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Abstract.  Besides the complex instructions of guidance documents for seismic rehabilitation of existing 

buildings, some institutions have provided simple criteria in terms of simplified rehabilitations. 

ASCE 41-06 is one of documents that introduced a simple method for assessment of certain buildings 

that do not require advanced analytical procedures. Furthermore the New Zealand guideline has presented a 

simple lateral mechanism analysis that is a hand static analysis for determining the probable collapse 

mechanism, lateral strength and displacement capacity of the structure. The present study is focused on 

verifying the results of the simplified methods which is used by NZSEE and ASCE 41-06 in assessment of 

existing buildings. For this, three different special steel moment and braced frames are assessed under these 

two guidelines and the accuracy of the results is checked with the results of nonlinear static and dynamic 

analysis. After comparison of obtained results, suggestions are presented to improve seismic retrofit criteria. 
 

Keywords:  pushover analysis; nonlinear dynamic analysis; moment frames; braced frames; peak 

ground acceleration failure (PGAf) 

 

 

1. Introduction 
 

The nonlinear time history analysis of structures is one of the most prominent tools in 

determining of damage curves for a group of special earthquakes that are extremely time-

consuming. So many researchers have been providing simple methods to solve these problems due 

to the complexity and time-consuming. 

It should be noted that the use of complicated methods is not only way to confirm the accuracy 

of the assessment results and it is possible to achieve the same results with the use of simpler 

procedures such as simplified analysis methods with an acceptable margin of error.  

Simplified criteria for seismic rehabilitation of existing conventional buildings based on 

various guidelines such as New Zealand guideline and ASCE 41-06 have presented. With regard 

to assumptions that are considered for Simplification in each of the simplified procedures, the  
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comparison of these methods with precise approaches for ensuring the integrity of their responses 
is essential. 

One of the purposes of this article is to present a simple method for seismic evaluation of 
structures that this approach has been proposed in NZSEE .Selected models for assessment by this 
method contain the steel moment and concentric braced frame structural system. These models 
also are assessed by the simplified method of ASCE 41-06.  

Nonlinear static and dynamic analysis procedures are applied to assess the accuracy of the 
seismic performance of structures according to these guidelines. At the end the results are used to 
improve these guidelines and recommendations are suggested to eliminate uncertainties in those 
methods. 

 
 

2. Brief review of simple analytical methods and researches for simplified seismic 
assessment 

 
The simplified rehabilitation method is less complicated than the complete analytical 

rehabilitation design procedures found. In many cases, this method represents a cost-effective 
improvement in seismic performance, and often requires less detailed evaluation or partial analysis 
to qualify for a specific performance level. FEMA 178, the NEHRP handbook for the seismic 
evaluation of existing buildings, was the basis for the simplified rehabilitation method that 
different versions of it have been completed and new analysis techniques have been provided in 
ASCE 41-06. Simplified rehabilitation method that proposed by ASCE41-06 is intended primarily 
for use on a selected group of simple buildings being rehabilitated to the Life Safety Performance 
Level. The term “Simplified Rehabilitation” is intended to reflect a level of analysis and 
assessment that is appropriate for small, regular buildings and buildings that do not require 
advance analytical procedures. 

Another guidance document for seismic assessment of existing buildings is NZSEE2006 
recommendations in New Zealand. Three possible approaches for performing the assessment have 
been indicated in this document; time history analysis, force analysis and displacement analysis. 
The first one is the most accurate but the most complex as well, so the others are considered as the 
main approaches for assessments. In both cases, with simplified consideration of capacity issues, 
the probable collapse mechanism, lateral strength and displacement capacity can be determined by 
Simple Lateral Mechanism Analysis (SLaMA). In displacement-based methods, expected 
displacement demand is based on the structure characteristics (effective stiffness and equivalent 
viscous damping) at maximum displacement capacity rather than initial elastic characteristics in 
force based methods and a displacement spectra-set for different levels of elastic damping is used 
rather than the acceleration spectra set of force-based design. In the document it is stated that “the 
displacement based approach is generally considered to produce more rational and less 
conservative assessment outcome but the force based one is more familiar to designers”.  

In recent years the aim of many researchers was to evaluate the accuracy of the proposed 
simplified procedures for the seismic assessment of structures. 

