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Abstract. The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges
have been extensively studied in the past. It is well established in those studies that the performance of BI
system is largely dependent on the characteristics of isolator yield strength. For optimum design of such
systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum
response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is
usually performed with reference to a problem of unconstrained optimization without imposing any
restriction on the maximum isolator displacement. In this regard it is important to note that the isolator
displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the
possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of
excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In
doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the
framework of statistical linearization of the related nonlinear random vibration problem. A simply supported
bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance
of the isolated bridge compared to that of obtained by the conventional unconstrained optimization
approach.

Keywords: seismic vibration; base isolation; bridges; stochastic structural optimisation; constrained
optimisation

1. Introduction

Bridges are the most important part in transportation system and also the most vulnerable
component to seismic excitation. The damages of bridges after a large magnitude earthquake not
only disrupt the transportation facility, but also limit the post-earthquake management by severely
restricting the movement of emergency vehicles and disaster relief and restoration operation. A
large number of bridges in the past have suffered damages during some major earthquakes. The
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failure of bridges in the 1995 Hyogo-Ken Nanbu earthquake,1994 Northridge earthquake, 1989
Loma Prieta earthquake, 1971 San Fernando earthquake are noteworthy in this regard (Moehle and
Eberhard 2000). The predominant causes of failures were envisaged as the failure of the columns
following the pounding at expansion hinges and bearing failure. The bridge column failure is the
most common cause of bridge collapse due to inadequate detailing which limits the inelastic
deformation capacity and shear strength of columns. In current design practice, bridge
superstructures are mainly designed to behave elastically during earthquake as the failure of
superstructures affect the functionality of bridges for a long period. Failure of foundations cannot
be easily assessed and retrofitted. Hence, bridge substructure is the only component that can be
allowed to dissipate input seismic energy through inelastic action. However, the dissipation of
input seismic energy through inelastic deformations distributed over the structural elements cannot
be fully relied in case of bridge structures. This is primarily because, unlike building structures,
bridges lack redundancy because of their inherently simple structural configurations. Lack of
redundancy prevents bridges from availing adequate ductility demand enforced by strong motion
from large earthquakes. Thus, vibration control technology is gaining momentum for improving
functionality of bridge structures during and succeeding an earthquake.

The effectiveness of isolation devices for aseismic design of bridges and their performances
have been extensively studied in the past (Turkington et al. 1988, Li 1989, Kunde 2006, Dicleli
and Buddaram 2006, Abdel 2009, Madhekar and Jangid 2009, Ozbulut and Hurlebaus 2011,
Bhuiyan and Alam 2013, Dezfuli and Alam 2014). A comprehensive review on the subject can be
obtained in Kunde and Jangid (2003).These studies provide good insight into the behaviour of
such systems. The effectiveness of sliding bearing (Constantinou et al. 1993, Wang et al.1998),
rubber bearings and hysteretic dampers (Pagnini and Solari 1999, Jangid 2008a), shape memory
based rubber bearing (Mishra et al. 2016) also have been reported. It is well established that the
performance of isolator in bridge largely depends on the characteristics of the isolator parameters
such as the yield strength for lead rubber bearings (LRBs) (Jangid 2008a), optimal damping for
resilient friction bearing and optimal friction for friction pendulum system (Jangid 2008b). The
response evaluations in the process of optimization in these studies are largely based on the
deterministic transient response of BI system under several real and or simulated earthquake
ground motions. Usually, a standard nonlinear optimization problem is formulated to minimize the
stochastic response of structure, referred as SSO (Nigam 1972). The optimization study is based
on minimizing superstructure response, such as top floor acceleration. The reduction of force
transmitted to the superstructure (i.e., reduction in acceleration) is achieved by filtering effect of
isolator due to its elongated time period, achieved through its flexibility. Large flexibility, almost
inevitable, causes large shear deformation to the isolator. But, the displacement of an isolator must
not be arbitrarily large. The isolator displacement should be limited to fulfil the serviceability
requirements as well as reducing the possibility of pounding to the adjacent units (Jankowski ez.
al. 1998, 2000, Zhu 2004). However, the conventional SSO of BI system, as mentioned above, has
been performed with reference to a problem of unconstrained optimization. Such SSO approach
does not impose any restrictions on the maximum amplitude of isolator displacement. The
consideration of relative motion of damper in tuned mass damper design (Marano et al. 2007), in
liquid column damper design (Chakraborty et al. 2012) and also in BI design (Das et al. 2015) for
seismic vibration control of building frame are notable. But, the effects of excessive isolator
displacement of BI system for bridges in seismic vibration mitigation are not studied; though the
possibility of pounding to the adjacent unit appeared to be more critical for bridge structures.

