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Abstract.  The paper deals with the study of the dynamics of the oscillating moving ring load acting in the interior 
of the hollow circular cylinder surrounded by an elastic medium. The axisymmetric loading case is considered and 
the study is made by employing the exact equations and relations of linear elastodynamics. The focus is on the 
influence of the oscillation of the moving load and the problem parameters such as the cylinder’s thickness/radius 
ratio on the critical velocities. At the same time, the dependence between the interface stresses and load moving 
velocity under various frequencies of this load, as well as the frequency response of the mentioned stresses under 
various load velocity are investigated. In particular, it is established that oscillation of the moving load can cause the 
values of the critical velocity to decrease significantly and at the same time the oscillation of the moving load can lead 
to parametric resonance. It is also established that the critical velocity decreases with decreasing of the cylinder’s 
thickness/radius ratio. 
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1. Introduction 
 

The study of the fundamental problems related to the dynamics of the oscillating moving load 

acting in the elastic and viscoelastic systems consisting of hollow cylinder and surrounding elastic 

or viscoelastic medium is required in line with the development and successful application of 

modern high-speed underground trains and other types of underground moving wheels. This is 

because, in studies, underground structures into which such high-speed wheels move are modelled 

as infinite hollow cylinders surrounded by an elastic or viscoelastic medium.  

It should be noted that one of the main dynamical characteristics of the systems subjected to the 

action of a moving load is its critical velocity under which resonance type behavior of the system 
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takes place. In connection with this, the main issue in related investigations is determination of 

both the critical velocity and the influence of the problem parameters on the values of this velocity. 

At the same time, another issue which is also important is to determine the rules of attenuation of 

the perturbations of the stresses and displacements caused by the moving load with the distance 

from the point at which this load acts. Namely, the investigations of these issues for the bi-material 

layered system “hollow cylinder + surrounding infinite elastic medium” under action of the 

oscillating moving load is the subject of the present paper. In order to determine the place and 

significance of the investigations presented, we consider a brief review of the corresponding 

investigations regarding layered elastic systems. Note that a review of investigations related to the 

action of the moving load on beams, plates and other types of elements of construction, has been 

made by Ouyang (2011).  

Thus, we begin this review with the paper by Achenbach et al. (1967) in which the dynamic 

response of the system consisting of the covering layer and half plane to a moving load was 

investigated with the use of the Timoshenko theory for describing the motion of the plate. 

However, the motion of the half-plane was described by using the exact equations of the theory of 

linear elastodynamics and the plane-strain state was considered. It is established that the critical 

velocity exists in the cases where the plate material is stiffer than that of the half-plane material. A 

review of later investigations, which can be taken as developments of those started in the paper by 

Achenbach et al. (1967), are described in the papers by Dieterman and Metrikine (1997) and 

Metrikine and Vrouwenvelder (2000). Note that in the paper by Dieterman and Metrikine (1997), 

it is established that the time harmonic variety of the moving load causes two types of critical 

velocities to appear: The first (the second) of which is lower (higher) than the Rayleigh wave 

velocity in the plate material. Later, similar results were also obtained by Akbarov and Salmanova 

(2009), Akbarov and Ilhan (2009), Akbarov et al. (2015) and others, which are also discussed in 

the monograph by Akbarov (2015). However, in the latter works the foregoing results on the 

influence of the time harmonic variety of the moving load on the critical velocity is formulated as 

follows: As a result of the noted-above variety, two types of critical velocity appear, the first 

(second) of which is less (greater) than that obtained for the corresponding constant moving load. 

Moreover, in later works, initially stressed layered systems are considered and the influence of 

these stresses on the values of the critical velocity is also investigated. There are also series of 

investigations related to the dynamics of the moving load with constant velocity acting on the pre-

stressed layered systems which include investigations by Akbarov et al. (2007), Akbarov and Ilhan 

(2008), Dincsoy et al. (2009), Babich et al. (1986, 1988, 2008a, 2008b) and others. At the same 

time, the dynamics of the moving and of the oscillating moving load acting on the hydro-elastic 

systems consisting of the plate and compressible viscous fluid are investigated in the papers by 

Akbarov and Ismailov (2015, 2016a), Akbarov and Panakhli (2015, 2017) and Akbarov, Ismailov 

and Aliyev (2017). 

