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Abstract.  The soil-structure interaction effect significantly influences the design of multi-storey buildings 

subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral 

stability to resist seismic loads. In the present work, the nonlinear soil-structure analysis of a G+5 storey RC 

shear wall building frame having isolated column footings and founded on deformable soil is presented. The 

nonlinear seismic FE analysis is carried out using ANSYS software for the building with and without shear 

walls to investigate the effect of inclusion of shear wall on the moments in the footings due to differential 

settlement of soil mass. The frame is considered to behave in linear elastic manner, whereas, soil mass to 

behave in nonlinear manner. It is found that the interaction effect causes significant variation in the moments 

in the footings. The comparison of non-interaction and interaction analyses suggests that the presence of 

shear wall causes significant decrease in bending moments in most of the footings but the interaction effect 

causes restoration of the bending moments to a great extent. A comparison is made between linear and 

nonlinear analyses to draw some important conclusions. 
 

Keywords:  soil-structure interaction; ANSYS; space frame; shear wall; nonlinear analysis; foundation 

moments; isolated footings; seismic forces 

 

 

1. Introduction 
 

RC space frames are conventionally designed assuming the foundations to be resting on 

unyielding supports. The analysis is carried out by considering bottom end of the columns fixed 

and neglecting the effect of soil deformations. In reality, any building frame resting on deformable 

soil results in redistribution of forces and moments due to soil-structure interaction. Thus, 

conventional analysis is unrealistic and may be unsafe. The interaction effect is more pronounced 

in case of multi-storeyed buildings due to their heavy loads. When such buildings are subjected to 

lateral seismic loads, the effect may become further intensified. The shear walls are usually 

provided in such situation to increase the lateral stability of the building. The study of role of shear 

walls in the space frame under the influence of soil-structure interaction is a matter of great 

importance. 

In the present work, a G+5 storey RC building frame with isolated footings is considered for 3- 
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dimensional nonlinear soil-structure interaction analysis under normal as well as seismic loads 
using ANSYS software. The analysis is carried out considering the space frame with and without 
shear walls oriented along the direction of seismic load. Analysis is carried out for various 
combinations of dead, live and seismic loads, as per IS-1893 (Part-1): 2002. Full 3-dimensional 
space frame is considered for analysis, which makes the model easily extendable to any 
configuration of space frame and shear wall. The frame is considered to behave in linear elastic 
manner, whereas, soil mass to behave in nonlinear manner. The results of non-interaction and 
interaction analyses are compared for the space frame with and without shear walls to investigate 
the effect of interaction on the moments in the footings. The results show that there is considerable 
redistribution of moments in the space frame due to the interaction effect. The provision of shear 
walls causes significant reduction in the bending moments in most of the column footings 
especially when structure is resting on deformable soil, but the interaction effect causes restoration 
of the bending moments to a great extent. A comparison is made between linear and nonlinear 
analyses to draw some important conclusions. 
 
 
2. Literature review 

 
Investigation of effects of soil-structure interaction on building frames and foundations have 

been a subject matter of keen interest for the researchers. Several studies have been carried out in 
the past and important conclusions are drawn. It is well established that the soil-structure 
interaction effect causes redistribution of forces in the superstructure. In most of these research 
works, the building frames and soils were approximated or idealised in various ways. Earlier 
research considered 2-D idealisation of structure and soil. Research gained momentum with the 
advent of more powerful tools like the finite element method. With the availability of increasing 
computing power and sophisticated modelling techniques, three dimensional soil-structure 
interaction analysis with more realistic idealisation has been witnessed during recent few years. 
Still a lot of work need to be done to bring the studies from research to actual implementation 
stage in design offices, overcoming various modelling and analysis complexities.  

A double storey, two bay plane frame, having combined footing supported on deformable soil, 
was considered by Noorzaei et al. (1995) for linear and non-linear soil-structure analyses. An 
analytical study on moment resisting RC frame building having soft first storey and brick infill in 
the upper storey, with isolated column footings resting on medium soil, was conducted by Arlekar 
et al. (1997). Mylonakis and Gazetas (2000) re-explored the role of soil-structure interaction in the 
seismic response of the structures using recorded motions and theoretical considerations and 
pointed out that the effect of soil-structure interaction may not always be beneficial. 

