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Abstract.  The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges 

have been extensively studied in the past. It is well established in those studies that the performance of BI 

system is largely dependent on the characteristics of isolator yield strength. For optimum design of such 

systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum 

response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is 

usually performed with reference to a problem of unconstrained optimization without imposing any 

restriction on the maximum isolator displacement. In this regard it is important to note that the isolator 

displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the 

possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of 

excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In 

doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the 

framework of statistical linearization of the related nonlinear random vibration problem. A simply supported 

bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance 

of the isolated bridge compared to that of obtained by the conventional unconstrained optimization 

approach. 
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1. Introduction 
 

Bridges are the most important part in transportation system and also the most vulnerable 

component to seismic excitation. The damages of bridges after a large magnitude earthquake not 

only disrupt the transportation facility, but also limit the post-earthquake management by severely 

restricting the movement of emergency vehicles and disaster relief and restoration operation. A 

large number of bridges in the past have suffered damages during some major earthquakes. The 

                                                            

Corresponding author, Assistant Professor, E-mail: bijan.roy@rediffmail.com 
aProfessor, E-mail: schak@civil.iiests.ac.in 
bAssistant Professor, E-mail: smishra@iitk.ac.in 



 
 
 
 
 
 

Bijan K. Roy, Subrata Chakraborty and Sudib K. Mishra 

failure of bridges in the 1995 Hyogo-Ken Nanbu earthquake,1994 Northridge earthquake, 1989 
Loma Prieta earthquake, 1971 San Fernando earthquake are noteworthy in this regard (Moehle and 
Eberhard 2000). The predominant causes of failures were envisaged as the failure of the columns 
following the pounding at expansion hinges and bearing failure. The bridge column failure is the 
most common cause of bridge collapse due to inadequate detailing which limits the inelastic 
deformation capacity and shear strength of columns. In current design practice, bridge 
superstructures are mainly designed to behave elastically during earthquake as the failure of 
superstructures affect the functionality of bridges for a long period. Failure of foundations cannot 
be easily assessed and retrofitted. Hence, bridge substructure is the only component that can be 
allowed to dissipate input seismic energy through inelastic action. However, the dissipation of 
input seismic energy through inelastic deformations distributed over the structural elements cannot 
be fully relied in case of bridge structures. This is primarily because, unlike building structures, 
bridges lack redundancy because of their inherently simple structural configurations. Lack of 
redundancy prevents bridges from availing adequate ductility demand enforced by strong motion 
from large earthquakes. Thus, vibration control technology is gaining momentum for improving 
functionality of bridge structures during and succeeding an earthquake. 

The effectiveness of isolation devices for aseismic design of bridges and their performances 
have been extensively studied in the past (Turkington et al. 1988, Li 1989, Kunde 2006, Dicleli 
and Buddaram 2006, Abdel 2009, Madhekar and Jangid 2009, Ozbulut and Hurlebaus 2011, 
Bhuiyan and Alam 2013, Dezfuli and Alam 2014). A comprehensive review on the subject can be 
obtained in Kunde and Jangid (2003).These studies provide good insight into the behaviour of 
such systems. The effectiveness of sliding bearing (Constantinou et al. 1993, Wang et al.1998), 
rubber bearings and hysteretic dampers (Pagnini and Solari 1999, Jangid 2008a), shape memory 
based rubber bearing (Mishra et al. 2016) also have been reported. It is well established that the 
performance of isolator in bridge largely depends on the characteristics of the isolator parameters 
such as the yield strength for lead rubber bearings (LRBs) (Jangid 2008a), optimal damping for 
resilient friction bearing and optimal friction for friction pendulum system (Jangid 2008b). The 
response evaluations in the process of optimization in these studies are largely based on the 
deterministic transient response of BI system under several real and or simulated earthquake 
ground motions. Usually, a standard nonlinear optimization problem is formulated to minimize the 
stochastic response of structure, referred as SSO (Nigam 1972). The optimization study is based 
on minimizing superstructure response, such as top floor acceleration. The reduction of force 
transmitted to the superstructure (i.e., reduction in acceleration) is achieved by filtering effect of 
isolator due to its elongated time period, achieved through its flexibility. Large flexibility, almost 
inevitable, causes large shear deformation to the isolator. But, the displacement of an isolator must 
not be arbitrarily large. The isolator displacement should be limited to fulfil the serviceability 
requirements as well as reducing the possibility of pounding to the adjacent units (Jankowski et. 
al. 1998, 2000, Zhu 2004). However, the conventional SSO of BI system, as mentioned above, has 
been performed with reference to a problem of unconstrained optimization. Such SSO approach 
does not impose any restrictions on the maximum amplitude of isolator displacement. The 
consideration of relative motion of damper in tuned mass damper design (Marano et al. 2007), in 
liquid column damper design (Chakraborty et al. 2012) and also in BI design (Das et al. 2015) for 
seismic vibration control of building frame are notable. But, the effects of excessive isolator 
displacement of BI system for bridges in seismic vibration mitigation are not studied; though the 
possibility of pounding to the adjacent unit appeared to be more critical for bridge structures. 

