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Abstract.  The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-

conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic 

homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-

dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the 

displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been 

carried out numerically since the response is of more interest in the transient state. A detailed analysis of the 

effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity 

parameter on the field quantities is presented. 
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1. Introduction 
 

The two-temperature model is one of the non-classical thermoelasticity theories of elastic 

solids. The thermal dependence is considered as the main difference of this model with respect to 

the classical. Chen and Gurtin (1968) proposed a theory of non-simple rigid materials for which 

the two temperatures introduced; the thermodynamic temperature   and the conductive temperature 

are not identical. This theory was further extended to deformable bodies by Chen et al. (1969). 

They formulated a theory of heat conduction in deformable bodies, which depends on the two 

distinct temperatures. For time-independent problems, the difference between these two 

temperatures is proportional to the heat supply. In absence of heat supply, these two temperatures 

are identical. However, for time-dependent problems, the two temperatures are different, 

independently of the presence of a heat source (Boit 1956, Warren and Chen 1973, Quintanilla 

2004, Das and Kanoria 2012, Lotfy 2014, Zenkour and Abouelregal 2014 a, b). 

The generalized theories of thermoelasticity have been developed to overcome the infinite 

propagation speed of thermal signals predicted by classical coupled dynamical theory of 
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thermoelasticity. Biot (1956) developed the coupled thermoelasticity theory to deal with the first 
defect of the uncoupled one but the other defect of the uncoupled theory still as it is. Lord and 
Shulman (1967) introduced the theory of generalized thermoelasticity with one relaxation time to 
deal with both the first and second defects of the uncoupled theory. They postulated a new law of 
heat conduction to replace the classical Fourier’s law. This new law contains the heat flux vector 
as well as its time derivative. Green and Lindsay (1972) developed a theory of temperature-rate-
dependent thermoelasticity that does not violate the classical Fourier law of heat conduction. They 
included the temperature rate among the constitutive variables to predict a finite speed for heat 
propagation. Tzou (1995) proposed a dual-phase-lag heat conduction model (DPL) to incorporate 
the effects of microscopic interactions in the fast-transient process of heat transport mechanism in 
a macroscopic formulation. Two different phase-lags have been introduced in the constitutive 
relations between heat flux vector and the temperature gradient (see also, Prasad et al. 2010 and 
Zenkour et al. 2013). 

A general theory of simple force and stress multi-poles which were defined with the help of 
velocity components and their spatial derivatives is developed by Green and Rivlin (1964). 
Constitutive theory for non-simple materials has not been studied in detail. Therefore, it was so 
difficult to obtain solutions of problems in this theory. Wozniak (1967) stated that the notion of 
oriented material is generalized to thermal problems by introducing additional fields describing the 
temperature distribution. Carroll (1969) obtained a form of the constitutive equation in non-simple 
solids to describe the propagation of plane waves of finite amplitude. Leşana (1983) used an 
entropy production inequality to derive a linear theory of thermoelasticity for non-simple 
materials. Dhar (1985) discussed the effect due to mechanical shock in a non-simple elastic 
material. Ciarletta (1996) derived a theory of thermoelasticity for non-simple materials within the 
framework of extended thermodynamics. Quintanilla (2003) proposed a model of non-simple 
thermoelastic theory without energy dissipation. 

The present paper is devoted to estimate the influence of DPL model of generalized 
thermoelasticity on an infinitely non-simple long annular cylinder under variable thermal 
conductivity and magnetic fields (see Abbas and Zenkour 2013, Zenkour and Abbas 2014, 2015 
and Zenkour 2014). It is known that the heat conduction equation for non-simple materials 
contains an additional term involving the time derivative of the Laplacian of the conductive 
temperature. Also, the equation of motion contains an additional term involving space derivative 
of the Laplacian of the conductive temperature. The present cylinder is subjected to a time-
dependent thermal shock and its surface is considered to be traction-free. The solution has been 
obtained by the application of the Laplace transform in a direct approach. Numerical results are 
obtained in the physical domain by employing a numerical technique. Finally, the case of results 
obtained in a simple medium is compared with that of a non-simple one. 
 
