n, the tangent of the angle of incidence of the principal direction of the ith 

modal response at loading step n, and the torsional index of the ith mode at loading step n, were 

calculated as Eqs. (11)-(13) 

 

2 2

*

2 2 2

1
j n Xji j n Yji

j j

n i

j j n Xji j n Yji j n ji

j j j j

m m

m
m m m I

 

  

   
   

    
 

 

   
,                  (11) 

 tan n i j n Yji j n Xji

j j

m m     ,                       (12) 

 2 2 2

n i j n ji j n Xji j n Yji

j j j

R I m m   

 
  

 
   .                  (13) 

Fig. 16 shows the change of nmi
*, nψi, and nRρi at each loading step for both models. The dots 
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“●” in this figure correspond to the points of the peak response of the first mode as estimated by 

the simplified method, D1U
*
max. 

In Fig. 16(a) nm1
* varies within the range 0.63-0.70, nm2

* is almost constant at 0.86 while nm3
* 

varies within the range 0.18-0.27, from the elastic range to the point corresponding to the 

simplified method peak in case of Model 1. The change of nψi is very small, and the angle between 

the principal directions of the first and second modes is almost 90°. Thus, as discussed in Fujii 

(2016), Model 1 may oscillate predominantly in the first mode when the unidirectional excitation 

acts in the principal direction of the first modal response (U axis), while it may oscillate 

predominantly in the second mode when the unidirectional excitation acts in the orthogonal 

direction to the principal direction of the first modal response (V axis). The torsional indices nRρ1 

and nRρ2 vary within the ranges 0.36-0.52 and 0.03-0.09, while nRρ3 varies within 1.39-1.69. 

Therefore, the first and second modes of Model 1 are predominantly translational modes (nRρ1, nRρ2 

<1) while its third mode is predominantly a torsional mode (nRρ3>1) from the elastic range to the 

point corresponding to D1U
*
max. The trend of Model 2 (Fig. 16(b)) is similar to that of Model 1, 

although nψ1 varies from 63.6° to 89.1° while nψ2 varies from -26.4° to -1.0°. 

 

 

  
(a) Model 1 (b) Model 2 

Fig. 16 Change in the effective modal mass ratio, the principal directions of modal responses and the 

torsional index evaluated from the pushover analysis results. The coloured dots represent the points of the 

peak response of the first mode as estimated by the simplified method, D1U
*

max 
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(a) Model 1 (b) Model 2 

Fig. 17 |cosψ12| and the product Rρ1Rρ2 evaluated from pushover analyses. The coloured dots represent the 

values estimated by the simplified method 

 

 

In the previous study by the author (Fujii 2016), the following interesting relationships were 

found for a single-story asymmetric building model 

12 1 2cos R R   ,                           (14) 

where ψ12 is the angle between the principal directions of the first and second modes. This 

implies that if the product of the torsional indices of the first and second modes is close to zero, the 

principal directions of the first and second modes are almost orthogonal. Strictly speaking, this 

relation is valid only for the single-story asymmetric building model. However, if the product 

Rρ1Rρ2 can approximate |cosψ12| for a multi-storey building model with setback, Eq. (14) can be 

very useful to evaluate the orthogonality of the principal directions of the first and second modes. 

Fig. 17 shows |cosψ12| and Rρ1Rρ2 evaluated from the pushover analyses results.  

The |cosψ12| values are very small from the elastic range to the point corresponding to the 

simplified method peak: 0<|cosψ12|<0.04 for both Models 1 and 2. This confirms that the 

principal directions of the first and second modes are close to orthogonal throughout the response. 

The behaviour of Rρ1Rρ2 is similar to that of |cosψ12|. For Model 1 (Fig. 17(a)), Rρ1Rρ2 

corresponding to the simplified method peak response is 3.99×10−2, while |cosψ12| is 3.16×10−2. 

Similar trends can be found for Model 2 (Fig. 17(b)); the product Rρ1Rρ2 corresponding to the 

simplified method peak response is 9.22×10−3, while |cosψ12| is 2.71×10−3. These results indicate 

that the product Rρ1Rρ2 may be used as an index for the evaluation of the orthogonality of the 

principal directions of the first and second modes. 

In conclusion, the two asymmetric building models analysed in this study satisfy the following 

two conditions; (a) their first and second modes are predominantly translational modes while its 

third mode is predominantly a torsional mode, and (b) their principal directions of the first and 

second modal responses are almost orthogonal. It should be note that, Eq. (14) implies that the 

orthogonality of the principal axes of the first and second modal response is strongly related to the 

torsional indices Rρ1 and Rρ2; if the first or second mode is predominantly torsional mode (Rρ1 or Rρ2 

>1), the principal directions of the first and second modes would be far from orthogonal. Besides, it 

is evident that from Eq. (4), the effective modal mass ratio of the ith mode with respect to the principal 

direction of the ith modal response, mi
* will be small when the ith mode is the predominantly 

torsional mode. Therefore, it is very important to note that these two conditions may not discuss 
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independently, in case of buildings designed according to weak-beam strong column concept. 