With the above in view, the present study is intended to study the effect of possible excessive
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displacement of isolator in optimum performance of BI system for seismic vibration mitigation of
bridges. In doing so, the necessary response of the isolated bridge required for solving the
optimization problem is obtained in the framework of statistical linearization of the related
nonlinear random vibration problem. The constrained optimum design parameters, thus obtained,
are compared to the conventional unconstrained optimum parameter. The disparity of performance
of the isolated bridge adopting constrained and unconstrained optimum parameters is
demonstrated by considering a LRB isolator, isolating a deck from the pier of a simply supported
bridge system.

2. Stochastic response of bridge deck isolated by LRB

A typical bridge deck isolated by LRB placed between the top of the piers and the decks is
shown in Fig. 1(a). The type of bridge considered herein consists of discontinuous decks simply
supported on the piers in each span and on the abutments at the ends. One typical such deck-pier
system is considered in Fig. 1(b) for analysis. The equivalent mechanical model of the deck-pier
system is depicted in Fig. 1(c).The associated bi-linear force-deformation behaviour is depicted in
Fig. 1(d). The pier is discretized into number of nodes with lateral degrees of freedom. The masses
of each segment are assumed to be distributed between the two adjacent nodes in the form of point
masses, while the deck is treated as rigid. The equation of motion of the idealized such system can
be written as

[MP]{XP}+[CP]{XP}+[KP}{XP}_{W}FP :_[MP]{F}Xg ()

in which [M,],[C,] and [K,] are respectively, the mass, damping and stiffness matrix of size nxn of
the pier which is free at the top. In the present problem, the number of nodes considered in the pier
is five (n=5). The relative acceleration, velocity and displacement of the pier with respect to

ground are denoted as {xp}{xp} and {x,]} . The displacement vector of different discretized nodes
of the pier is {x,}={x1,x,...... x,}". The force exerted by the LRB at the pier level is given by F -
A vector {y} of size nxl and the form {1 0 ... 0} ie., all terms zero except the first one is
introduced to write the F), in vector form which is compatible with the dimension of the vectors
used in Eq. (1). The vector {r}={1 1 ... 1}"is the influence coefficient vector and ¥, is the
ground acceleration of the earthquake. The equation of motion for the rigid deck can be written as,

myx, +F, =—m,%, 2)

where, my is the mass of the bridge deck, X; is the acceleration of the deck relative to the ground.
F, is the restoring force of the isolator described by differential Bouc-Wen model (Bouc 1967,
Wen 1976, Ismail et al. 2009). The force can be expressed in terms of the relative displacement
and velocity of the deck and deck-pier system as

F,=cyu,+oku,+(1-0)F,Z, 3)

where, ¢, represent the viscous damping of the LRB, £, is the initial stiffness of the LRB, « is an
index representing the ratio of the post to pre yield stiffness of the LRB. U, and u, represents the
relative velocity and displacement in the isolator, respectively.u, =Xy —X;, x; is the displacement
of the top node of the pier and x, is the displacement of the deck relative to the ground.
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Fig. 1 (a) Isolated bridge deck-bearing-pier system (b) Simple structural model for the isolated bridge (c)
Equivalent mechanical model and (d) The bilinear model

Fy is the yield strength of the isolator. Z, is a variable quantifying the hysteretic response of the
isolator, expressed through Bouc-Wen model as

42, =-7lu,|z,|z, \”” - pii,|z,| + 5, (4)