Moshref et al. (2011, 2011a) carried out a comparison on the results of the evaluation methods 
proposed by ASCE 41-06 and NZSEE 2002. The benchmark comparison was the results of the 
incremental dynamic analysis. At the end, it was concluded that the New Zealand force approach 
has the most compatibility with the nonlinear dynamic analysis.  

Tehranizadeh and Yakhchalian (2011) assessed the results of the displacement based and 
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consolidated force displacement based methods. Consolidated force-displacement based method is 
a combination of force based and displacement based methods. It concluded that for structures 
with lower height, displacement based method gives more rational results, but as the height of 
structure increases, the results of consolidated force-displacement based method are more 
acceptable. 

The displacement based assessment procedure assessed by Kam et al. (2013) as a practical and 
effective seismic assessment tool. It is noted that displacement-based assessment may be achieved 
using direct hand calculation methods (Priestley 1996, Priestley et al. 2007, NZSEE 2006) or 
sophisticated non-linear computer analysis. The focus of the paper is on the practical 
implementation of the hand-calculation method for realistic buildings of complex configurations. 

Borzi et al. (2008) defined the nonlinear behavior of RC buildings through a simplified 
pushover and displacement-based procedure that combines the definition of a pushover curve 
using a simplified mechanics based procedure (similar to that proposed by Cosenza et al. 2005) to 
define the base shear capacity of the building stock, with a displacement-based framework similar 
to that in NZSEE. For estimating of seismic demands Borzi et al. (2013) in continuation of their 
previous studies implemented a simplified methodology in simplified pushover-based earthquake 
loss assessment approach and validated the accuracy of obtained results against the results of more 
sophisticated nonlinear dynamic analyses for RC buildings. 

Grande and Rasulo (2013) proposed a simplified approach for the seismic assessment of 
concentric steel braced frames (CBFs) according to the displacement based method. In the first 
step of the approach the possibility of activation of a plastic mechanism controls by the yielding of 
diagonals using the simple considerations. After that the approximate capacity curve of the CBFs 
is determine. Finally, the third step of the approach consists of to assess the braced frame 
according to the DB procedure. In 2015 Grande and Rasulo enhanced their assessment method in 
order to include also the retrofit in the procedure. 

Piazza and Sullivan (2014) proposed a simplified displacement-based procedure for the seismic 
design and assessment of RC frame structures based on Priestley et al. (2007) and Pinho et al. 
(2007). In this way, no estimate is required of the building strength, stiffness or period of vibration, 
thereby greatly simplifying the task of seismic assessment. Proposals for simplified DBD have 
already been made by Sullivan (2013, 2013a) but this paper aims for an even more simplified 
approach. 

Fox (2015) formulated a simplified displacement-based seismic assessment procedure to permit 
the rapid seismic assessment of reinforced concrete (RC) wall buildings. The displacement 
capacity, shear capacity and shear demand are also estimated simply, using newly developed 
equations that are a function of wall geometry and material properties. 

Lignos et al. (2015) evaluated the effectiveness of single and multi-mode nonlinear static 
procedures as well as the FEMA P58 simplified approach versus rigorous nonlinear response 
history analyses for estimating seismic demands of steel special moment frames. This work 
indicated that the simplified analysis procedures in combination with commonly used nonlinear 
component models can reliably predict story level engineering demand parameters such as, story 
drift ratios, story shear forces, overturning moments, residual deformations and peak floor absolute 
accelerations. 

The simple method of NZSEE that has been used in this study, is based on the displacement 
based design approach that proposed by Priestley et al. (2007). This method has been presented for 
concrete moment structures but it is applicable for steel moment frames. Also in this guideline for 
assessments of braced frames have not been specified recommendations in details. 
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In this study, we tried to present simplified methods for seismic assessment of steel moment 
and concentric braced frames by using of NZSEE and ASCE 41-06 recommendation.  

At first, samples are assessed with the simplified methods proposed by the NZSEE and ASCE 
41-06. After that, the nonlinear static and dynamic analysis was applied to assess the accuracy of 
seismic performance according to simple methods. For this, frames have been analyzed under the 
action of 56 Near-Field earthquakes with the use of incremental dynamic analysis to determine the 
LS Performance level, capacity curves and PGA values that cause their collapse. At the end these 
results have been compared by their similar values that were determined from the simple methods. 