Stavridis (2002) considered an arbitrary structure to present a simplified analysis approach for 
layered soil-structure analysis based on a purely analytical treatment of the underlying soil models. 
A fifty storey symmetrical building was approximated by a 2-dimensional model by Edgers et al. 
(2005) to study the soil -structure interaction effects using ANSYS software. Hora (2006) proposed 
a computational methodology for nonlinear interaction analysis of infilled frame-foundation-soil 
system using coupled finite-infinite elements for the soil mass. Yahyai et al. (2008) carried out 2-D 
analysis of two adjacent 32 storey buildings, with variable distance, subjected to seismic loading to 
investigate the effect of soil -structure interaction between them. Natarajan and Vidivelli (2009) 

carried out nonlinear analysis using ANSYS software to examine the influence of column spacing 
on behaviour of a space frame raft foundation soil system under static loading. Interaction and 
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non-interaction analyses for the space frame-raft foundation-soil system, with varying soil and raft 
stiffness, were compared by Thangaraj and Illamparuthi (2010) using ANSYS software.  

Effect of differential settlement of foundations on nonlinear interaction behavior of a 2-bay 10-
storey plane frame-soil system was studied by Agrawal and Hora (2010) using coupled finite-
infinite elements. Shakib and Atefatdoost (2011) studied the effect of soil structure interaction on 
torsional response of an asymmetrical wall type system having a slab supported on two 
asymmetrical walls with foundation resting over soil. Garg and Hora (2012) evaluated the effect of 
soil-structure interaction on a 3-bay, 3-storey RCC space frame-footing-strap beam-soil system 
using ANSYS software. Renzi et al. (2013) presented a simplified empirical method for assessing 
seismic soil-structure interaction effects on ordinary shear-type buildings. Tabatabaiefar et al. 
(2013) implemented finite difference method to investigate the effects of dynamic soil-structure 
interaction on seismic behaviour and lateral structural response of mid-rise moment resisting 
building frames. Hokmabadi et al. (2014) evaluated seismic-soil-pile-structure interaction of mid-
rise buildings by carrying out experimental and numerical studies. Jain and Hora (2015) 
investigated the effect of inclusion of shear walls on the total and differential settlements in the 
footings of a space frame due to deformations in the soil mass. 

The present situation demands 3-D soil-structure-interaction analysis of important structures for 
more realistic and accurate analysis. The present study is an effort in that direction.  
 
 
3. Problem for investigation 

 
A six storey RC framed building having isolated column footings and resting on homogeneous 

soil mass is considered in this study as shown in Figs. 1(a)-(d). To resist lateral forces, a dual 
system, comprising of special moment resisting frames (SMRF) and reinforced concrete shear 
walls, is considered. The shear walls are provided on the outer frames along Y-direction i.e., the 
assumed direction of lateral seismic forces. Such buildings are very common in urban areas. The 
space frame, shear walls and soil mass are considered to act as a single compatible structural unit 
for the interaction analysis. The interaction analyses are carried out with and without shear walls.  

 
 

Table 1 Geometric parameters of the space frame-shear wall-soil system 

Description of parameter Value/size 

Number of storeys 6 

Storey height 3.1 m 

Slab/ shear wall thickness 200 mm 

Column sizes: 
(i) Foundation to 3rd floor 

(ii) 3rd floor to 6th floor 

 
500 mm×500 mm 
400 mm×400 mm 

Beam size 300 mm×500 mm 
Depth of foundation below G.L. 1.5 m 

Height of Plinth above G.L. 0.6 m 

Footing size below column 3 m×3 m×0.5 m 
Footing size below shear wall 3 m×9 m×0.5 m 

Semi-infinite extent of soil mass 100 m×100 m×25 m 
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on slabs, mass of beams in longitudinal as well as transverse directions at that floor, mass of 
column for half column height above and below floor, mass of wall for half height above and 
below beams (wall is considered only on outer periphery), mass of parapet wall on outer periphery 
beams on roof. 
Seismic weight of floor= lumped masses of floors x g 
g= Acceleration due to gravity 
W=Seismic weight of building (sum of seismic weights of all floors) 
 

4.2 Determination of fundamental natural period of the shear wall-space frame 
 

The approximate fundamental natural period of vibration (Ta) of the space frame-shear wall 
structure is estimated as per the empirical expression given in the clause 7.6.1 of IS 1893 (Part 1): 
2002: 
Ta=0.075 h0.75 

Where h=height of building, in m. 
No provision exists in IS 1893 (Part 1):2002 to account for the change in fundamental natural 

period of vibration due to soil-structure interaction effect. Any such change in natural period and 
consequent change in design base shear (up or down, depending on spectral shape) is beyond the 
scope of this study. 
 

