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Abstract.  This study aims to present nonlinear time history analysis results of double leaf cavity wall 

(DLCW) reinforced concrete structure exposed to shake table tests. Simulation of the model was done by a 

Finite Element (FE) program. Shake table experiment was performed at the National Civil Engineering 

Laboratory in Lisbon, Portugal. The results of the experiment were compared with numeric DLCW model 

and numeric model of reinforced concrete structure with unreinforced masonry wall (URM). Both DLCW 

and URM models have two bays and two stories. Dimensions of the tested structure and finite element 

models are 1:1.5 scaled according to Cauchy Froude similitude law. The URM model has no experimental 

results but the purpose is to compare their performance level with the DLCW model. Results of the analysis 

were compared with experimental response and were evaluated according to ASCE/SEI 41-06 code. 
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1. Introduction 
 

Earthquake is the biggest natural challenge for Turkey and for many countries. There are three 

main faults that divide Turkey territory into parts. North and South are the most active faults when 

compared to the third one. North Anatolian Fault (NAF) is a long and active fault laid from east to 

west, passing close to Black sea region. East Anatolian Fault (EAF) starts from the point where 

NAF starts crossing the Mediterranean region. Moreover, West Anatolian Fault (WAF) starts from 

Mediterranean Sea and penetrate Aegean territory two parts as seen from Fig. 1. 

Recent earthquakes in Turkey, very close to present day, were the 2011 Simav and 2011 Van 

earthquakes. The magnitude of the Simav earthquake was low compared with the Van earthquake, 

with only M 5.8 (Yön et al. 2013). The biggest fatality was witnessed in Van with 607 people 

killed, 1301 people injured and 2307 multistory building collapsed (Kızılkanat et al. 2011, Sayın 

et al. 2014, Yön et al. 2015). After this last earthquake, the performance of structures started to be 

evaluated not only with the main bearing elements, such as columns and beams, but also with 
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Nonlinear analysis of RC structure with massive infill wall exposed to shake table 

light weight reinforced concrete frame was investigated by shake table experiment and also 
verified by numerical simulation. Both experimental and numeric results found that cracks were 
concentrated at the bottom part of the specimen. Moreover, the numerical simulation corroborated 
the in-plane action of the experiment (Ile et al. 2008). The effect of supplementary steel hysteric 
damping was investigated by shake table and allowed to observe that supplementary damping 
increased the global damping ratio up to 14% and the lateral demand capacity was increased 
between 33% and 50% (Toranzo et al. 2009). In-plane and out-of-plane actions were investigated 
together in a prototype structure with poor reinforcement detailing. For this purpose, 14 scaled 
historical ground motions were applied to the specimen. The obtained dynamic response, load 
resistance and failure mechanism were reported and demonstrated that in-plane action loosen the 
structure and then out-of-plane behavior triggered the failure mechanism (Stavridis et al. 2012). 

It is believed that these experimental studies should be verified in terms of their reliability in 
light of the present studies, in order not to carry out always such time and money consuming 
experimental studies. Moreover, it is believed that seismic engineering software tools are more and 
more important to evaluate structural performance with nonlinear analysis methods (Krawlinker 
2006). Nonlinear time-history analysis was performed on a 56-story residential reinforced concrete 
structure to evaluate in terms of LS (Life Safety) and CP (Collapse Prevention) limits (Epackachi 
et al. 2010). The limit load assessment of two leaf cavity wall reinforced concrete structure was 
implemented by pushover analysis and it revealed that two leaf cavity wall reinforced concrete 
structures resisted 35% more load than a single leaf thickness infill wall reinforced concrete 
structure (Onat et al. 2015, Onat 2015). Still, performance of double leaf cavity infill wall needs to 
be evaluated with nonlinear time history analysis, while considering the damping ratio, to assess 
performance with realistic material data on the basis of experimental shake table results. In this 
paper, nonlinear time history analysis was performed on two finite element models. These models 
are of the same geometry except for the infill wall thickness. DLCW (Double leaf cavity wall) is 
composed of 18 cm double layered infill wall while URM (Unreinforced masonry) model has 13 
cm thickness single layer infill wall. Finite element model of these buildings were prepared with 
DIANA software. Then, nonlinear dynamic analyses were performed on both models. Classical 
Rayleigh damping was considered. Finally, displacements were compared with experimental 
results and interstory drifts were evaluated in terms of ASCE/SEI 41-06 (ASCE, 2007). 
 