 
2. Two-temperature thermoelasticity model with phase lags 
 

In the present section, we formulate a generalized two-temperature thermoelasticity theory with 
dual-phase-lags (DPL) model for non-simple materials. The field equations for a linear, 
homogeneous and thermoelastic material, take the following forms: 

The constitutive equations 

 ijijkkijij γθδδλeμeσ  2                           (1) 
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where ij  are the stresses, ije  are the strains, kke  is the strain dilatation, iu  are the 
displacements, t )23(   is the coupling parameter, in which t  being the coefficient of 
linear thermal expansion and  ,   are Lame’s constants, and 0TT   is the dynamical 
temperature increment of the resonator, in which 0T  is the environmental temperature. 

The Cauchy relations 

 )(2
1

ij,ji,ij uue                               (2) 

The equations of motion 

 iijji, uρFσ                                (3) 

where   denotes the material density of the medium and iF  denote the Lorentz force. 
The heat conduction equation for simple materials 
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where K denotes the variable thermal conductivity, eC  denotes the specific heat per unit mass at 

constant strain,   and q  denote finite times (the phase-lags of temperature gradient and heat 

flux, respectively). 
Eq. (3) using Eq. (1) will be in the form 

 iii,jji,iji, uρFγθuμuμλ  )(                      (5) 

The classification of real material into simple and non-simple materials is proposed by Chen 
and Gurtin (1968). The thermodynamics and conductive temperatures are not identical for non-
simple materials while they are identical for simple materials. The relation relates the two 
temperatures is given by 

 ii,bθ                                 (6) 

where   denotes the conductive temperature,   denotes thermodynamic temperature and 0>b  
is the temperature-discrepancy factor. Therefore, in the case of non-simple medium, Eq. (4) takes 
the form (Dhar 1985) 
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In all of the above equations, the comma followed by a suffix denotes derivative with respect to 
this suffix and the superposed dot denotes derivative with respect to time t. The key element that 
sets the two-temperature thermoelasticity theory apart from the classical theory is the material 
parameter b. Specifically, in the limit as 0b ,   and the classical theory (one-
temperature generalized thermoelasticity theory 1TT) is recovered. 
 
 
3. Maxwell’s relations 
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The application of the initial magnetic field H


 always produces an induced magnetic field h


 
and an induced electric field E


. The linear equations of electrodynamics of a slow-moving 

medium for a homogeneous and thermally and electrically perfect conducting elastic solid may be 
simplified in the following form (Maxwell’s electromagnetic field equations without the inclusion 
of the charge density) 

 ,0,,, 00 





 







 hH
t

u
E

t

h
EhJ





            (8) 

where   is the Hamilton arithmetic operator (nabla), J


 is the current density and 0  is the 
magnetic permeability. The Maxwell's stress equations are given by 

 ][ ijkkijjieij hHhHhH                          (9) 

The Lorentz force iF  (for a perfect conductor) induced by the magnetic field H


 is 

 )(0 BJFi


                                (10) 

 
 
4. Formulation of the problem 
 

Let us consider a long solid cylinder of radius R with traction-free surface and subjected to a 
time-dependent thermal shock. The cylinder is initially exposed to an axial magnetic field 

),0,0( 0HH 


. The cylindrical coordinates system ),,( zr   with the z-axis lying along the axis of 
the cylinder is used. Now the problem is reduced to one-dimensional due to the symmetry 
occurred. Therefore, all functions considered hear are depending on the radial distance r and the 
time t, only. 