4.3 Determination of design base shear 
 

The design base shear is calculated as per clause 7.5.3 of IS 1893 (Part 1): 2002: 
The design seismic base shear is VB=Ah W 
Ah=Design horizontal acceleration spectrum coefficient, as per clause 6.4.2 of IS 1893 (Part 1): 
2002. 
W=Seismic weight of the building 
Ah=(Z/2)×(I/R)×(Sa/g) 
Z=Zone factor [Table 2 of IS 1893 (Part 1): 2002].  
I=Importance factor [Table 6 of IS 1893 (Part 1): 2002].  
R=Response reduction factor, depending on the perceived seismic damage performance of the 
building [Table 7 of IS 1893 (Part 1): 2002].  
Sa/g=Average response acceleration coefficient for soil for 5% damping [Fig. 2 of IS 1893 (Part 
1): 2002] for the natural period as worked out above. 
 

4.4 Determination of vertical distribution of base shear to different floor levels 
 
The design seismic base shear, VB is distributed to different floor levels along the height of the 

building as per the clause 7.7.1 of IS 1893 (Part 1): 2002 

 
Where, 
Qi=Design lateral force at floor ‘i’, 
Wi=Seismic weight of floor ‘i’, 
hi=Height of floor i measured from base, and 
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Table 4 Parameters for Lateral Seismic Load calculations on the structure 

Parameter Value 

Earthquake zone V 

Zone factor ‘Z’ 
(Table 2 of IS 1893 (Part 1): 2002) 

0.36 

Importance factor ‘I’ 
(Table 6 of IS 1893 (Part 1): 2002) 

1.5 

Response reduction factor ‘R’ 
(Table 7 of IS 1893 (Part 1): 2002) (Ductile shear wall with SMRF) 

5.0 

Approximate fundamental natural period of vibration (Ta) 
Ta=0.075 h0.75=0.075 (20.7)0.75=0.728 

(as per clause 7.6.1 of IS 1893 (Part 1): 2002) 
0.728 sec 

Average response acceleration coefficient (Sa/g) 
Sa/g=1.36/Ta 

(for soil for 5% damping, as given in Fig. 2 of IS 1893 (Part 1): 2002, for the natural 
period Ta of 0.728 sec) 

1.868 

 
Table 5 Lateral seismic loads at various floor levels 

Floor level 
Intensity of seismic load (KN) 

Space frame without shear wall Space frame with shear wall 

6 1181.5 1185.4 

5 899.6 906.6 

4 610.6 615.4 

3 382.4 385.4 

2 205.4 206.9 

1 80.6 81.2 

0 3.9 4.1 

 
 
n=Number of storeys in the building is the number of levels at which masses are located 
 

4.5 Distribution of design lateral force at floor level to different frames of the structure 
 

The design lateral force at floor level is distributed amongst the frames in the direction 
considered for seismic load (i.e., Y-direction in present analysis) in proportion to their stiffness 
[clause 7.7.2.1 of IS 1893 (Part 1): 2002]. 

The parameters used for the calculation of seismic load are shown in Table 4. 
The calculated values of design lateral seismic loads are as shown in Table 5. 

 
 
5. Finite element idealization 
 

The finite element modelling is carried out using ANSYS software. It has wide range of inbuilt 
elements and material models suited for the problem under consideration.  

Table 6 shows the elements adopted for modelling various structural components and soil mass.  
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Table 7 Load combinations 

S. No. Load case Load combination 

1 LC1 1.5(DL+LL) 

2 LC2 1.2(DL+LL+EL) 

3 LC3 1.2(DL+LL-EL) 

4 LC4 1.5(DL+EL) 

5 LC5 1.5(DL-EL) 

6 LC6 0.9DL+1.5EL 

7 LC7 0.9DL-1.5EL 
 
 

One of the purposes of this study is to compare the effect of inclusion of shear walls in the 
space frame in the structurally weaker direction (i.e., Y-direction) in resisting seismic forces. To 
accomplish the same, the analyses are carried out for the seismic forces assumed to act in the Y-
direction only. 

The positive sign of seismic load shows that it is applied from front whereas negative sign 
shows that it is applied from back i.e., from the opposite direction. 
 