The effect of imperfect bonding on the axisymmetric elastodynamic response of the system 

consisting of isotropic hollow cylinder and surrounding poroelastic soil due to a moving ring load 

is studied by Hasheminejad and Komeili (2009). As in the above reviewed works, the steady-state 

case is considered and the character of the influence of the bonding conditions on the critical 

velocity and radial displacement of the cylinder is established.  

The influence of the poroelasticity of the subgrade material on the dynamic response on the 

moving load acting on a Bernoulli-Euler beam supported with this subgrade material is 

investigated by Shi and Selvadurai (2016) by employing the concept of the equivalent stiffness of 

the half-space. Note that in this investigation, as the viscosity of the beam is taken into 
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consideration, the critical velocities are defined as the velocities at which the beam displacement 

under the load reaches a maximum. It is established that for the system under consideration there 

exist two types of critical velocities. The first refers to the case where the equivalent stiffness of 

the half-space is zero. However, the second which is slightly less than the corresponding first 

critical velocity is determined from the peak values of the beam displacements. 

The paper by Zhenning et al. (2016) studies the 3D steady-state dynamic response of the multi-

layered transversely isotropic half-space generated by a point-located moving load with constant 

velocity acting on the face plane of this half plane. It is assumed that the packet of layers made of 

hysteretic viscoelastic transversely isotropic materials lies on a half-space which is also made from 

a hysteretic viscoelastic transversely isotropic material. Numerical results on the influence of the 

materials’ anisotropy on the critical velocities, stress and displacement distributions are presented 

and discussed. 

Now we consider a review of the investigations related to the dynamics of the moving load 

acting in the interior of the cylindrical bore (cavity) with infinite length within the infinite 

homogeneous and cylindrically layered medium. Apparently, the first attempt in this field was 

made by Parnes (1969) in which a line load applied along a transverse circle moving with constant 

velocity in the axial direction along the interior of a circular bore in an infinite homogeneous 

elastic medium is investigated. The supersonic regime is considered, i.e., it is assumed that the 

velocity of the moving load is greater than the shear and longitudinal waves’ velocities in the 

elastic medium. The 3D problem in the cylindrical coordinate system is considered and the 

numerical results on the stress and displacements are presented only for the axisymmetric case. 

Later, in another paper by Parnes (1980), the problem noted above is considered for the case where 

in the interior of the cylindrical cavity a torsional moving load acts. However, in these papers the 

question related to the critical velocity is not considered. This is because the critical velocity of the 

moving load acting on infinite (as in the papers by Parnes (1969, 1980)) or semi-infinite mediums 

does not appear in the cases where these mediums are homogeneous. Consequently, the question 

related to determination of the critical velocity relates only to moving load problems acting on the 

piece-wise inhomogeneous infinite (for instance, for the system consisting of a hollow cylinder 

surrounded with elastic medium) or semi-infinite (for instance, for the system consisting of a 

covering layer and half-space) bodies. What is more, the critical velocity in the aforementioned 

infinite and semi-infinite bodies appears only in the cases where the modulus of elasticity of the 

covering layer material is greater than that of the surrounding infinite medium or of the stratified 

semi-infinite medium. Note that the investigations carried out in the papers by Chonan (1981), 

Pozhuev (1980), Abdulkadirov (1981) and others relate to the piece-wise inhomogeneous infinite 

cylindrically layered systems. 

Chonan (1981) studies the dynamic response of a cylindrical shell imperfectly bonded to a 

surrounding infinite elastic continuum under action of axisymmetric ring pressure which moves 

with constant velocity in the axial direction along the interior of the shell. The subsonic regime is 

considered and it is assumed that the shell and the continuum are joined together by a thin elastic 

bond. The axisymmetric problem is considered and the motion of the shell is described by thick 

shell theories and the motion of the surrounding elastic medium is described by the exact 

equations of linear elastodynamics. The numerical results on the critical speed of the moving load 

and the influence of the problem parameters on this velocity are presented and discussed. 

Moreover, the numerical results related to the radial displacement of the shell for the subcritical 

moving load are presented.  

In the paper by Pozhuev (1980), the moving load problem is studied for the system consisting 
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of a thin cylindrical shell and surrounding transversally isotropic infinite medium. The motion of 

the cylinder is described by a thin shell theory and the motion of the surrounding elastic medium is 

described with the exact equations of motion of elastodynamics for transversally isotropic bodies. 