The displacements are reduced to one component. That is 

 .0),(),(),,(  trutrutruu zr                       (11) 

The constitutive relations, given in Eq. (1), take the form 
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The electromagnetic equation of motion of the solid cylinder is expressed as 
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The initial magnetic field vector ),0,0( 0HH 


 is applied to Eq. (8). That is 

 ),0,0(,0,,0,0,,0 000 eHh
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e
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u
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               (17) 

where 

 
)(1
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Thus, from Eqs. (9), (10), and (17), one obtains 

 ,, 2
00

2
00 eH

r

e
HF rrr  




                        (19) 

where rr  is the Maxwell’s stress. 
Generally, the thermal conductivity of most materials should be temperature-dependent. An 

acceptable approximation in limited temperature intervals is obtained by considering the thermal 
conductivity K to depend linearly on the change of temperature. It is, assumed that (Nowinski 
1978) 

 )1()( 10  KKKK                           (20) 

where 0K  denotes the thermal conductivity at reference temperature 0T  and 1K  denotes the slope 
of the thermal conductivity-temperature   curve divided by the intercept 0K . It is to be noted that 

1K  is usually negative experimental coefficient (Nowinski 1978). 
Using Eqs. (6) and (20), we approximate the thermal conductivity of materials as conductive 

temperature dependent in the form 

 )1()( 10  KKKK                           (21) 

Now, we will consider the mappings 

 d)(
1

00



K
K

                           (22) 

 ,d)(
1

00



K
K

                           (23) 

where   and   are new functions expressing the heat conduction. Using Eq. (21) into Eq. (22), 
one gets 

 )1( 12
1  K                            (24) 

Differentiating Eqs. (22) and (23) with respect to r , one obtains 

 )( ,,0 rr KK                            (25) 
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 )( ,,0 rr KK                              (26) 

Differentiating Eq. (25) once again with respect to r  gives 

 .])([ ,,,0 rrrr KK                            (27) 

Also, differentiating Eq. (23) with respect to t gives 

 )(0   KK                               (28) 

Substituting from Eqs. (25) and (27) into Eq. (7), one gets the heat equation for non-simple 
materials in the form 

 
1

11
0

0
, 






































t

e

K

T

tktt qrr
                  (29) 

where kKCe /)()(    and k  is known as the diffusivity of the material. 
With the same manner, using the Eqs. (20)-(28), we have the approximation of Eq. (6) in the 

simplest form as 

 bΦΘΦ rr,                              (30) 

From Eqs. (12), (13), (16) and (19), the equation of motion will be in the form 
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By using Eq. (26), one obtains 
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For linearity, where 0TT   such that 1/ 0 T , the equation of motion in the radial 
direction will be in the form 
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We will use the following dimensionless variables 
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The governing equations are summarized here by using the above dimensionless variables and 
dropping the primes for convenience. They are given by 
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where 

 

2
,

2

,
2

,,

2
00

2
0

22
00

0
1

2

0

00

H

c
a

H

T
a

K

kT
g

T
n






















                (41) 

 
 
4. Initial/boundary conditions 
 

The initial and boundary conditions should be considered to solve the present problem. The 
initial conditions of the problem are taken in the form 
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The boundary of the cylinder is constrained and subjected to a harmonically varying heat. So 
the following boundary conditions hold: 

• The surface of the cylinder is subjected to a harmonically varying heat 

 ,0),cos(),( 0   ttR                      (43) 

where   is the angular frequency of thermal vibration ( 0  for a thermal shock) and 0  is 
constant. Using Eq. (23), then one gets 

 )]cos([)cos(),( 2
012

1
0 tKttR                   (44) 

• The mechanical boundary condition on the surface is traction-free at Rr  . That is 
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 .0),(),(  tRtR rrrr                             (45) 

 
 
5. Solution of the problem in the Laplace transform domain 
 

Taking the Laplace transform of Eqs. (35)-(40), under the above homogeneous initial 
conditions, we obtain the following equations 
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Here, an over bar denotes the Laplace transform of the corresponding function and s is the 
transform parameter. Eliminating e  or   from Eqs. (46) and (47), one gets 
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Introducing im  1,2)( i  into Eq. (53), one gets 
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where 2
1m  and 2

2m  are the roots of the characteristic equation 
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The roots of the above characteristic equation are given by 
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The solutions of Eq. (54) under the regularity conditions that 0,, u  as 0r  can be 
written in the form 