where, ¢ is the yield displacement of the isolator. The four parameters £,y,n and ¢ appear in Eq. (4)
and parameter o in Eq. (3) control the shape of the hysteretic loop. The parameter # characterises
the transition from elastic to plastic phase. Note that as #—oo (infinity) the behaviour becomes
bilinear. With increasing value of # the elastic to plastic transition becomes increasingly sharp.
However, due to smooth nature of the of the Bouc-Wen model this transition is smooth. The ideal
sharp bilinear nature can only be attained at 7—oo (infinity). However, with the presently adopted
value of #=1, the smooth transition can adequately be taken close enough to the ideal bilinear
behaviour. The parameter f depicts the nature of the model e.g., >0 implies hardening and £<0
yields softening. The parameters y and J control the shape and size of the hysteresis loop. The
parameters adopted in the present study are: a=0.05, f=y=0.5, =1 and 5=1, which corresponds to
the bi-linear force deformation characteristics as shown in Fig. 1(d). The stiffness and damping of
the isolator is selected to provide the restoring force. The post-yield stiffness (ak;) of the isolator is
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selected in order to provide specific isolation time period, T,=2m/m, / ak, i.e., wy=27/T} is the
circular frequency of the isolator. Most of the published literatures prefer this definition, instead of
effective stiffness based on secant modulus. It may be noted here that the isolators are designed to
have quite low yield strength so that it can plastically deforms at reasonably moderate level of
seismic excitations, yet strong enough to avoid yielding under nominal lateral loading conditions
i.e., an earthquake of very low intensity. This will also ensure elongated period of isolation which
is not possible to realize with un-yielded high initial stiffness. In fact, in some devices (such as
super-elastic Shape Memory Alloy based isolators) an amount of pre-stretch is also applied to get
rid of high value of initial pre-yield strength. Therefore, during strong shaking, as the isolator
mobilizes its yield strength to yield, it will remain almost entirely in the post yield regime during
the course of strong ground motion and the effective stiffness can reasonably be taken as the post
yield strength. This is the reason why the post yield strength is commonly adopted to define the
period of isolation, not the effective stiffness. The viscous damping of the isolator is given by,
cp=2&mamp, in which &, is the viscous damping ratio of the isolator. The yield strength is
conveniently normalized with respect to the deck weight (W=m,g) i.e., yield strength Fo=Fy/W, g is
the gravitational acceleration.

The stochastic analysis of the system under random earthquake requires number of recorded
ground motions at a site. However, in absence of sufficient statistical data, available stochastic
models for earthquake loading are utilized. A widely adopted model for stationary ground motion (
X, ) is obtained by filtering a white noise process acting at the rock bed through a filter
representing the soil. This is the well acclaimed Kanai-Tajimi model (Kanai 1957, Tajimi 1960)
characterizing the input frequencies of earthquakes for a wide range of practical situations. While
subjected to white noise rock bed motion, this filter gives output of colour noise having Kanai-
Tajimi Power Spectral Density (PSD). The filter equations are expressed as

X, =X, +w (52)
Xy +28,0,%, + 00X, =—W (5b)

Substituting Eq. (5b) in Eq. (5a) yields
K, =-28,0,%, —wpx, (©)

in which W is the white noise intensity at the rock bed having PSD of S, g and &, are the
characteristic frequency and damping of the soil strata over the rock bed and underlying the pier.
X, , X; and X/ are the acceleration, velocity and displacement response of the filter.

The nonlinear force-deformation characteristic of the LRB as represented by Eq. (4) is too
complicated to be readily incorporated in the state-space formulation for evaluating the response of
BI system accounting for fluctuation involve due to system parameter uncertainty. The statistic
response evaluation is thus conducted by utilizing statistical linearization technique (Roberts and
Spanos 1990). The equivalent linear form of the nonlinear Eq. (4) is obtained as

qZ,+Cai, +K,Z, =0 (7)
where, C, and K, are the equivalent damping and stiffness obtained by the least square error

minimization among the linear and nonlinear terms of Eqgs. (7) and (4). For #=1, the equivalent
damping and stiffness of the isolator can be obtained in closed form as
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c=3yM+ E(z] —5,K=3yEu2+M 8
eﬁmﬂm AL AR, ®

£z ]

where, E[ ]is the expectation operator. It is noted that even though the differential Bouc-Wen
model of the isolator is stochastically linearized for easy incorporation in the state space
formulation, the relevant equivalent damping (C,) and stiffness (K.) are still functions of the
system response. This implies that the nonlinearity of isolator is still present.