With the above in view, the present study is intended to study the effect of possible excessive 
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displacement of isolator in optimum performance of BI system for seismic vibration mitigation of 
bridges. In doing so, the necessary response of the isolated bridge required for solving the 
optimization problem is obtained in the framework of statistical linearization of the related 
nonlinear random vibration problem. The constrained optimum design parameters, thus obtained, 
are compared to the conventional unconstrained optimum parameter. The disparity of performance 
of the isolated bridge adopting constrained and unconstrained optimum parameters is 
demonstrated by considering a LRB isolator, isolating a deck from the pier of a simply supported 
bridge system.  

 
 

2. Stochastic response of bridge deck isolated by LRB 
 

A typical bridge deck isolated by LRB placed between the top of the piers and the decks is 
shown in Fig. 1(a). The type of bridge considered herein consists of discontinuous decks simply 
supported on the piers in each span and on the abutments at the ends. One typical such deck-pier 
system is considered in Fig. 1(b) for analysis. The equivalent mechanical model of the deck-pier 
system is depicted in Fig. 1(c).The associated bi-linear force-deformation behaviour is depicted in 
Fig. 1(d). The pier is discretized into number of nodes with lateral degrees of freedom. The masses 
of each segment are assumed to be distributed between the two adjacent nodes in the form of point 
masses, while the deck is treated as rigid. The equation of motion of the idealized such system can 
be written as 

         p p p p p p p p gM x C x K x ψ F M r x                                            (1) 

in which [Mp],[Cp] and [Kp] are respectively, the mass, damping and stiffness matrix of size n×n of 
the pier which is free at the top. In the present problem, the number of nodes considered in the pier 
is five (n=5). The relative acceleration, velocity and displacement of the pier with respect to 

ground are denoted as    p px , x   and  px . The displacement vector of different discretized nodes 
of the pier is {xp}={x1,x2,……,xn}

T. The force exerted by the LRB at the pier level is given by Fp. 
A vector {ψ} of size nx1 and the form {1  0  …  0}T i.e., all terms zero except the first one is 
introduced to write the Fp in vector form which is compatible with the dimension of the vectors 
used in Eq. (1). The vector {r}={1  1  …  1}T is the influence coefficient vector and gx is the 
ground acceleration of the earthquake. The equation of motion for the rigid deck can be written as, 

d d p d gm x F m x                                                               (2) 

where, md is the mass of the bridge deck, dx  is the acceleration of the deck relative to the ground. 
Fp is the restoring force of the isolator described by differential Bouc-Wen model (Bouc 1967, 
Wen 1976, Ismail et al. 2009). The force can be expressed in terms of the relative displacement 
and velocity of the deck and deck-pier system as 

1p b p b p y pF c u k u ( )F Z     
                                              

(3) 

where, cb represent the viscous damping of the LRB, kb is the initial stiffness of the LRB, α is an 
index representing the ratio of the post to pre yield stiffness of the LRB. pu  and pu  represents the 
relative velocity and displacement in the isolator, respectively. p d 1u x x  , x1 is the displacement 
of the top node of the pier and xd is the displacement of the deck relative to the ground. 
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selected in order to provide specific isolation time period, Tb=2π d bm / k  i.e., ωb=2π/Tb is the 
circular frequency of the isolator. Most of the published literatures prefer this definition, instead of 
effective stiffness based on secant modulus. It may be noted here that the isolators are designed to 
have quite low yield strength so that it can plastically deforms at reasonably moderate level of 
seismic excitations, yet strong enough to avoid yielding under nominal lateral loading conditions 
i.e., an earthquake of very low intensity. This will also ensure elongated period of isolation which 
is not possible to realize with un-yielded high initial stiffness. In fact, in some devices (such as 
super-elastic Shape Memory Alloy based isolators) an amount of pre-stretch is also applied to get 
rid of high value of initial pre-yield strength. Therefore, during strong shaking, as the isolator 
mobilizes its yield strength to yield, it will remain almost entirely in the post yield regime during 
the course of strong ground motion and the effective stiffness can reasonably be taken as the post 
yield strength. This is the reason why the post yield strength is commonly adopted to define the 
period of isolation, not the effective stiffness. The viscous damping of the isolator is given by, 
cb=2ξbmdωb in which ξb is the viscous damping ratio of the isolator. The yield strength is 
conveniently normalized with respect to the deck weight (W=mdg) i.e., yield strength F0=FY/W, g is 
the gravitational acceleration. 