 
2. Description of the model 
 

The DLCW model was composed of two layers. The thickness of the exterior leaf is 9 cm, 
thickness of the interior leaf is 7 cm and there is 2 cm gap between these layers. The DLCW model 
can be seen in Fig. 2. The complete view of the tested structure can be seen in Fig. 3. 

 
2.1 Shake table experiment 
 
The experimental program was only performed for the DLCW structure, while the URM model 

was analyzed after validation of the first structure and has no experimental results. Nonlinear time 
history analysis was performed on URM model to see the performance differences between 
DLCW and URM model. The DLCW structure was exposed to earthquake load in four steps and 
the summary of the artificial earthquake characteristics can be seen in Table 1. The response 
spectra of the four steps in both transversal and longitudinal direction can be seen in Fig. 4. These 
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Table 2 Parameters of concrete and infill belong to both TLCW and URM models 

Type of material 
Elastic Modulus 

(MPa) 
Compressive 

Strength (MPa)

Compressive 
fracture energy 

(N/mm) 

Tensile Strength 
(MPa) 

Mode-I fracture 
energy (N/mm)

Concrete 30400 29.5 47.2 2.32 0.051 

Infill 1800 1.26 2.0 0.20 0.013 

 
Table 3 Linear and nonlinear properties of interface element 

Kn (N/mm3) Ks (N/mm3) 
Tensile 
Strength 
(MPa) 

Mode-I 
Fracture 
Energy 
(N/mm) 

Mode-II 
Fracture 
Energy 
(N/mm) 

Friction data 

c (cohesion)
(MPa) 

Ø (friction 
angle) 

Ψ (dilatancy 
angle) 

175 75 0.30 0.012 0.030 0.6 0.75 0.01 

 
 

Constitutive material models are needed for the numeric model, based on experimental 
observations. For this purpose, the Total Strain Fixed Crack model was used for reinforced 
concrete members and the Total Strain Rotating Crack model was used for infill wall (CEB-FIB 
2012). Interface elements were used around infill wall to simulate tensile crack, frictional slip and 
crushing of mortar between reinforced concrete frame and infill wall. For this purpose, the 
combined cracking-shear-crush model was used in these analyses (Lourenço and Rots 1997). Note 
that while fixed crack models replicate well the behavior of reinforced concrete structures, they 
tend to provide over-stiff responses and excess of shear capacity in unreinforced structures. More 
complex material models are available for masonry, such as an orthotropic model (Lourenço et al. 
1998), but they require a large amount of data, not available in many cases. In the present case, as 
the interface plays an important role, the adopted model for the masonry infill was kept reasonably 
simple, as isotropic (before cracking). 

The adopted material model for concrete and masonry describes compression and tensile 
behavior of material with an adequate stress-strain relationship. This total strain material model 
was developed along the lines of the Modified Compression Field Theory (Vecchio and Collins 
1986), following a smeared approach for the fracture energy (Selby and Vecchio 1993). The 
fundamental difference between the fixed and rotating concepts is the direction of principal 
stresses after the onset of cracking. Propagation of cracks is fixed to local coordinates in the first 
case, whereas propagation of cracks rotates according to the principal stresses axes in the second 
case. The interface model was formulated (Lourenço and Rots 1997) for plane stress and then 
implemented in 3D model (Zijl 2000). This interface model is based on multi-surface plasticity, 
including a Coulomb Friction model integrated with a tension cut-off and an elliptical compression 
cap to relate the interface traction  to the interface shear , as shown in Fig.6. Inelastic behavior 
occurs in all failure modes and is preceded by hardening in the case of the cap mode (Lourenço 
and Rots 1997). 