 
7. Results and discussion 
 

The results of non-interaction, linear and nonlinear interaction analyses are compared to 
investigate the following; 

- Bending moment in the footings about x-axis (Mx) 
- Bending moment on the footings about y-axis (My) 
The results are discussed to highlight the effect of shear wall. The results are tabulated taking 

advantage of symmetry and hence only quarter portion of the problem is considered for tabulation 
of results. Thus, the bending moments are tabulated for the footings F1, F2, F3, F6, F7, F8 and 
SF1, owing to the symmetry. 

Due to interaction effect, differential settlements take place in the footings, which results in 
redistribution of moments in the footings. Figs. 5(a)-(d) show the settlements in the footings for 
NLIA-SW and NLIA+SW systems, under vertical and seismic loads. 

 
7.1 Bending moment Mx in footings 
 
Table 8 shows the comparison of bending moment Mx in the footings for NIA-SW, LIA-SW 

and NLIA-SW systems.  
Under vertical loads (Load case LC1), LIA results in highly significant increase in the values of 

Mx in all the footings. The maximum increase of nearly 23 times is found in the footing F3 and the 
minimum increase of nearly 2.5 times is found in the footing F7. NLIA also results in highly 
significant increase in the values of Mx in all the footings except footing F7 in which marginal 
decrease is found. The maximum increase of nearly 17 times is found in the footing F3 and the 
decrease of nearly 13% is found in the footing F7. Change of sign in the value takes place in the 
footing F6. 

For most of the seismic load combinations, the LIA results in significant increase in the values 
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footing F1. 
NLIA causes significant change in the values in many cases as compared to LIA. 
Table 10 shows change in bending moments Mx in the footings under various load cases due to 

presence of shear wall in the space frame.  
 
 
Table 8 Comparison of bending moment (Mx) in the footings for NIA-SW, LIA-SW and NLIA-SW systems 
under various load cases  

Footing 
Desig- 
nation 

Coordinates (m) Analysis
type 

Bending moment Mx for various load cases (KN-m) 