The stochastic analysis of the system under random earthquake requires number of recorded 
ground motions at a site. However, in absence of sufficient statistical data, available stochastic 
models for earthquake loading are utilized. A widely adopted model for stationary ground motion (

gx ) is obtained by filtering a white noise process acting at the rock bed through a filter 
representing the soil. This is the well acclaimed Kanai-Tajimi model (Kanai 1957, Tajimi 1960) 
characterizing the input frequencies of earthquakes for a wide range of practical situations. While 
subjected to white noise rock bed motion, this filter gives output of colour noise having Kanai-
Tajimi Power Spectral Density (PSD). The filter equations are expressed as 

g fx x w                                                                 (5a) 

22f g g f g fx x x w       
                                               

(5b) 

Substituting Eq. (5b) in Eq. (5a) yields 

22g g g f g fx x x     
                                                    

(6) 

in which w  is the white noise intensity at the rock bed having PSD of S0, ωg and ξg are the 
characteristic frequency and damping of the soil strata over the rock bed and underlying the pier. 

fx , fx  and fx  are the acceleration, velocity and displacement response of the filter. 
The nonlinear force-deformation characteristic of the LRB as represented by Eq. (4) is too 

complicated to be readily incorporated in the state-space formulation for evaluating the response of 
BI system accounting for fluctuation involve due to system parameter uncertainty. The statistic 
response evaluation is thus conducted by utilizing statistical linearization technique (Roberts and 
Spanos 1990). The equivalent linear form of the nonlinear Eq. (4) is obtained as 

p e p e pqZ C u K Z 0                                                       (7) 

where, Ce and Ke are the equivalent damping and stiffness obtained by the least square error 
minimization among the linear and nonlinear terms of Eqs. (7) and (4). For η=1, the equivalent 
damping and stiffness of the isolator can be obtained in closed form as  
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 p p p p2 2
e p e p

2 2
p p

E u Z E u Z2 2
C E Z , K E u

E u E Z

                                 

 



    

 
            

(8) 

where,  E is the expectation operator. It is noted that even though the differential Bouc-Wen 
model of the isolator is stochastically linearized for easy incorporation in the state space 
formulation, the relevant equivalent damping (Ce) and stiffness (Ke) are still functions of the 
system response. This implies that the nonlinearity of isolator is still present. 

The deck, pier and filter equations are now rearranged to express those in state space form 
suitable for stochastic response evaluation. Substituting Eqs. (3) and (6) in Eq. (2) and normalizing 
with respect to md, the equation of pier i.e., Eq. (2) can be written as 

y 2b b
d p p p g g f g f

d d d

Fc k
x u u ( 1 ) z 2 x x

m m m


           

                         
(9) 

Multiplying both sides of Eq. (1) with   1
M


and substituting the expression of gx  from Eq. (6), 

Eq. (1) can be rewritten as 

       
  

1 1 1

p p p p p p p p p

2
g g f g f

x M C x M K x M F

r 2 x x



  

  
                     

 

 


                 

(10) 

The linearized equation for the hysteretic isolator, obtained through stochastic linearization 
depicted by Eq. (6) can be rewritten as, 

e e
p p p

C K
Z u Z

q q
   

                                                       
(11) 

The Eqs. (9) to (11) and (6) are expressed in state space form, where the state vector is defined as

      T

d p p f d p fY x x Z x x x x    . The state space form of the equation of motion 

becomes 

      d
Y A Y w

dt
                                                      (12) 

Where, [A] is the augmented system matrix and {w} is a vector containing the terms of the rock 
bed white noise excitations, expressed as       0 0 0 0 0 0

T
w w   . {Y} has the length of 

(2N+5), N is the number of structural degrees of freedom. The detail of the augmented system 
matrix [A] is provided in the Appendix. The response of the system can be evaluated by solving 
Eq. (12) by numerical Runge-Kutta integration method. In stochastic analysis, rather than the 
response, the statistics such as covariance of responses are evaluated. Assuming the stochastic 
response processes to be Markovian, the evolution equation for the response covariance matrix of 
the state vector can be readily obtained as (Lutes and Sarkani 1997) 