 
 

2. Simplified methods 
 
2.1 Simple lateral mechanism analysis (SlaMA) of NZSEE 
 
This method is a hand static analysis that is carried out to determine the probable collapse 

mechanism, lateral strength and displacement capacity with simplified consideration of capacity 
issues. So we can determine the capacity curve in terms of base shear versus roof displacement of 
structures. All steps are explained below; 

 
2.1.1 Moment frames 
The procedure starts with the evaluation of members capacities. The probable flexural strengths 

are calculated according to standard theories. The flexural strengths in beam and column can be 
calculated by the following equation respectively 

yeb ZFM                                   (1) 

 











ye
yec P

P
ZFM 118.1                          (2) 

Demand shears, Vbdr,l, in both sides of beams at the moment capacities are determined as 

  bbrblbglbdl LMMVV /
 

  bbrblbgrbdr LMMVV /  
(3)

Where Vbgl and Vbgr are shear force due to gravity loads in the left and right ends respectively, 
Mbl and Mbr are plastic moment capacities of beam in the left and right ends respectively, and Lb is 
the length of beam. 

The probable shear capacity is defined by the following relationship 

pcyebr tdFV 55.0                               (4) 

Where dc and tp are the outside height and the web thickness of beam respectively. 
The initial capacity of shear should be controlled by demand shear. If Vbr>Vbd, the flexural 

capacity of beam in the left and right ends, *
blM  and *

brM , is modified as below respectively 

  brbbglbrlbl MLVVM  /*

 
  blbbgrbrrbr MLVVM  /*  

(5)
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Where θp is the plastic rotation at the top and bottom of columns in the soft story that could be 
calculated by FEMA356 and n is the numbers of stories. So the displacement capacity is calculated 
from the following equation 

yscd                                     (12) 

The lateral seismic forces cause base moments and axial forces in columns. For a regular 
building, seismic axial forces will be induced in the exterior columns by the seismic beam shears 
(Vbdi). If the beam negative moment capacities at all critical sections at a given level be equal, and 
similarly, all beam positive moment capacity at that level be equal (but not necessarily equal to 
negative moment capacities), for the interior columns, the axial force component from the beam 
shears at opposite sides of columns will be cancel, and no seismic axial force will be induced. The 
overturning moment induced by external forces must be equilibrated by the internal forces, thus 





m

j
basecj TLMOTM

1

                             (13) 





n

i
bdiVT

1

                                (14) 

Where Mcj are the column base moments, T=C are the seismic axial forces in the exterior 
columns, Lbase is the distance between T and C, and m is the number of base columns. 

The base shear capacity could be calculated as below 

eff
base h

OTM
V                                      (15) 

For frames with beam sway collapse mechanism, the effective height, heff, of the SDOF 
structure is given by the following relationship 

hheff 67.0         For       4n                       (16) 

hheff 64.0         For       4n                       (17) 

In the column sway, the effective height is affected by the general structural ductility and is 
calculated by the following equation 








 


sc

sc
effh


 1

14.064.0                              (18) 
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horizontal orientation are obtained. The base shear is governed by 

cos)( CTbase PPV                                  (24) 

That PT and PC are the plastic tensile and compressive capacity of braces respectively. Where θ 
is the angle between the brace and horizontal line.  

Chen (2011) and Uriz and Mahin (2008) in detail argued on the behaviour of the concentrically 
braced frame systems, mechanisms and lateral load distributions. 

 
2.2 Simplified rehabilitation method of ASCE41-06 
 
Simplified rehabilitation method that proposed by ASCE41-06, reflects a level of analysis and 

design that is appropriate for small, regular buildings and buildings that do not require advanced 
analytical procedures and achieves the Life Safety Performance Level. This method only applies to 
a select group of simple buildings that conform to the limitations of Table 1. 

For assessment of buildings, a linear static analysis should be used. All steps are explained 
below. 