X Y Z LC1 LC2 LC3 LC4 LC5 LC6 LC7

F1 0.0 0.0 0.0 

NIA-SW 15.74 -325.09 350.00 -407.85 436.02 -413.56 430.32

LIA-SW 143.31 -383.35 626.64 -507.54 756.46 -522.98 724.81

% diff.# 810.25 17.92 79.04 24.44 73.49 26.46 68.44

NLIA-SW 100.83 -464.05 623.49 -603.39 758.41 -559.12 719.03

% diff.# 540.43 42.75 78.14 47.94 73.94 35.20 67.09

F2 6.5 0.0 0.0 

NIA-SW 10.39 -344.34 360.69 -433.50 447.78 -436.43 444.86

LIA-SW 225.44 -314.80 680.07 -441.39 800.74 -492.38 742.85

% diff.# 2070.20 -8.58 88.55 1.82 78.82 12.82 66.99

NLIA-SW 163.29 -395.82 658.31 -532.38 789.53 -529.23 729.56

% diff.# 1471.91 14.95 82.51 22.81 76.32 21.26 64.00

F3 13.0 0.0 0.0 

NIA-SW 10.09 -344.94 360.81 -434.20 447.99 -437.03 445.16

LIA-SW 245.68 -296.59 691.95 -424.93 808.84 -484.71 745.27

% diff.# 2334.64 -14.02 91.78 -2.13 80.55 10.91 67.42

NLIA-SW 176.69 -379.54 664.33 -516.05 793.61 -521.89 729.82

% diff.# 1650.97 10.03 84.12 18.85 77.15 19.42 63.95

F6 0.0 6.0 0.0 

NIA-SW 2.00 -374.77 377.85 -470.13 470.65 -470.26 470.51

LIA-SW 12.41 -408.39 426.40 -513.33 532.02 -527.79 538.17

% diff.# 520.12 8.97 12.85 9.19 13.04 12.23 14.38

NLIA-SW -3.51 -466.67 459.27 -578.39 580.42 -562.67 570.31

% diff.# 75.50* 24.52 21.55 23.03 23.32 19.65 21.21

F7 6.5 6.0 0.0 

NIA-SW 7.48 -386.27 398.13 -486.12 494.38 -487.80 492.71

LIA-SW 24.52 -376.94 413.03 -475.42 509.87 -496.79 514.59

% diff.# 227.92 -2.42 3.74 -2.20 3.13 1.84 4.44 

NLIA-SW 6.53 -438.38 446.53 -543.64 563.64 -531.41 548.95

% diff.# -12.70 13.49 12.16 11.83 14.01 8.94 11.41

F8 13.0 6.0 0.0 

NIA-SW 7.41 -386.73 398.49 -486.70 494.83 -488.35 493.18

LIA-SW 28.18 -368.13 409.86 -465.54 504.53 -488.91 509.16

% diff.# 280.36 -4.81 2.85 -4.35 1.96 0.11 3.24 

NLIA-SW 9.23 -430.77 443.04 -534.58 558.97 -523.36 543.57

% diff.# 24.57 11.39 11.18 9.84 12.96 7.17 10.22

# %difference with NIA-SW results; *with reversal of sign 
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Table 9 Comparison of bending moment (Mx) in the footings for NIA+SW, LIA+SW and NLIA+SW 
systems under various load cases 

Footing 
Designation 

Analysis 
type 

Bending moment Mx  for various load cases (KN-m) 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 

F1 

NIA+SW 20.85 -39.44 72.26 -51.54 88.08 -58.98 80.64

LIA+SW 147.22 -336.51 593.37 -447.46 714.76 -439.89 671.42

% diff.# 606.12 753.28 721.16 768.16 711.48 645.79 732.62

NLIA+SW 111.05 -396.70 572.13 -521.15 685.92 -470.20 647.48

% diff.# 432.64 905.91 691.77 911.14 678.74 697.18 702.94

F2 

NIA+SW 10.02 -30.61 46.65 -41.23 55.35 -44.05 52.53

LIA+SW 226.70 -245.73 605.42 -357.22 706.20 -423.30 647.60

% diff.# 2163.15 702.67 1197.85 766.49 1175.86 860.98 1132.87

NLIA+SW 168.22 -316.11 591.93 -434.80 700.05 -455.85 641.29

% diff.# 1579.35 932.57 1168.93 954.67 1164.75 934.87 1120.85

F3 

NIA+SW 10.10 -30.57 46.74 -41.24 55.40 -44.07 52.57

LIA+SW 244.68 -227.83 613.50 -340.85 710.20 -416.98 646.35

% diff.# 2322.33 645.18 1212.69 726.46 1182.04 846.13 1129.60

NLIA+SW 177.01 -303.09 594.19 -420.83 700.88 -450.23 639.74

% diff.# 1652.40 891.33 1171.38 920.39 1165.22 921.58 1117.02

SF1 (below column C6)

NIA+SW 16.72 -97.37 124.05 -127.41 149.37 -131.82 144.96

LIA+SW 101.57 -1297.40 1458.40 -1646.90 1794.50 -1712.40 1795.80

% diff.# 507.44 1232.42 1075.65 1192.60 1101.38 1199.04 1138.82

NLIA+SW 104.22 -1524.50 1688.20 -1921.90 2070.80 -1824.60 1906.60

% diff.# 523.29 1465.65 1260.90 1408.44 1286.36 1284.16 1215.26

F7 

NIA+SW 7.39 -37.09 48.92 -49.66 57.86 -51.30 56.22

LIA+SW 32.21 -309.20 358.44 -391.80 440.06 -416.56 445.95

% diff.# 335.70 733.56 632.68 688.90 660.61 711.98 693.25

NLIA+SW 16.25 -367.04 395.33 -457.50 492.81 -448.72 475.48

% diff.# 119.89 889.49 708.08 821.19 751.79 774.66 745.78

F8 

NIA+SW 7.43 -37.12 49.01 -49.69 57.97 -51.34 56.32

LIA+SW 28.45 -308.68 350.98 -390.98 430.71 -415.97 436.72

% diff.# 282.71 731.57 616.20 686.90 642.96 710.18 675.49

NLIA+SW 10.91 -363.54 382.40 -451.78 478.73 -445.00 464.86

% diff.# 46.76 879.36 680.31 809.27 725.80 766.72 725.46

# %difference with NIA-SW results 
 

 
Under load case LC1, the presence of shear wall causes highly significant increase of nearly 7.5 

times in the bending moments Mx in shear wall footing SF1 (below column C6) for NIA, nearly 7 
times in case of LIA and nearly 29 times (with change of sign) in NLIA. Insignificant change is 
found in footings F2 and F3. In remaining footings lesser significant changes are found. 