Numerical results regarding displacements and a radial normal stress are presented. However, in 

the paper by Pozhuev (1980) there are no numerical results related to the critical velocity of the 

moving load.   

The paper by Abdulkadirov (1981) deals with the study of low-frequency resonance 

axisymmetric longitudinal waves in a cylindrical layer surrounded by an elastic medium. Note that 

under “resonance waves” the cases under which the relation dc/dk = 0 occurs, is understood, where 

c is the wave propagation velocity and k is the wavenumber. It is evident that the velocity of these 

“resonance waves” is the critical velocity of the corresponding moving load. Some numerical 

examples of “resonance waves” are presented and discussed. It should be noted that under 

obtaining dispersion curves, the motion of the hollow cylinder and surrounding elastic medium is 

described through the exact equations of linear elastodynamics. 

Another example of investigations related to the problems of the moving load acting on the 

cylindrical layered system is the investigation carried out in the paper by Zhou et al. (2008) in 

which the critical velocity of the moving internal pressure acting in the sandwich shell is studied. 

Under this investigation, two types of approaches were used, the first of which is based on first 

order refined sandwich shell theories, while the second approach is based on the exact equations of 

linear elastodynamics for orthotropic bodies with effective mechanical constants, the values of 

which are determined by the well-known expressions through the values of the mechanical 

constants and volumetric fraction of each layer of the sandwich shell. Numerical results on the 

critical velocity obtained within these approaches are presented and discussed. Comparison of the 

corresponding results obtained by these approaches shows that they are sufficiently close to each 

other for the low wavenumber cases, however, the difference between these results increases with 

the wavenumber and becomes so great that it appears necessary to determine which approach is 

more accurate. It is evident that for this determination it is necessary to investigate these problems 

by employing the exact field equations of elastodynamics within the scope of the piecewise 

homogeneous body model, which is also used in the present paper. 

In recent years in the papers by Forrest and Hunt (2006), Sheng et al. (2006), Hung et al. 

(2013), Hussein et al. (2014), Yuan et al. (2017) and others listed therein, numerical and analytical 

solution methods have been developed for studying the dynamical response of tunnel (modelled as 

a hollow elastic cylinder) + soil (modeled as surrounding elastic or viscoelastic medium) systems 

generated by the moving load acting on the interior of the tunnels. However, the focus in these 

investigations is on the displacement distribution of the soils caused by the moving load. 

With this we restrict ourselves to the review of related investigations from which it follows that 

up to now systematic investigations of the critical velocity of a moving load acting on the interior 

of the hollow cylinder surrounded with elastic medium are absent. The first attempt in this field is 

made in the work by Akbarov and Mehdiyev (2017a) in which the dynamics of the moving ring 

load acting in the interior of the pre-stressed cylinder surrounded with the pre-stressed elastic 

medium is studied. Moreover, in the paper by Akbarov and Mehdiyev (2017b) the dynamics of the 

time-harmonic ring load acting also in the interior of the hollow cylinder which is surrounded with 

elastic medium is investigated. Note that in these papers the axisymmetric problems are 

considered. However, up to now the investigations related to the critical velocity of the oscillating 

moving load, also acting on the interior of the hollow cylinder surrounded by elastic medium, are 

almost completely absent. Note that such investigations have a great significance not only in the 
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Fig. 1 The sketch of the system under consideration and the oscillating moving ring load 

 

 

theoretical, but also in the practical sense. This is because any underground moving wheel has an 

oscillation with a certain frequency and knowledge of the influence of this oscillation on the 

critical velocity of the moving ring forces can prevent many catastrophic accidents. Taking this 

statement into consideration in the present paper some attempts are made in this field and the 

critical velocity of the oscillating moving ring load acting in the interior of the hollow cylinder 

surrounded with infinite elastic medium is investigated. At the same time, in the present paper for 

the subcritical moving velocities, the distribution of the interface normal and shear stresses is also 

studied. Corresponding investigations are made for the axisymmetric case and the exact equations 

and relations of linear elastodynamics are employed and it is assumed that the moving velocity of 

the load is subsonic. Numerical results on the influence of the problem parameters and of the 

oscillation frequency of the moving ring load on the critical velocities and on the stress 

distributions are presented and discussed. 
 

 

2. Formulation of the problem 
 

Consider a hollow circular cylinder with thickness h which is surrounded by an infinite elastic 

medium and associate the cylindrical and Cartesian systems of coordinates Orz and Ox1x2x3 (Fig. 