1- The lateral seismic force, V, is calculated in accordance to Eq. (25) 

 CWSV a                              (25) 

Where W is effective seismic weight of the building including the total dead load and portion 
of live load, Sa is response spectrum acceleration, at the effective fundamental period of structure   
and C is a modification factor to relate expected maximum inelastic displacements to 
displacements calculated for linear elastic response obtained from Table 2. 

 
 

Table 1 Limitation on use of the simplified rehabilitation method 

Model Building Type 
 

Model Building 

Maximum building height in stories by seismic zone* for use of the simplified 
rehabilitation method 

Low Moderate High 

Steel moment frame 

Stiff diaphragm 6 4 3 

Flexible diaphragm 4 4 3 

Steel braced frame 

Stiff diaphragm 6 4 3 

Flexible diaphragm 3 3 3 

*The zone of seismicity shall be defined as High, Moderate, or Low as specified in Sections 1.6.3 of 
ASCE41-06 

 
Table 2 C-coefficient factor 

Model Building Type 
Number of stories 

1 2 3 ≥4 

Steel Moment Frame 1.3 1.1 1 1 

Steel Braced Frame 1.4 1.2 1.1 1 
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2- Distribution of the lateral seismic force at any floor level shall be determined in accordance 
with Eq. (26) 

 
k=2  for  T≥2.5 sec 

(26)k=1  for  T≤0.5 sec 

Linear interpolation for 
intermediate values of T 

Where wi is portion of the total building weight W assigned to floor level i, wj is portion of the 
total building weight W assigned to floor level j, hi is height from the base to floor level i, hj is 
height from the base to floor level j and T is the fundamental period of structure. 

3- The design actions, QU, in members due to gravity loads, QG,and earthquake loads, QE, is 
calculated in accordance with Eq. (28) 

EGU QQQ                               (26) 

 LDG QQQ  1.1                            (27) 

Where QD is dead load and QL is Effective live load equal to 25% of the unreduced design live 
load. 

4- Expected strength of members, QC, is calculated as design codes. 
 
 

Table 3 Acceptance criteria for linear procedures-structural steel components 

Component/Action 
m-factors for Linear Procedures 

LS CP  

Columns - flexure 

for 

a.   6 8 

b.  1.25 2 

Other Linear interpolation between the values on lines a and b shall be performed

for 

a.       

b.  1.25 1.5 

Other Linear interpolation between the values on lines a and b shall be performed

Braces in Compression (except EBF braces) 

W or I shape 6 8 
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Table 4 Summary of design results of three different moment frames 

 Story Beams Interior cols Exterior cols 

4-Stories 
1,2 W18×35 W24×162 W24×162 

3,4 W16×36 W24×117 W24×117 

8-Stories 

1,2,3 W18×60 W24×279 W24×279 

4 W18×60 W24×207 W24×207 

5,6 W18×46 W24×207 W24×207 

7,8 W18×46 W18×46 W18×46 

12-Stories 

1,2,3 W21×73 W24×335 W24×335 

4,5,6 W21×73 W24×279 W24×279 

7,8,9 W18×60 W24×229 W24×229 

10 W16×45 W24×229 W24×229 

11,12 W16×45 W24×104 W24×104 

 
Table 5 Summary of design results of three different braced frames 

 Story Beams Interior cols Exterior cols Braces 

4-Stories 
1,2 W18×40 W24×68 W24×68 W12×26 
3,4 W18×35 W21×44 W21×44 W10×22 

8-Stories 

1,2,3 W18×46 W24×207 W24×104 W12×40 
4 W18×46 W24×104 W21×48 W12×40 
5 W18×40 W24×104 W21×48 W12×35 
6 W18×40 W21×48 W21×44 W12×35 

7,8 W18×40 W21×48 W21×44 W12×26 

12-Stories 

1,2,3 W18×55 W27×539 W27×114 W12×45 
4,5 W18×55 W24×229 W24×84 W12×40 
6 W18×40 W24×229 W24×84 W12×40 

7,8,9 W18×40 W24×117 W24×68 W12×35 
10,11,12 W18×35 W24×55 W21×44 W12×26 

 

(a) (b) 

Fig. 6 Generalized force–deformation relation for steel elements 
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Table 6 Modeling parameters and acceptance criteria for beams 