The deck, pier and filter equations are now rearranged to express those in state space form
suitable for stochastic response evaluation. Substituting Egs. (3) and (6) in Eq. (2) and normalizing
with respect to my, the equation of pier i.e., Eq. (2) can be written as

.. ¢ . ak F ]

¥, =—m—’;up—m—d”up—(]—a)m—Zzp+2§ga)gxf+a)j,xf Q)
Multiplying both sides of Eq. (1) with [M]fl and substituting the expression of X, from Eq. (6),
Eq. (1) can be rewritten as

{x.p} - _[Mp J_I [CPJ{XP} _[MP J_I [KPJ{xP} _[MP ]_1 WiF, (10)
+ {r}(2§gwgfcf +w§xf)

The linearized equation for the hysteretic isolator, obtained through stochastic linearization
depicted by Eq. (6) can be rewritten as,

,  C.. K,
Z,=——%i,~-=*7, (11)

q q

The Egs. (9) to (11) and (6) are expressed in state space form, where the state vector is defined as
{r}= {xd {xp} zZ, x;, i {jcp} xf}T . The state space form of the equation of motion

becomes

SAVE =AY} + (o) (12

Where, [A4] is the augmented system matrix and {w} is a vector containing the terms of the rock
bed white noise excitations, expressed as {w}=[0 {0} 0 0 0 {0} —w] . {Y} has the length of
(2N+5), N is the number of structural degrees of freedom. The detail of the augmented system
matrix [A4] is provided in the Appendix. The response of the system can be evaluated by solving
Eq. (12) by numerical Runge-Kutta integration method. In stochastic analysis, rather than the
response, the statistics such as covariance of responses are evaluated. Assuming the stochastic
response processes to be Markovian, the evolution equation for the response covariance matrix of
the state vector can be readily obtained as (Lutes and Sarkani 1997)

16,11 T +1Go]LAT 415, 03



Seismic vibration control of bridges with excessive isolator displacement 1457

in which the elements of [Cyy] consist of the covariance of responses as Cyy, = E [YIY,} and [S,.]is
a matrix containing the terms of rock bed white noise excitation. Following the structure of the
vector {w}, matrix [S,. ] has all terms zero except the last diagonal as 27zS,. The details of [, ]
matrix are given in Appendix. The above matrix equation can be readily solved to obtain the
covariance of responses. The response statistics of the derivative process of the response (such as
acceleration {,|,%,) is then obtained as

[y J=1411C ] [ 4] +[S.] (14)

The Root-Mean-Square (RMS) of individual response is obtained as % =,/Cyr; . The absolute
acceleration (ii, ) of the deck is the sum of the relative acceleration of the deck and the ground
obtained as

Uy =Xg +X, (15)

The RMS of the absolute deck acceleration are obtained by summing up the RMS acceleration of

the deck and the ground as
_ 2 2
Gy = laxd +65(.g (16)

The RMS of the relative displacement of bearing on the top of the pier is obtained as

u, :(xd —x,) a7

O, =\/ofd +of] —ZCov(xd,xj) (18)

The stochastic response analysis presented herein is based on the assumption that the
excitations and the responses are Gaussian and stationary stochastic process. Extension to non-
stationary earthquake model can be made by evaluating the time varying response statistics. This
requires time dependent characteristic frequency and damping of ground to be incorporated in the
analysis procedure, presented earlier.

3. Optimization of Bl system

The stochastic dynamic response evaluation of the bi-linear isolator presented in the previous
section clearly revealed that the characteristic parameters of an isolator are the isolation time
period (7}), coefficient of viscous damping (&) and normalized yield strength (F;) of the isolator.
The previous studies (Baratta and Corbi 2004, Jangid 2010) indicate that the RMS acceleration of
structure decreases with the increase of isolation period and damping. On the other hand, the
bearing displacement increases with the increase in isolation period. This is obvious as the
increase of time period indicate more flexible isolator i.e., more capability to plastically deform
leading to more energy absorbing capability. Thus, the earthquake force transmitted to the
structure is reduced at the expense of increasing relative displacement of the bearings. However,
with increase in the yield strength of LRB, the RMS deck acceleration reduces first and attains a
minimum value, and then it increases with the increase of yield strength. This indicates that there
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exists optimum yield strength of LRB system for which the acceleration of the superstructure
attains the minimum value. Thus, normalized yield strength, F is taken as the design variable in
the present study. In this regard it is to be noted that the relative displacement of the LRB has a
practical limitation. Therefore, in designing the isolation system a compromise is necessary
between transmitted earthquake forces and relative bearing displacements.