 ,)(
2
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ii rmIAg                           (58) 

where )(0 I  are the modified Bessel functions of the second kinds of order zero, and iA  are 
parameters depending on the parameter s of the Laplace transform. Using Eqs. (46) and (58), we 
obtain 
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Substituting the above equation into the Laplace transform of Eq. (18) gives 
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In deriving the above equation, we have used the following well-known relation of the Bessel 
function 

 .)()( 10  zIzdzzIz                          (61) 

After using Laplace transform, the boundary conditions (43) and (45) take the forms 
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Substituting Eqs. (19), (49) and (58) into the above boundary conditions, one obtains four 
equations in the unknown parameters iA , iB , 2,1i . After solving the above equations, we 
have the values of the two constants iA , 2,1i  whose solution complete the solution of the 
problem in the Laplace transform domain. Hence, we obtain the expressions for the displacement, 
the stress components and other physical quantities of the medium. 

After obtaining  , the conductive temperature   can be obtained by solving Eq. (24) in the 
Laplace domain as follows 
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From Eqs. (6) and (64) we can get the thermodynamic temperature in the Laplace domain in 
the following form 
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Finally, substituting from Eqs. (55)-(57) into Eqs. (46)-(48) and using the relations 
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to obtain the stresses in the form 
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At this end, the solution of the problem in the Laplace transform domain is completed. 
 
 
6. Numerical inversion of the Laplace-transformed equations 
 

Here we will determine the field quantities. The conductive and thermal temperatures, the 
displacement and the stress in the time domain represent these quantities. A numerical inversion 
method is adopted based on a Fourier series expansion (Honig and Hirdes 1984). This method 
gives the approximate value of the inverse )(tf  of the Laplace transform )(sf  by the relation 
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where Re denotes the real part, i denotes an imaginary number unit and N is a sufficiently large 
integer representing the number of terms in the truncated infinite Fourier series. The number N 
must be chosen such that 
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where 1  denotes a persecuted small positive number that corresponds to the degree of accuracy 
to be achieved. The parameter   is a positive free parameter that must be greater than the real 
parts of all singularities of )(sf . The optimal choice of   is obtained according to the criteria 
described in (Honig and Hirdes 1984). 
 
 
7. Numerical results 
 

A numerical example for computational results is considered here to illustrate the analytical 
procedure presented earlier. The results for field quantities are presented graphically. For this 
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Case 1 investigates how the dimensionless thermodynamic temperature, conductive 
temperature, displacement, stresses and Maxwell’s stress vary with different values of variability 
thermal conductivity parameter 1K  when the angular frequency of thermal vibration   and 
phase-lag of the heat flux q  and the phase-lag of temperature gradient   remain constants. 

In this case, three different values of the variability thermal conductivity parameter 1K  are 
considered to discuss the effect of temperature on thermal conductivity. We take 5.0,11 K  
for variable thermal conductivity and 01 K  when thermal conductivity is independent of 
temperature. Here, the angular frequency of thermal vibration 5 , the phase-lag of heat flux 

1.0q  and the phase-lag of temperature gradient 05.0 . From Figs. 1(a-f), the parameter 
1K  has significant effects on all the field quantities. Figs. 1a and 1b show that the two 

temperatures increase as 1K  increases. They also increase along the radial direction. From Fig. 
1(c), it can be found that the displacement decreases as 1K  increases. It is also decreasing along 
the radial direction. In Figs. 1(d)-(f) it can be observed that the distributions of thermal redial 
stress rr , the axial stress zz  and the Maxwell’s stress rr  decrease as 1K  increases. These 
stresses are np longer decreasing through the radial direction and have their minimums near the 
outer surface of the cylinder. The medium close to the cylinder surface suffers from tensile stress 
which becomes larger with the time passing. 