Modeling parameters Plastic rotation angle 

a b c 
Acceptance criteria 
Collapse Prevention 

9θy* 11θy 0.6 8θy 

*θy: the rotation at yield 
 

Table 7 Modeling parameters and acceptance criteria for columns 

P/PCL* 
Modeling parameters Plastic rotation angle 

a b c 
Acceptance criteria 
Collapse Prevention 

P/PCL<0.2 9θy 11θy 0.6 9θy 

0.2≤P/PCL≤0.5 y
CLP

P 









3

5
111 y

CLP

P 









3

5
117  0.2 y

CLP

P 









3

5
111  

*P: The axial force of column; PCL: The lower-bound axial compressive strength of column 
 

Table 8 Modeling parameters and acceptance criteria for braces 

 

Modeling parameters Plastic Deformation 

a b c 
Acceptance criteria 

LS CP 

Braces in Compression *5.0 C  C8  0.2 C5  
C7  

Braces in Tension T11  T14  0.8 T7  T9  

* T : The axial tensile deformation; C : The axial compressive deformation 

 
Table 9 The values of m-factors in buildings 

4Storey 8 Storey 12 Storey 

Moment frameBraced frame Moment frameBraced frameMoment frame Braced frame 

1.43 3.39 1.48 3.46 2.34 4.82 

0.81 2.89 1.01 3.12 1.68 4.38 

0.73 2.78 0.72 2.91 1.37 4.25 

0.65 1.48 0.17 2.79 1.42 4.54 

 

0.13 3.21 1.32 4.37 

0.16 2.70 1.27 4.10 

0.24 2.67 1.63 5.28 

0.16 1.30 1.11 4.66 

 

1.19 3.97 

1.97 4.21 

0.69 2.90 

 1.23 1.46 
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4. Validation of simplified methods 
 
4.1 Evaluation of frames using ASCE41-06 
 
For simplified seismic assessment by ASCE41-06 a liner static analysis should be done that has 

been presented in section (2-2). For simplicity this analysis was done by SAP2000 software. After 
performing a linear static analysis, the flexural strength of columns in moment frames and the 
axial tensile strength of brace elements were calculated and design efforts were obtained using the 
described method. The assessment results for all frames are presented in Table 9.	

 
4.2 Evaluation of frames using NZSEE 
 
4.2.1 failure mechanism 
For all moment frames, the beam sideway mechanism was diagnosed as the probable failure 

mechanisms.In braced frames, using the demand ratio analysis, the failure mechanisms were 
predicted in second floor of 4-story frame, fifth floor of 8-story frame and forth floor of 12-story 
frame. 

To verify the accuracy of this method in prediction of the failure mechanism, the plastic hinge 
distribution at the pushover analysis was identified (as mentioned in section 3, Opensees was used 
for performing nonlinear static and dynamic analyses).  

 
 

Table 10 The failure mechanisms of frames 

No.Story 

12 Storey 8 Storey 4Storey 
Moment 
Frames 

Braced Frames
Moment 
Frames 

Braced Frames
Moment 
Frames 

Braced Frames

*sway potential 
index, Si 

**demand-
capacity ratio, 

DCR 

sway potential 
index, Si 

demand-
capacity ratio, 

DCR 

sway potential 
index, Si 

demand-
capacity ratio, 

DCR 
1 0.379 4.29 0.429 2.890 0.259 1.876 

2 0.405 1.92 0.435 1.321 0.153 0.923 

3 0.168 1.28 0.208 1.245 0.132 1.131 

4 0.259 1.36 0.215 0.990 0.118 1.004 

5 0.267 1.14 0.303 1.039 

 

6 0.276 1.00 0.216 0.944 

7 0.367 1.10 0.222 0.892 

8 0.370 1.03 0.228 0.869 

9 0.381 0.97 

 
10 0.264 1.06 

11 0.270 1.04 

12 0.278 1.03 

*If Si<0.85, plastic hinges would develop in the beams and at the top and bottom of the column bases, 
otherwise they would develop in the columns 
**If DCRi<1, implies failure at that level. But this ratio should be lower than the value for upper and bottom 
stories. If in calculations more than one floor have this property, the story that has the greatest difference 
with upper and bottom stories choose as the critical floor 
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(a) 4 story (b) 8 story (c) 12 story 