3.1 Stochastic optimization of Bl system

The optimum design of BI system is usually obtained by minimizing the vibration effect of
structure under stochastic earthquake load. The optimization problem for a structure subject to
random load like earthquake could be formulated as the search of a suitable set of variables
collected in the so called design vector over an admissible domain. For structures subjected to
stochastic excitation, the measure of performance can be given in terms of mean square responses
(displacement, acceleration, stress etc.). The failure probability of the structure or the total life-
cycle cost of the structure can also be used as the performance index. The conventional SSO
problem, so defined, is usually transformed into a standard nonlinear programming problem. One
of the much used approaches is to minimize the RMS response of structure. The response or
reliability being nonlinear functions of the design variables requires the solution of a nonlinear
optimization problem termed as SSO. More details may be found elsewhere (Crandall 1960,
Jensen 2006, Taflanidis 2008).The deck RMS acceleration is considered as the objective function
in the present study. The SSO problem is stated as following

Find E, to minimize o, ’ (19)

The optimization problem, stated above, can be solved by readily available optimization
algorithm.

3.2 Constrained stochastic optimization of Bl system

The optimization of BI system under stochastic earthquake load as presented above is basically
an unconstrained SSO which does not impose any restriction to determine the optimum value of
the normalized yield strength, Fj. As already discussed, such an approach cannot incorporate the
limited values of the isolator displacement. Keeping in view that isolator displacement is an
important quantity in practical design of BI system; the problem is reformulated as constrained
non-linear optimization problem. The peak value of the isolator displacement u, (denoted as F, »)
can be given by (Lutes and Sarkani 2004, Sun 2006)

P, =ko, (20)

“p
In which, k is the peak factor which can be obtained as

= 0.577
k =421 —_ 21
2In(vT ) + 2in(vT) 21

In which, T is the duration of the ground motion and v is a factor defined as
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y=—2 (22)

where, %i, is the RMS acceleration of the isolator. The optimization problem is redefined by
incorporating the peak isolator displacement constraint as following

Find F, to minimize 6;, such that S d (23)

where, d is the maximum allowable isolator displacement. The values of d will be governed by
design considerations. The optimization problems cited above is solved by using the gradient
based standard nonlinear optimization routine available in the MatLab Optimization Toolbox.
However, for more complex configuration, genetic algorithm based search techniques are robust
choice as such approach is independent from the initial choice of solution and also does not require
information on the gradient of the objective function.

4. Numerical study

The simply supported bridge as shown in Fig. 1(a) is taken up to study the effect of constraint
of isolator displacement on the optimum performance of seismic vibration mitigation of bridge
isolated by LRB type isolator. The mass of the deck is 144x10° kg and the mass of each pier is
21.6x10° kg. The typical span length of each simply supported deck is 20 m, and each pier is 8 m
tall. The moment of inertia and Young’s modulus of the piers are given as 0.1 m* and 20.67x10°
N/m?, respectively. The isolated bridge is modelled as a six degree of freedom system with the
LRB system. Unless specifically mentioned, the damping in the deck and piers is taken as 2% of
the critical value in all the modes of vibration and the time period of the pier is assumed as 0.3 sec.
The time period and the viscous damping of the LRB are taken as 2.5 sec and 5%, respectively.
The yield displacement (g) of the isolator is considered to be 0.025 m. The mean values of the
parameters characterizing the stochastic earthquake load are taken as: o, =5=n rad/sec,§, =0.6,

S, =0.05m> / s> and T=20 sec. With these mean data, the RMS acceleration of deck of the bridge
without isolator is 6.99 m/s.

The optimum yield strength of the LRB is obtained by solving both the unconstrained
optimization problem described by Eq. (19) and constrained optimization problem defined by Eq.
(23) with varying allowable isolator displacement for different time period of the pier. The results
are depicted in Fig. 2. The respective accelerations reduction ratios of the deck are shown in Fig. 3.
The RMS acceleration reduction ratio is defined as the ratio of the RMS acceleration of the deck of
the isolated bridge to that of the bridge without isolator.

It may be noted that the efficiency of the BI system is less i.e., RMS acceleration reduction is
less when the constraint condition is considered in the optimization procedure compare to the
unconstrained case for all three time periods. The isolator time period, damping and intensity of
earthquake are taken as, 2.5 s, 5% and 0.05 m%/s’, respectively for developing these plots.

The results clearly indicate the disparities between the constrained and the unconstrained values
of the optimal parameters. The constrained optimal yield strength is consistently found to be
higher than the respective unconstrained values. This is due to the fact that to avoid the constraint
violation (i.e., isolator displacement exceeds the permissible value) higher yield strength is
necessary in order to keep the isolator displacement within the permissible range. However, for
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higher allowable isolator displacement (400 mm or more) the constrained and unconstrained cases
overlap implying constraint inactive regime and as such there will be no importance of constrained
optimum design. But for bridge, 400 mm displacement of LRB may be a critical issue and indicate
the importance of considering the effect of constrained on isolator displacement.