Case 2 illustrates how the field quantities vary with different values of the angular frequency of 
thermal vibration   when the variability thermal conductivity parameter 1K , the phase-lag of 
heat flux q  and the phase-lag of temperature gradient   remain constants. Three different 
values of the angular frequency of thermal vibration are considered. For thermal shock problem, 
we put 0  and for harmonically heat it is set to be 10,5 . In this case, the variability 
thermal conductivity parameter 1K  is fixed to -0.5. Figs. 2(a)-(f) illustrate that, the angular 
frequency parameter   has significant effects on all studied fields. It is clear that the maximum 
values for temperatures occur at the surface of the cylinder and their magnitude increase with the 
increase of r. The thermodynamical temperature   and the conductive temperature   decrease 
as   increases. Also, it can be seen that as   increases all of the radial displacement u  and 
the thermal stresses rr , zz  and rr  increase. However, these quantities decrease along the 
radial directions. The radial displacement reaches its minimum at the surface of the cylinder while 
the stresses get their minimums near the outer surface.  

In Case 3, the dimensionless thermodynamic temperature, conductive temperature, 
displacement, stresses and Maxwell’s stress distributions with different values of the two-
temperature parameter b are considered to stand on the effect of this parameter on all the studied 
fields. The value of 0b  indicates the old situation (one temperature theory 1TT) while 0.1b  
or 0.3  indicates the two-temperature theory (2TT). In this case one takes τq=0.1, τθ=0.05, 
K1=−0.5, and 5 . 

Figs. 3(a)-(f) plots the field quantities for different values of the two-temperature parameter b  
to stand on the effect of this parameter. The wave-amplitude of the displacement, stresses and 
Maxwell’s stress decreases as b increases. For 9.0r , the thermodynamical temperature   
increases as b  increase. Also, as b increases the conductive temperature   decreases in the 
interval 10  r . This shows the difference between the one temperature thermoelasticity of DPL 
model )0( b  and the two-temperature generalized thermoelasticity )0.3or0.1( b . The 
figures show that this parameter has significant effect on all the fields. The waves reach the steady 
state depending on the value of the temperature discrepancy b. Also these figures indicate that, the 
two-temperature generalized theory of thermoelasticity describes the behavior of the particles of 
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It can be observed that the phase-lag parameters have a great effects on the distribution of field 
quantities. The mechanical distributions indicate that the wave propagates as a wave with finite 
velocity in medium. The values in classical theory of thermoelasticity (CTE model) are different 
compared to those of other theories. The fact that in generalized thermoelasticity theories (DPL 
and LS), the waves propagate with finite speeds is evident in all these figures. The behavior of the 
three theories is generally quite similar. 
 
 
8. Conclusions 
 

The influence of different items such as phase lags, magnetic field, thermal shock and variable 
thermal conductivity is considered. The DPL model of generalized thermoelasticity is presented to 
an infinitely long cylinder with traction-free surface and subjected to time-dependent thermal 
shock and magnetic field. The solution is obtained in the Laplace transform domain by a direct 
approach. A numerical technique is employed to obtain the solution in the physical domain. From 
the numerical results, concluded that: 

• The variability thermal conductivity parameter has significant effects on the speed of the 
wave propagation of all the studied fields. 

• The dependence of the thermal conductivity on the temperature has a significant effect on 
thermal and mechanical interactions. 

• The thermoelastic stresses, displacement and temperature have a strong dependency on the 
angular frequency parameter. 

• It is seen that the values of all the field variables are significantly dependent on the two-
temperature parameter. 

• According to the theory of thermoelasticity with two-temperatures, we have to construct a 
new classification for materials according to their fractional parameter a where this parameter 
becomes a new indicator of its ability to conduct heat under the effect of thermoelastic properties. 

• In generalized magneto-thermoelasticity theory with phase-lags heat propagates as a wave 
with finite velocity instead of infinite velocity in medium. 

• The phase-lag of the heat flux and a phase-lag of temperature gradient have a great effect on 
the field quantities. 

• The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation 
time can extracted as special cases. 

• In addition, the near behavior between LS and DPL models and differ to CTE theory that 
indicates to originate of the thermoelastic theory. 

• Results show that the dual-phase-lag model of thermoelasticity predicts a finite speed of wave 
propagation that made the generalized theorem of thermoelasticity more consistent with the 
physical properties of the material. 

• The results presented in this paper should prove useful for researchers in scientific and 
engineering, as well as for those working on the development of mechanics of solids. 
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