1) with the central axis of this cylinder.  

Assume that the external radius of the cross section of the cylinder is R and on the inner surface 

of this cylinder normal time-harmonic ring forces act and these forces move along the cylinder 

axis with constant velocity V. Within this framework, we investigate the axisymmetric stress-strain 

state in this system by employing the exact equations of the linear theory of elastodynamics within 

the scope of the piecewise homogeneous body model. Below, we will use the upper indices (2) and 

(1) to denote the values related to the cylinder and to the surrounding elastic medium, respectively.  

Assuming that the materials of the constituents are homogeneous and isotropic we write the 

field equations and boundary and contact conditions.  

Equations of motion 

( ) ( ) 2 ( )
( )( ) ( )

2

1
( )

k k k
kk krr rz r

rr

u

r z r t


 
  

  
+ + − =

   , 

( ) ( ) 2 ( )
( ) ( )

2

1
k k k

k krz zz z
rz

u

r z r t

 
 

  
+ + =

    

(1) 
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Elasticity relations 

( )( ) ( ) ( ) ( ) ( ) ( )( ) 2
kk k k k k k

nn rr zz nn      = + + + , ; ;nn rr zz=  , ( ) ( ) ( )2k k k
rz rz  =  (2) 

Strain-displacement relations 

( )
( )

k
k r

rr

u

r



=


, 

( )
( )

k
k ru

r =  , 
( )

( )
k

k z
zz

u

z



=


, 

( ) ( )
( ) 1

( )
2

k k
k z r

rz

u u

r z


 
= +

 
 (3) 

The equations (1), (2) and (3) are the complete system of field equations of the linear theory of 

elastodynamics in the case under consideration and in these equations conventional notation is 

used. 

Consider the formulation of the boundary and contact conditions. According to the foregoing 

description of the problem, the boundary conditions in the inner face surface of the cylinder can be 

formulated as follows 

(2)
0 ( ) i t

rr
r R h

P z Vt e  
= −

= − − , (2) 0rz
r R h


= −

=  (4) 

Suppose that the contact conditions with respect to the forces and radial displacement are 

continuous and can be written as follows 

(1) (2)
rr rr

r R r R
 

= =
= , (1) (2)

rz rz
r R r R

 
= =

= , (1) (2)
r r

r R r R
u u

= =
=   .  (1) (2)

z z
r R r R

u u
= =

= . (5) 

Besides all these, we assume that 

(1)(1) (1) (1) (1) (1); ; ; ; ; .rr zz rz r zu u M const     =  as  2 2r z+ → . (6) 

This completes formulation of the problem and consideration of the governing field equations. 
 

 

3. Method of solution 
 

We use the well-known, classical Lame (or Helmholtz) decomposition (see, for instance, the 

monograph by Eringen and Suhubi (1975) and others listed therein) for solution of the above 

formulated problem 

( ) 2 ( )
( )

k k
k

ru
r r z

  
= +

  
,  

( ) 2 ( ) ( )
( )

2

1k k k
k

zu
z r rr

    
= + +

 
, (7) 

where Ф(k) and Ψ(k) satisfy the following equations 

2 ( )
2 ( )

( ) 22
1

1
0

( )

k
k

k tc





 − =


, 

2 ( )k −

2 ( )

( ) 22
2

1
0

( )

k

k tc


=


, 

2 2
2

2 2

1

r rr z

  
 = + +

  , 
(8) 

where
( ) ( ) ( ) ( )
1

( )
k k k kc   = + and 

( ) ( ) ( )
2
k k kc  = . 

Using the moving coordinate system 

'r r= , 'z z Vt= −  (9) 
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which moves with the moving internal pressure, representing all the sought values as g(r, z′, t) = 

g̅(r, z′)eiωt (below, the over bar and upper prime will be omitted) and rewriting the Eq. (9) with the 

coordinates r′ and z′, we obtain 

2 ( )
2 ( ) 2

( ) 22
1

1

( )

k
k

k
V

zc




 
 − −

 

( )
2 ( )2 0

k
ki V

z


  


− =

 

, 

2 ( )
2 ( ) 2

( ) 22
2

1

( )

k
k

k
V

zc




 
 − −

 

( )
2 ( )2 0

k
ki V

z


  


− =

 

. 