Fig. 7 Plastic hinge formation in different types of moment frames at the pushover analysis 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 

 

(a) 4 story (b) 8 story (c) 12 story 

Fig. 8 Plastic hinge formation in different types of braced frames at the pushover analysis 

 
 
4.2.2 Capacity curve 
In order to assess the adequacy of the simplified procedures of the NZSEE, comparison with 

capacity curves obtained from dynamic and static analyses have been carried out. Capacity curves 
are usually defined in a base shear versus top displacement diagram for the structures, and they can 
be obtained using both dynamic and static analysis. In their dynamic form, each point of the 
diagram is defined through finding the maximum of base shears and top displacements in their 
corresponding response time history. An IDA procedure consists of a series of time-history 
analyses, so it can result a dynamic capacity curve (Shafiee et al. 2015). 

For performing the IDA, the near-field record set recommended in FEMA P695, (2009) 
consisting of 28 records (56 individual components) from the strong ground motion database of 
the Pacific Earthquake Engineering Research Centre (PEER) (http://peer.berkeley.edu) has been 
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selected. The 28 records are taken from 14 events that occurred between 1976 and 2002. The 
selected near-fault ground motion records correspond to locations which were at most 10km from 
a rupturing fault. The record set includes both pulse-like and non-pulse-like near-fault records. 
Event magnitudes range from M6.5 to M7.9 with an average magnitude of M7.0. More 
information has been stated in FEMA P695. 

Validation of the simplified pushover curves obtained from SLaMA procedure is shown in 
Figs. 9-10(a), (b), (c). The green lines show the limit of the Life Safety Performance Level of 
structures and the purple lines indicate the position of the structures in the displacement demand. 
In accordance to ASCE 41-06, the displacement demand is determined as Eq. (30) 

 g
T

SCCC e
at 2

2

210 4
                                  (30) 

If the life safety performance level be less than the displacement demands, the structure will be 
failed, but if this limit be more, the structure will be satisfy the life safety performance level. 

 
 

(a) 4 story (b) 8 story 
 

 
 
 

(c) 12 story 

Fig. 9 Comparison between simplified and pushover analyses in moment frames 
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(b) 8 story (a) 4story 
 
 
 
 
 

 
 

(c) 12 story  
Fig. 10 Comparison between simplified and pushover analyses in braced frames 

 
 
4.2.3 peak ground acceleration  
Another comparison of the SLaMA with nonlinear dynamic analysis was made in terms of the 

PGAf value that causes the collapse of the structures. The PGAf has been arbitrarily related to the 
spectrum of Standard No. 2800 for the soil type II; it is believed that the results of the comparisons 
would not change to any significant extent if a different reference spectrum were selected. The 
PGAf values for the results of the SLaMA procedure were determined as follow 

 1

.

TC

W

V

PGA
sc

t

prob

f


                               (31) 

Where Vprob is the base shear capacity of structure, μsc is the structural ductility, Wt is total 
seismic weight of structure and C(T1) is the ordinate of 5% damped elastic acceleration spectrum 
for T1 (fundamental period of structure). Summary of calculations is presented in Tables 11 and 12 
for moment frames and braced frames respectively. 
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Fig. 11 Standard No. 2800-05 acceleration spectrum for soil Type ∏ 

 
Table 11 Summary of calculations in the SLaMA for moment frames 

)(kgVprob  )(tW  )(mu  )(md sc  
1T (sec) 1( )C T  PGA 

160835.9 159300 0.166 0.434 2.6 0.579 2.267 1.16 

198037.8 329940 0.323 0.867 2.68 0.931 1.603 0.97 

211150.9 572580 0.485 1.208 2.49 1.402 1.308 0.73 

 
Table 12 Summary of calculations in the SLaMA for braced frames 

)(kgVprob  )(tW  )(mu )(md sc  
1T (sec) 1( )C T  PGA 

164111.5 279979 0.031 0.157 4.99 0.353 2.5 1.16 

274279.3 587599 0.063 0.315 4.99 0.608 2.192 1.06 

309399 701748 0.094 0.495 5.23 0.848 1.757 1.32 

 
 