Due to all combinations of seismic loads, the NIA suggests that the presence of shear wall  
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Table 10 Change in bending moments (Mx) in the footings under various load cases due to presence of shear 
wall in the space frame 

Footing 
Desig- 
nation 

Cases compared 
% change in bending moment Mx for various load cases 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 

F1 

NIA+SW and NIA-SW 32.43 -87.87 -79.35 -87.36 -79.80 -85.74 -81.26

LIA+SW and LIA-SW 2.73 -12.22 -5.31 -11.84 -5.51 -15.89 -7.37

NLIA+SW and NLIA-SW 10.14 -14.51 -8.24 -13.63 -9.56 -15.90 -9.95

F2 

NIA+SW and NIA-SW -3.57 -91.11 -87.07 -90.49 -87.64 -89.91 -88.19

LIA+SW and LIA-SW 0.56 -21.94 -10.98 -19.07 -11.81 -14.03 -12.82

NLIA+SW and NLIA-SW 3.02 -20.14 -10.08 -18.33 -11.33 -13.87 -12.10

F3 

NIA+SW and NIA-SW 0.10 -91.14 -87.05 -90.50 -87.63 -89.92 -88.19

LIA+SW and LIA-SW -0.41 -23.18 -11.34 -19.79 -12.20 -13.97 -13.27

NLIA+SW and NLIA-SW 0.18 -20.14 -10.56 -18.45 -11.68 -13.73 -12.34

F6 
(SF: below 
column C6) 

NIA+SW and NIA-SW 735.67 -74.02 -67.17 -72.90 -68.26 -71.97 -69.19

LIA+SW and LIA-SW 718.58 217.69 242.03 220.83 237.30 224.45 233.69

NLIA+SW and NLIA-SW
2869.23

(*) 
226.68 267.58 232.28 256.78 224.28 234.31

F7 

NIA+SW and NIA-SW -1.15 -90.40 -87.71 -89.78 -88.30 -89.48 -88.59

LIA+SW and LIA-SW 31.34 -17.97 -13.22 -17.59 -13.69 -16.15 -13.34

NLIA+SW and NLIA-SW 148.99 -16.27 -11.47 -15.85 -12.57 -15.56 -13.38

F8 

NIA+SW and NIA-SW 0.34 -90.40 -87.70 -89.79 -88.28 -89.49 -88.58

LIA+SW and LIA-SW 0.96 -16.15 -14.37 -16.02 -14.63 -14.92 -14.23

NLIA+SW and NLIA-SW 18.21 -15.61 -13.69 -15.49 -14.35 -14.97 -14.48

*with reversal of sign 
 
 
causes significant decrease of nearly 65 to 90% in the values of bending moments in the footings. 
However, the interaction effect causes substantial reversal effect (restoration) in the bending 
moments except in the shear wall footings in which increase of nearly 2 to 2.5 times is found. The 
significant decrease of nearly 5 to 23% in LIA and 8 to 20% in NLIA is found in the footings other 
than shear wall footings. 

Thus, it is noticed that the interaction effect causes significant change in the value of Mx in the 
footings. The results obtained from NIA may be highly misleading in deformable soils as moments 
in the footings do not actually get reduced to that extent as that in case of NIA. Therefore, the 
footings of shear wall space frame, designed on the basis of NIA, may be more vulnerable.  

Figs. 6(a)-(d) show variation of bending moment Mx in the footings with load increments for 
the vertical loads (load case LC1). The corner footings F1 and the inner footing F7 are selected for 
the comparison. Both, the space frame-soil system as and space frame-shear wall-soil system are 
considered. The results of NIA, LIA and NLIA are plotted for comparison. It can be seen that LIA 
results in highly significant increase in the values of Mx in the footing F1 and significant increase 
in the footing F7 as compared to NIA. NLIA also results in highly significant increase in the 
footing F1 but to somewhat lesser extent as compared to LIA. Up to about 40% load increment, 
the results of LIA and NLIA are almost the same. Thereafter, with each further load increment, the  
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Reversal in the sign is also found in the footings F2 and F7 under some load cases. 
Table 13 shows change in bending moments My in the footings under various loads due to 

presence of shear wall in the space frame. 
 