 
 

6. Conclusions 
 

The suitability of the simplified pushover-based procedure, proposed by the author (Fujii 

2014), to asymmetric buildings with bidirectional setback and designed according to weak-beam 

strong column concept is assessed in this study. In the numerical examples, nonlinear time history 

analysis of two six-storey asymmetric buildings with bidirectional setback are carried out 

considering various directions of seismic input. These results are compared with the results 

estimated by the proposed method. Although the number of building models considered in this 

study is limited, the following findings are made. 

• The largest peak response of the two building models with bidirectional setback investigated 

in this study is satisfactorily predicted by the simplified pushover-based procedure. Especially, the 

peak response at the frames where the larger response is expected when building oscillate in the 

first mode (“flexible-edge” frame) can be predicted with high accuracy by the presented simplified 

procedure. However, the peak response at the “stiff-edge” frame in one direction may be 

underestimated by the this procedure. 

• The simplified pushover-based procedure is suitable for an asymmetric building with bi-

directional setback and designed according to weak-beam strong column concept, if (a) its first and 

second modes are “predominantly translational” modes while its third mode is a “predominantly 

torsional” mode, and (b) the principal directions of the first and second modes are almost 

orthogonal. 

• The orthogonality of the principal directions of the first and second modes may be evaluated 

by the product of the torsional indices of the first and second modes, even for a building with 

setback. 

Note that those two building models considered in this study are designed for seismic resistance 

according to weak-beam strong column concept. This is because the author have intended to avoid 

the problems caused by the storey mechanism in this article; the storey mechanism in upper storey 

may lead the effect of higher modes more significant, so the discussions of the applicability of this 

simplified pushover-based procedure would be more complicated. Therefore, in this phase, the 

achievement of this study should be limited within the newer buildings according to weak-beam 

strong column concept. Applicability to this simplified procedure to the existing buildings, which 

is not designed according to weak-beam strong column concept, should be studied in the later 

works. The author is planning the seismic assessment of the exiting irregular building severely 

damaged in recent earthquakes, e.g., the Uto city office building damaged due to 2016 Kumamoto 

Earthquake, Japan, as the next phase of this study. 

It should be also noted that the results presented in this article are those obtained by using the 

artificial ground motions whose response spectrum are well fit to the target spectrum. However, 

the shape of response spectrum of the real ground motions recorded in the past earthquakes, in 

general, differ significantly from the target spectrum. The author thinks, when the largest peak 

response considering all possible angle of incidence of the seismic input is needed, the use of the 

largest response spectrum considering all possible angle for the prediction of the peak response of 

the first and second mode would provide the conservative results. Or, when the average of peak 

response considering all possible angle is needed, the use of the geometric mean spectrum of 

major and minor spectrum for the prediction of the peak response would provide the reasonable 
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results. However, these expectations should be verified in the later works. 

Further studies are needed for the suitability assessment of more complex structural systems 

such as a frame-wall system with setbacks or with various dampers. The estimation of member 

forces (shear forces of RC members or bending moments of member ends with no potential hinge) 

should also be studied in the next phase. 
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Appendix: Longitudinal reinforcement of each member 
 

Tables 1-3 show the list of longitudinal reinforcement of each member for Models 1 and 2. Note 

that the contribution of slab reinforcement (2-D10+2-D13 for the perimeter beams, while 4-

D10+4-D13 for the inner beams) is considered for the calculation of yield moment My (tension in 

upper side) of the beams in level Z1 to Z6. 

 

 
Table 1 Longitudinal reinforcement of beams (Model 1) 

Level 

Longitudinal reinforcement (top and bottom sides) 

Frame (X-dir.) Frame (Y-Dir.) 

Y1 Y2 Y3 Y4 Y5 Y6 X1 X2 X3 X4 X5 X6 

Z6   3-D25 3-D25 3-D25 3-D25 3-D25 3-D25 3-D25 3-D25   

Z5  3-D25 4-D25 4-D25 4-D25 4-D25 3-D25 3-D25 3-D25 3-D25   

Z4 3-D25 5-D25 5-D25 5-D25 5-D25 5-D25 4-D25 4-D25 4-D25 4-D25   

Z3 4-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 4-D25 4-D25 

Z2 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 

Z1 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 

Z0 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 

 
Table 2 Longitudinal reinforcement of beams (Model 2) 

Level 

Longitudinal reinforcement (top and bottom sides) 

Frame (X-dir.) Frame (Y-Dir.) 

Y1 Y2 Y3 Y4 Y5 Y6 X1 X2 X3 X4 X5 X6 

Z6 3-D25 3-D25 3-D25 3-D25   3-D25 3-D25 3-D25 3-D25   

Z5 4-D25 4-D25 4-D25 4-D25 3-D25  3-D25 3-D25 3-D25 3-D25   

Z4 3-D25 5-D25 5-D25 5-D25 5-D25 3-D25 4-D25 4-D25 4-D25 4-D25   

Z3 4-D25 5-D25 5-D25 5-D25 5-D25 4-D25 5-D25 5-D25 5-D25 5-D25 4-D25 4-D25 

Z2 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 

Z1 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 5-D25 

Z0 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 6-D25 

 
Table 3 Longitudinal reinforcement of columns (Models 1 and 2) 

Storey Longitudinal reinforcement 

2nd to 6th 20-D29 (top and bottom) 

1 20-D29 (top), 12-D29 (bottom) 
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