The elastic normal and shear stiffness of interface elements was calculated by Eq. (1) and Eq. 
(2) below (Lourenço and Rots 1997) 

ܭ ൌ
ாೠா

௧ሺாೠିாሻ
                              (1) 
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Fig. 12 Quasi-Newton iteration method 

 
 

 =݃ାଵ-݃                                 (3)ߜ   

So, the Quasi Newton relation is given by Eq. (4) 

                                 (4)ߜ=௨ߜ*ାଵܭ   

Here, the secant stiffness matrix Ki that fulfills the next iterative increment for a system with 
more than one degree of freedom is not unique. The methods implemented in DIANA are known 
as the Broyden and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. In these methods, the 
following two matrices fulfill the Quasi-Newton relation as seen in Eq. (5) and Eq. (6) 

ାଵܭ    ൌ ܭ 
ሺఋିఋ௨ሻ∗

∗ఋ௨
                            (5) 

ାଵܭ ൌ ܭ 
ሺఋିఋ௨ሻ∗ା∗ሺఋି∗ఋ௨ሻ

∗ఋ௨
െ

ሺఋି∗ఋ௨ሻ∗ఋ௨∗∗

ሺఋ௨ሻమ
            (6) 

Here, the vector c can be selected freely. The Quasi-Newton methods can be used efficiently 
because the inverse of the stiffness matrix can be derived directly from the previous secant 
stiffness and the update vectors by using the Sherman-Morrison formula. 

To avoid increasing storage and computation time for the Broyden and BFGS methods, 
Crisfield used only the most recent correction vector. This method usually has a convergence rate 
between that of the Regular Newton-Raphson and the Modified Newton-Raphson. 
 
 
3. Analysis results 
 

Nonlinear time history analysis was carried out in four stages. As stated before, the most 
important and critical step is the third stage. The DLCW experimental prototype was heavily 
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(a) Relative displacements in transversal direction (b) Relative displacements in longitudinal direction

Fig. 18 Comparison of relative displacements at Stage 3 
 

Fig. 19 Interstory drift in transversal direction 
 
 

The evaluation of interstory drifts in the longitudinal direction can be seen in Fig. 20. In the 
longitudinal direction, the experimental results show that the first story of structure displaced 
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more, so the interstory drift ratio of the structure passed beyond IO level and stand very close to 
LS level. The DLCW numeric model performance is similar to the experimental results in terms of 
drifts at first story. The second story interstory drift of DLCW finite element model is very close to 
IO level. However, the finite element URM model displaced more than the DLCW model as 
expected, and damage occurred after the analysis as seen from the crack patterns. The performance 
level of the finite element URM model at first story is very close to Collapse Prevention (CP) line. 
However, there are not so much differences between URM finite element model and the DLCW 
finite element model at first story. According to the interstory drift ratio, there is not any difference 
between first story and second story of experimental results of DLCW model. However, there is a 
relatively high difference between the first story and second story of finite element DLCW model. 
These differences are very clear in Fig. 19 and Fig. 20. The main reason of these differences is 
related to flexible foundation due to connection between foundations of tested specimen and shake 
table. This flexible foundation makes the structure sensitive to soft story failure. 

The performance of both structures in terms of base shear versus roof displacement can be seen 
in Fig. 21, until the end of Stage 3. As stated before, the experimental model collapsed at the 
beginning of the Stage 4. However, the accelerations from Stage 4 were applied to both finite 
element models to obtain the base shear and maximum roof displacement. Experimental DLCW 
model resisted a maximum of 217 kN lateral load in transversal direction and of 289 kN in the 
longitudinal direction at Stage 3. However, at the same stage, the finite element DLCW model 
resisted a maximum of 280 kN lateral load in transversal direction and of 332 kN in longitudinal 
direction. On the other hand, the finite element URM model resisted a maximum of 261 kN in the 
 