The variation of optimum isolator normalised yield strength with and without isolator
displacement constraint for different intensity of earthquake are compared in Fig. 4. The optimal
yield strength of the isolator increases with increasing seismic intensity. This is obvious as
increasing earthquake intensity transfer more energy to the structures resulting increasing
superstructure acceleration. Thus, the higher yield strength value is sought to offset the increased
acceleration. The corresponding acceleration reduction ratios of deck are shown in Fig. 5. Here
also, it is following the same trend i.e., higher acceleration of deck when the allowable
displacement is less but as the allowable displacement is increasing the effect of constrained
optimisation is decreasing. Moreover, in case of higher seismic intensity the gap between
constrained and unconstrained optimisation value exits with large allowable displacement but for
small intensity of earthquake the gap between these two narrows down.

The variations of optimum yield strength and associated RMS acceleration reduction are further
studied with respect to varying time period in Figs. 6 and 7 and for varying damping of the LRB in
Figs. 8 and 9 for different allowable displacement of the isolator. The time period of the pier and
seismic intensity are taken as 0.3 sec and 0.05 m?’/s’, respectively. The effect of isolator
displacement constraint is clearly evident from these plots with regard to optimum yield strength
of the BI system and its performance for a wide range of parameter variations. The results reported
in Fig. 8 show that for unconstrained case or larger allowable isolator displacement, the
normalized yield strength decreases with increasing level of damping of the isolator. This is
obvious as damping helps in dissipating energy and thereby less F can achieve same level of
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reduction. However, the decreasing trend of F, gradually diminishes when the allowable
displacement becomes smaller as the constraint becomes more stringent with less allowable
isolator displacement. Thereby, to minimize the response of the structure i.e., to achieve same
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level of reduction more Fj is sought with respect to earlier (unconstrained or more allowable
displacement cases). Thus depending on the activation of constraint, the optimal yield strength
might increase or decrease. It may be noted from Fig. 9 that the reduction is practically remains
same for different damping level for a given allowable displacement. But the optimum Fjvalue
gets adjusted (increases or decreases) with different damping level of the isolator to yield the
optimum response reduction. Therefore, the optimum parameter and the performance behaviour of
the isolated bridge considering constrained SSO modify the usual response behaviour of the
system without considering the effect of excessive isolator displacement.

5. Conclusions

The optimal performance of deck pier system of a bridge isolated by LRB type isolator is
studied considering the limitation on excessive isolator displacement. For this, the optimum yield
strength to minimize the maximum response of the bridge is obtained by imposing a constraint of
excessive isolator displacement on the optimization procedure. The performance of the isolated
bridge possible to achieve by considering such constraint is compared with that of achieved by
usually adopted unconstrained optimization approach. The proposed constraint optimization
results are in parity with the well known facts in the application of BI system considering
unconstrained optimization procedure. However, when the maximum isolator displacement is
taken into consideration in the optimization procedure, there is a definite change in the optimum
value of the yield strength of the LRB. The constrained optimal yield strength is consistently found
to be higher than the respective unconstrained values and respective reduction in the isolator
displacement is substantially less than that of the unconstrained system. However, for higher
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allowable isolator displacement, the results of the constrained and unconstrained cases practically
overlap indicates about the constraint inactive regime and as such there will be no importance of
constrained optimum design. But for a bridge with large displacement of LRB may be a critical
issue and need to check the optimum solution with constrained case. The observations made here
are for stationary earthquake load model and needs further study for realistic non-stationary
earthquake load model.
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Appendix
The augmented system matrix [A] is given as,
C 0 o 0 0 1 o 0o |
{0} [0] {0} USEY [7] {0}
0 {O}T -K, 0 _Ce Ce {V/}T 0
q q q
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where {0} denotes the null vector of size nx1; [0] and [I] denotes the null and identity matrix,
respectively, of size nxn; and the [Mp] in the denominator indicates the pre-multiplication to the
numerator quantity by [Mp]™.

The matrix [Sww] for the rock bed seismic motion, characterized by the white noise of intensity
of Sy is expressed as

00 .0 0

00 .0 0
[S.]=| - -
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