         T T
YY YY YY ww

d
C A C C A S

dt
                                          (13) 
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in which the elements of [CYY] consist of the covariance of responses as Y Y i ji j
C E YY    and  wwS is 

a matrix containing the terms of rock bed white noise excitation. Following the structure of the 
vector {w}, matrix  wwS  has all terms zero except the last diagonal as 2πS0. The details of  wwS

matrix are given in Appendix. The above matrix equation can be readily solved to obtain the 
covariance of responses. The response statistics of the derivative process of the response (such as 
acceleration  p dx , x  ) is then obtained as 

      T T
YY wwYYC A C A S                                                

(14) 

The Root-Mean-Square (RMS) of individual response is obtained as Y Y Yi i j
C  . The absolute 

acceleration  du of the deck is the sum of the relative acceleration of the deck and the ground 
obtained as

 
d d gu x x   

                                                          
(15) 

The RMS of the absolute deck acceleration are obtained by summing up the RMS acceleration of 
the deck and the ground as

 
2 2
x xd g

  ud
σ                                                    (16) 

The RMS of the relative displacement of bearing on the top of the pier is obtained as 

 p d 1u x x                                                          (17) 

 2 2
u x x d 1p d 1

2cov x ,x    
                                         

(18) 

The stochastic response analysis presented herein is based on the assumption that the 
excitations and the responses are Gaussian and stationary stochastic process. Extension to non-
stationary earthquake model can be made by evaluating the time varying response statistics. This 
requires time dependent characteristic frequency and damping of ground to be incorporated in the 
analysis procedure, presented earlier. 
 
 
3. Optimization of BI system 
 

The stochastic dynamic response evaluation of the bi-linear isolator presented in the previous 
section clearly revealed that the characteristic parameters of an isolator are the isolation time 
period (Tb), coefficient of viscous damping (ξb) and normalized yield strength (F0) of the isolator. 
The previous studies (Baratta and Corbi 2004, Jangid 2010) indicate that the RMS acceleration of 
structure decreases with the increase of isolation period and damping. On the other hand, the 
bearing displacement increases with the increase in isolation period. This is obvious as the 
increase of time period indicate more flexible isolator i.e., more capability to plastically deform 
leading to more energy absorbing capability. Thus, the earthquake force transmitted to the 
structure is reduced at the expense of increasing relative displacement of the bearings. However, 
with increase in the yield strength of LRB, the RMS deck acceleration reduces first and attains a 
minimum value, and then it increases with the increase of yield strength. This indicates that there 
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exists optimum yield strength of LRB system for which the acceleration of the superstructure 
attains the minimum value. Thus, normalized yield strength, F0 is taken as the design variable in 
the present study. In this regard it is to be noted that the relative displacement of the LRB has a 
practical limitation. Therefore, in designing the isolation system a compromise is necessary 
between transmitted earthquake forces and relative bearing displacements. 
 

3.1 Stochastic optimization of BI system  
 
The optimum design of BI system is usually obtained by minimizing the vibration effect of 

structure under stochastic earthquake load. The optimization problem for a structure subject to 
random load like earthquake could be formulated as the search of a suitable set of variables 
collected in the so called design vector over an admissible domain. For structures subjected to 
stochastic excitation, the measure of performance can be given in terms of mean square responses 
(displacement, acceleration, stress etc.). The failure probability of the structure or the total life-
cycle cost of the structure can also be used as the performance index. The conventional SSO 
problem, so defined, is usually transformed into a standard nonlinear programming problem. One 
of the much used approaches is to minimize the RMS response of structure. The response or 
reliability being nonlinear functions of the design variables requires the solution of a nonlinear 
optimization problem termed as SSO. More details may be found elsewhere (Crandall 1960, 
Jensen 2006, Taflanidis 2008).The deck RMS acceleration is considered as the objective function 
in the present study. The SSO problem is stated as following  

0Find F  to minimize  ud
                                                  (19) 

The optimization problem, stated above, can be solved by readily available optimization 
algorithm.  
 