 

Fig. 20 Interstory drift in longitudinal direction 
 

0

2

4

‐0.8 ‐0.6 ‐0.4 ‐0.2 0 0.2 0.4 0.6 0.8

ST
O
R
EY
 L
EV

EL
 (
m
)

INTERSTOREY DRIFT (%)

EXPERIMENTAL

FE DLCW
MODEL

FE URM MODEL

825



 
 
 
 
 
 

Onur Onat, Paulo B. Lourenço and Ali Koçak 

 
Fig. 21 Base shear comparison of two FE model 

 
 
transversal direction and of 240 kN in the longitudinal direction. The experimental DLCW model 
displaced 5.6 mm in transversal direction and 7.4 mm in longitudinal direction at Stage 3. 
Moreover, the finite element DLCW model displaced 5.5 mm in transversal direction and 7.4 mm 
in longitudinal direction. In addition, the finite element URM model displaced 11.6 mm in 
transversal direction and 11.0 mm in longitudinal direction. There is a good match between 
experimental and finite element DLCW models in terms of displacement. Match ratio between 
experimental and finite element models are 2.3% in transversal direction and 0.3% in longitudinal 
direction. According to Stage 4, the maximum base shear of DLCW model is 338 kN and 361 kN 
in transversal and longitudinal directions, respectively. Moreover, the maximum base shears of 
URM model are 300 kN and 310 kN in transversal and longitudinal direction, also respectively. 
Therefore, DLCW model carries 12.7% more load in transversal direction and 16.4% in 
longitudinal direction respectively, when compared with URM model. 
 
 
4. Conclusions 
 

Two case studies of a reinforced concrete frame infilled with masonry involving numerical 
simulation were considered to predict experimental results. A DLCW (double leaf cavity wall in 
masonry) and a URM (single leaf unreinforced masonry) model was used for nonlinear time 
history analysis and then the results were evaluated under ASCE/SEI 41-06 code. The nonlinear 
time history analysis was performed in four stages for both two models. The conclusions of the 
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paper can be listed below: 
• Quasi-Newton solution procedures were adopted on the numeric model and allowed to obtain 

adequate results. 
• The Secant Crisfield types solution procedure was used to prevent increasing storage and to 

decrease computation time. The advantage of this method was 7% less time and 7% less space for 
calculation. 

• The finite element DLCW model showed a good match with experimental results in terms of 
displacements and damage maps. In terms of displacements the match ratio between numerical and 
experimental results is 2.3% in transversal direction and 0.3% in longitudinal direction at Stage 3. 

• The DLCW model resisted a stronger ground motion than the URM model. The DLCW 
model carries 12.7% more load than the URM model in the transversal direction and 16.4% more 
load than the URM model in the longitudinal direction. 

• The DLCW model showed a brittle behavior but kept the structure stable at early stages. So 
the DLCW model displaced 44% less in the transversal direction and 50% less in the longitudinal 
direction, when compared with the URM model. However, the finite element DLCW structure 
resisted all strong ground motion successfully on the base of maximum displacement. The same 
ground motion could not be resisted by URM model until the end of earthquake. After a certain 
time series, the URM model collapsed with a heavy crack map and only the RC elements resisted 
strong ground motion. 

• The ultimate experimental displacement is unknown due to unavailable experimental data 
belonging to Stage 4. However, this data can be estimated according to the finite element DLCW 
model. 

• DLCW model is a better application for earthquake prone territory, provided that the two 
leaves are well connected. 

• The finite element prediction showed a good match, especially in Stage 3, with an acceptable 
4% average error in the longitudinal direction and 8.5% in the transversal direction under ideal 
boundary conditions. 

• The first story of the models displaced significantly, which causes soft story collapse. The 
structure exposed to earthquake in the laboratory collapsed at the beginning of the Stage 4, along 
the transversal direction as indicated by the first vibration mode. Collapse of the numeric model 
was the same as the tested model on shake table. 
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