 

Table 11 Comparison of bending moment (My) in the footings for NIA-SW, LIA-SW and NLIA-SW 
systems under various load cases  

Sr. No. 
Footing Desig-

nation 
Analysis 

type 
Bending moment My for various load cases (KN-m) 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 

1 F1 

NIA-SW -18.91 -14.07 -16.21 -15.36 -18.03 -8.68 -11.35

LIA-SW -128.55 -82.53 -109.43 -72.75 -105.82 -24.03 -58.87

% diff.# 579.76 486.51 575.20 373.74 487.07 176.73 418.50

NLIA-SW -84.40 -70.38 -73.32 -64.63 -69.96 -22.85 -47.31

% diff.# 346.31 400.16 352.39 320.90 288.10 163.10 316.69

2 F2 

NIA-SW -2.65 -1.05 -3.22 1.17 -1.54 1.24 -1.48 

LIA-SW -16.34 -12.39 -9.58 -11.87 -7.98 -3.13 -1.16 

% diff.# 517.24 1081.59 197.62
914.53

(*) 
416.92 

152.42 
(*) 

-21.66

NLIA-SW 8.27 -0.35 9.58 -4.65 7.19 -2.79 5.13 

% diff.# 
212.08

(*) 
-66.56

197.52
(*) 

297.44
(*) 

366.88 
(*) 

125.00 
(*) 

246.62
(*) 

3 F3 

NIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff.# 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff.# 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 F6 

NIA-SW -14.25 -11.57 -11.22 -10.01 -9.57 -6.09 -5.66 

LIA-SW -197.90 -147.70 -155.98 -138.01 -148.25 -69.96 -79.39

% diff.# 1288.87 1176.58 1289.82 1279.27 1448.67 1048.95 1303.58

NLIA-SW -140.86 -115.53 -119.20 -111.62 -116.51 -68.12 -74.57

% diff.# 888.56 898.53 962.10 1015.53 1117.11 1018.82 1218.46

5 F7 

NIA-SW -10.89 -8.88 -8.54 -6.30 -5.87 -3.86 -3.44 

LIA-SW -28.55 -21.65 -20.35 -19.60 -17.97 -9.09 -7.56 

% diff.# 162.09 143.69 138.22 211.19 206.09 135.33 119.94

NLIA-SW -2.68 -4.73 -2.04 -9.22 -6.16 -8.02 -4.54 

% diff.# -75.41 -46.76 -76.17 46.48 4.92 107.47 32.08

6 F8 

NIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff.# 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff.# 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

# %difference with NIA-SW results; * with reversal of sign 
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Table 12 Comparison of bending moment (My) in the footings for NIA+SW, LIA+SW and NLIA+SW 
systems under various load cases  

Footing Desig-
nation 

Analysis 
type 

Bending moment My for various load cases (KN-m) 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 

F1 

NIA+SW -18.87 -15.07 -15.17 -16.62 -16.74 -9.96 -10.08 

LIA+SW -124.04 -78.34 -105.40 -68.61 -101.94 -20.40 -56.82 

% diff#. 557.48 419.76 594.79 312.83 508.92 104.77 463.48 

NLIA+SW -80.23 -64.34 -72.40 -58.48 -69.81 -19.54 -48.41 

% diff#. 325.25 326.84 377.26 251.88 317.01 96.17 380.12 

F2 

NIA+SW -2.58 -2.08 -2.13 -0.14 -0.21 -0.09 -0.16 

LIA+SW -13.32 -12.31 -4.86 -12.34 -2.92 -2.85 1.70 

% diff#. 417.04 493.32 127.93 8805.57 1276.94 3061.77 962.5(*) 

NLIA+SW 12.89 5.64 10.03 0.98 6.58 -2.44 3.07 

% diff#. 
399.61 

(*) 
171.15

(*) 
370.89 

(*) 
600 
(*) 

3033.33
(*) 

2600.35 
1818.75 

(*) 

F3 

NIA+SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LIA+SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff#. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLIA+SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff#. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SF1           
(below column 

C6) 