3.2 Constrained stochastic optimization of BI system 
 

The optimization of BI system under stochastic earthquake load as presented above is basically 
an unconstrained SSO which does not impose any restriction to determine the optimum value of 
the normalized yield strength, F0. As already discussed, such an approach cannot incorporate the 
limited values of the isolator displacement. Keeping in view that isolator displacement is an 
important quantity in practical design of BI system; the problem is reformulated as constrained 
non-linear optimization problem. The peak value of the isolator displacement up (denoted as u p

P ) 
can be given by (Lutes and Sarkani 2004, Sun 2006) 

u up p
P k

                                                             
(20) 

In which, k  is the peak factor which can be obtained as 

0 577
2

2

.
k ln( T )

ln( T )



                                                 (21) 

In which, T is the duration of the ground motion and ν is a factor defined as 
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u p

u p









                                                                 

(22) 

where, u p
  is the RMS acceleration of the isolator. The optimization problem is redefined by 

incorporating the peak isolator displacement constraint as following 

0Find F  to minimize such thatu ud p
P d 

                                 (23) 

where, d is the maximum allowable isolator displacement. The values of d will be governed by 
design considerations. The optimization problems cited above is solved by using the gradient 
based standard nonlinear optimization routine available in the MatLab Optimization Toolbox. 
However, for more complex configuration, genetic algorithm based search techniques are robust 
choice as such approach is independent from the initial choice of solution and also does not require 
information on the gradient of the objective function. 
 
 
4. Numerical study 
 

The simply supported bridge as shown in Fig. 1(a) is taken up to study the effect of constraint 
of isolator displacement on the optimum performance of seismic vibration mitigation of bridge 
isolated by LRB type isolator. The mass of the deck is 144×103 kg and the mass of each pier is 
21.6×103 kg. The typical span length of each simply supported deck is 20 m, and each pier is 8 m 
tall. The moment of inertia and Young’s modulus of the piers are given as 0.1 m4 and 20.67×109 

N/m2, respectively. The isolated bridge is modelled as a six degree of freedom system with the 
LRB system. Unless specifically mentioned, the damping in the deck and piers is taken as 2% of 
the critical value in all the modes of vibration and the time period of the pier is assumed as 0.3 sec. 
The time period and the viscous damping of the LRB are taken as 2.5 sec and 5%, respectively. 
The yield displacement (q) of the isolator is considered to be 0.025 m. The mean values of the 
parameters characterizing the stochastic earthquake load are taken as: 5f    rad/sec, 0.6f  ,

2 3
0 0.05 /S m s and T=20 sec. With these mean data, the RMS acceleration of deck of the bridge 

without isolator is 6.99 m/s2. 
The optimum yield strength of the LRB is obtained by solving both the unconstrained 

optimization problem described by Eq. (19) and constrained optimization problem defined by Eq. 
(23) with varying allowable isolator displacement for different time period of the pier. The results 
are depicted in Fig. 2. The respective accelerations reduction ratios of the deck are shown in Fig. 3. 
The RMS acceleration reduction ratio is defined as the ratio of the RMS acceleration of the deck of 
the isolated bridge to that of the bridge without isolator. 

It may be noted that the efficiency of the BI system is less i.e., RMS acceleration reduction is 
less when the constraint condition is considered in the optimization procedure compare to the 
unconstrained case for all three time periods. The isolator time period, damping and intensity of 
earthquake are taken as, 2.5 s, 5% and 0.05 m2/s3, respectively for developing these plots. 

The results clearly indicate the disparities between the constrained and the unconstrained values 
of the optimal parameters. The constrained optimal yield strength is consistently found to be 
higher than the respective unconstrained values. This is due to the fact that to avoid the constraint 
violation (i.e., isolator displacement exceeds the permissible value) higher yield strength is 
necessary in order to keep the isolator displacement within the permissible range. However, for 
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Seismic vibration control of bridges with excessive isolator displacement 

allowable isolator displacement, the results of the constrained and unconstrained cases practically 
overlap indicates about the constraint inactive regime and as such there will be no importance of 
constrained optimum design. But for a bridge with large displacement of LRB may be a critical 
issue and need to check the optimum solution with constrained case. The observations made here 
are for stationary earthquake load model and needs further study for realistic non-stationary 
earthquake load model. 
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Appendix 
 

The augmented system matrix [A] is given as, 

 
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where {0} denotes the null vector of size nx1; [0] and [I] denotes the null and identity matrix, 
respectively, of size nxn; and the [Mp] in the denominator indicates the pre-multiplication to the 
numerator quantity by [Mp]-1. 

The matrix  wwS  for the rock bed seismic motion, characterized by the white noise of intensity 
of S0 is expressed as 

 ww

0

0 0 .. 0 0

0 0 .. 0 0

S : : .. : :

0 0 .. 0 0

0 0 .. 0 2 s

 
 
 
 
 
 
    
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