To check the reliability of the SLaMA, the comparison between the obtained results and the 

corresponding ones deduced from nonlinear dynamic analyses should be carried out. So after 
performing incremental dynamic analysis for all records that mentioned in section 4.2.2, capacity 
curves in terms of seismic intensity versus the demand parameter were plotted. The Intensity 
Measure (IM) and Damage Measure (DM) in this study were the peak ground acceleration and the 
maximum inter story drift ratio respectively (Fig. 12). The CP point on capacity curves was 
defined according to FEMA356 guidelines, which is not exceeded on the IDA curve until the final 
point where the local tangent reaches 20% of the elastic slope or θmax=10%, whichever occurs first 
in IM terms (Vamvatsikos et al. 2003). 

After finding PGAf’s for each record, Minitab as a software was used to fit best probabilistic 
distribution on 56 data’s. The variability in the PGAf is best described by a lognormal distribution 
so present study used average of natural log dates instead of simply average (Vamvatsikos et al. 
2002) (see Figs. 13,14);  

The PGAf values that cause the collapse in the first element of the frames are reported in Table 
13 and shown in Figs. 15-16 for simplified method of NZSEE and nonlinear dynamic analyses. 
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Fig. 14 The lognormal distribution of PGA failure values in braced frames 
 

 
Fig. 15 The PGA values cause the collapse in moment frames 

 
Table 13 Collapse Peak Ground Acceleration (PGA) in units of g 

 
Moment Frames Braced Frames 

Simplified method 
Nonlinear Dynamic 

Analysis 
Simplified method

Nonlinear Dynamic 
Analysis 

4 1.16 1.11 1.16 1 

8 0.97 0.9 1.06 1.16 

12 0.73 0.86 1.32 1.23 
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5. Conclusions 
 
In the present study effectiveness of the simplified methods that have proposed by the NZSEE 

and ASCE 41-06 guidelines was investigated. NZSEE has presented a simple lateral mechanism 
analysis that is a hand static analysis for determining of the capacity curve and ASCE 41-06 has 
introduced a simple method for assessment of certain buildings based on maximum building height in 
stories. According to Table 1, in regions with high seismic risk, the simple method of the ASCE 
41-06 is applied for structures with the number stories less than 3 for both types of frames but we 
did this method for all frames to examine the results of the assessment. As shown in Figs. 9, 10, 
with regarding to the capacity curves that obtained by Opensees, in 4 story frames, the LS 
Performance Level and displacement demand are approximately equal whereas in other frames the 
LS Performance Level is less than the displacement demand, so the structures could not satisfy the 
life safety performance level and will be failed but according to the results of ASCE 41-06 that 
were presented in Table 9, the flexural strength of columns in moment frames and the axial tensile 
strength of brace elements have satisfied the relationship in Eq. (29) and this means that LS 
Performance Level is satisfied that do not correspond exactly to the reality.  

Results are given in following: 
• In 4 story frames the result of assessments by the ASCE41-06 partially is closer to the results 

of the nonlinear dynamic analysis so maybe we can use this method also for 4 story frames. But in 
other frames the results don’t have agreement with the reality. For this reason this method only is 
applied to a select group of simple buildings that represented in Table 1. 

• According to the plastic hinge distribution at pushover analysis witch shown in Figs. 7-8, the 
failure mechanism was predicted correctly by this method in both types of frame.  

• From the Figs. 9-10(a), (b), (c) and Fig. 17(a), (b) it can be concluded that the results of the 
SLaMA of NZSEE has a good agreement in estimation of the base shear capacity with the results 
of the nonlinear static analysis and the initial stiffness and the elastic displacement are close to the 
results of dynamic analysis but in moment frames with increasing the height of building and in 
braced frames this method gives the lower bound value of ductility so it can be say SLaMA is a 
conservative approach. 

• In braced frames with increasing the height of building the initial stiffness was estimated less 
than the capacity curve of the IDA. To overcome this weakness, we need to model more frames to 
modify the empirical relationship for the elastic displacement of this frames.  

• As shown in Figs. 13-16 the results of the SLaMA is compatible with the nonlinear dynamic 
analysis so this method in evaluation of existing structures is effective.  

At the end it becomes clear from the study that further research should be carried out in order to 
improve the assessment procedures prescribed in this article. 
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