NIA+SW -15.71 -14.36 -10.74 -13.10 -8.58 -8.76 -4.23 

LIA+SW -212.56 -149.37 -172.51 -135.77 -165.06 -56.61 -94.69 

% diff#. 1253.02 940.18 1505.94 936.33 1824.07 546.50 2136.20 

NLIA+SW -154.57 -129.09 -133.49 -122.96 -130.72 -56.26 -89.19 

% diff#. 883.90 798.96 1142.69 838.55 1423.77 542.42 2006.47 

F7 

NIA+SW -11.35 -10.70 -7.44 -8.69 -4.60 -6.02 -1.94 

LIA+SW -9.84 -3.16 -9.58 -0.49 -9.09 7.24 -6.79 

% diff#. -13.32 -70.48 28.86 -94.36 97.42 20.27(*) 249.75 

NLIA+SW 16.32 20.66 3.42 17.22 -3.69 8.61 -7.56 

% diff#. 43.79(*) 93.08(*) -54.03(*) 98.16(*) -19.93 43.02(*) 289.58 

F8 

NIA+SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LIA+SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff#. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NLIA+SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% diff#. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

# %difference with NIA-SW results; * with reversal of sign 
 
 
The significant change in moments My take place due to presence of shear wall. Under NIA the 

maximum increase of nearly 98% and the maximum decrease of nearly 93% is found in the 
footing F2 under different load cases. Under LIA the maximum increase of nearly 47% is found in 
the footing F2 and the maximum decrease of nearly 98% is found in the footing F7. Under NLIA  
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Table 13 Change in bending moments (My) in the footings under various load cases due to presence of shear 
wall in the space frame 

Footing 
Designation 

Cases compared 
% change in bending moment My for various load cases 

LC1 LC2 LC3 LC4 LC5 LC6 LC7

F1 

NIA+SW and NIA-SW -0.24 7.11 -6.40 8.22 -7.12 14.70 -11.19

LIA+SW and LIA-SW -3.51 -5.08 -3.68 -5.69 -3.67 -15.13 -3.49

NLIA+SW and NLIA-SW -4.94 -8.59 -1.25 -9.52 -0.21 -14.48 2.33

F2 

NIA+SW and NIA-SW -2.70 97.91 -33.72
-88.03

(*) 
-86.25 

-92.74 
(*) 

-88.90

LIA+SW and LIA-SW -18.50 -0.62 -49.24 3.91 -63.38 -8.81 
46.55

(*) 

NLIA+SW and NLIA-SW 55.78
1511.43

(*) 
4.73

-78.92
(*) 

-8.45 -12.66 -40.12

F3 

NIA+SW and NIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LIA+SW and LIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NLIA+SW and NLIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F6 
(SF1: below 
column C6) 

NIA+SW and NIA-SW 10.25 24.11 -4.29 30.93 -10.38 43.82 -25.14

LIA+SW and LIA-SW 7.41 1.13 10.60 -1.62 11.34 -19.07 19.27

NLIA+SW and NLIA-SW 9.73 11.74 11.99 10.16 12.20 -17.42 19.61

F7 

NIA+SW and NIA-SW 4.18 20.47 -12.96 37.92 -21.60 55.91 -43.53

LIA+SW and LIA-SW -65.55 -85.41 -52.92 -97.50 -49.44 
-20.35 

(*) 
-10.20

NLIA+SW and NLIA-SW
508.96

(*) 
336.79

(*) 
67.64

(*) 
86.77

(*) 
-40.17 

7.36 
(*) 

66.57

F8 

NIA+SW and NIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LIA+SW and LIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NLIA+SW and NLIA-SW 0.00 0.00 0.00 0.00 0.00 0.00 0.00

*with reversal of sign 
 
 
the maximum increase of nearly 15 times is found in the footing F2 and the maximum decrease of 
nearly 79% is also found in the footing F2 under different load combinations.  

The reversal in the sign of bending moment takes place in the footings F2 and F7 under some 
load cases. 

Figs. 7(a)-(d) show variation of bending moment My in the footings with load increments for 
the vertical loads (load case LC1). The corner footings F1 and the inner footing F7 are selected for 
the comparison. Both, the space frame-soil system as and space frame-shear wall-soil system are 
considered. The results of NIA, LIA and NLIA are plotted for comparison. It can be seen that LIA 
as well as NLIA results in highly significant increase in the values of My in the footing F1 as 
compared to NIA. The extent of increase is more in LIA than NLIA. In the footing F7, LIA causes 
significant increase in space frame-soil system and significant decrease in space frame-shear wall-
soil system, whereas, NLIA results in significant decrease in both the systems. Up to about 40% 
load increment, the results of LIA and NLIA are almost the same. Thereafter, with further increase 
in load increment, the difference in these quantities increases in nonlinear manner.  
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