(10) 

After the foregoing transformations, the first condition in (4) transforms to the following one 

(2)
0 ( )rr

r R h
P z 

= −
= − , (11) 

but the other relations and conditions in (1)-(6) remain valid for the amplitudes of the sought 

values in the new coordinates determined by (9). 

Below we will use the dimensionless coordinates r̅ = r / h and z̅ = z / h instead of the 

coordinates r and z, respectively and the over-bar in r̅ and z̅ will be omitted.  

For solution to the considered boundary value problem we use the exponential Fourier 

transform, ( ) isz
Ff f z e dz

+

−
=  , according to which, the functions Ф(k) and Ψ(k) and the amplitudes 

of the sought values can be presented as follows 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ); ; ; ; ; ; ; ( , )
k k k k kk k k

z r nn rz nn rzu u r z      =  ( ) ( ) ( ) ( ) ( )1
; ; ; ; ;

2

k k k k k
F F zF rF nnFu u  





−

  

( ) ( ) ( )
; ; ( , )

k k k isz
rzF nnF rzF

r s e ds   − , ; ;nn rr zz= . 

(12) 

Thus, substituting the expressions in (12) into the foregoing equations, relations and contact 

and boundary conditions, we obtain the corresponding ones for the Fourier transformations of the 

sought values. Note that after this substitution, the relation (2), the first and second relation in (3), 

the second condition in (4) and all the conditions in (5) and (6) also remain valid for their Fourier 

transforms. However, the third and fourth relation in (3), the condition (11) and the relations in (7) 

transform to the following ones 

( ) ( )k k
zzF zFisu = , 

( )
( ) ( )1

( )
2

k
k kzF

rzF rF

u
isu

r



= −


, (2)

0rrF
r R h

P
= −

= − , (13) 

where, according to the equations in (8), the functions ( )k
F  and ( )k

F are determined from the 

following equations 

(2)2 22
( )2 2

2 ( ) 2
1

( )1
0

( )

k
Fk

W cd d
s

r drdr c


  
  + − − =
  

  

,  

(2)2 22
( )2 2

2 ( ) 2
2

( )1
0

( )

k
Fk

W cd d
s

r drdr c


  
  + − − =
  

  

, (14) 

where  
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W sc= − , 
(2)
2

h

c


 = .  

(2)
2

V
c

c
= . (15) 

Taking into consideration the conditions in (6), the solution to the equations in (14) are found 

as follows 

(2) (1) (2)
1 1 2 10 0( ) ( )F A H r A H r = + , 

(2) (1) (2)
1 2 2 20 0( ) ( )F B H r B H r = + , 

(2) (2)
2 110 ( )F C H r = , (2) (2)

2 210 ( )F D H r = , 

(16) 

where (1)
0 ( )H x  and (2)

0 ( )H x  are the Hankel functions of the first and second kinds, respectively 

and 

2 2 2
1 1r r W s= − , 

(2)
2

1 (2)
1

c

c
 = , 2 2

2r r W s= − , 

2 2 2
11 1 2r r W s= − , 

(2)
2

1 (1)
2

c
W W

c
= , 2 2

21 1r r W s= − . 

(17) 

Thus, using the solutions in (16), expressions in (13) and the Fourier transformation of the 

expressions in (2) and (3), we obtain the following expressions for the Fourier transformation of 

the sought values.  

1 1(2) (1) (2)
1 1 2 11 1( ) ( )rF

dr dr
u A H r A H r

dr dr
= − − +

2 2(1) (2)
1 2 2 21 1( ) ( )

dr dr
B isH r B isH r

dr dr
+

, 

(2) (1) (2)
1 1 2 10 0( ) ( )zFu A isH r A isH r= − − +

(1) (2)2 2 2 2
1 2 2 20 0( ) ( ) ( ) ( )B W s H r B W s H r− −+

, 

(
2(2)

(2) (2) 1
1 (2)

(1 )
2

rrF

dr
A

dr


 



 
= − +  

 
(1) (1)

1 10 2( ( ) ( ))H r H r− −
 

)
(2) (2)

(1) (1)21
1 11 0(2) (2)

( ) ( )
dr

H r s H r
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 
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− + (

2(2)
(2) (2)1

2 1 10 2(2)
(1 ) ( ( ) ( ))

2

dr
A H r H r
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



 
− + − − 
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)
(2) (2)

(2) (2)21
1 11 0(2) (2)

( ) ( )
dr

H r s H r
dr

 

 
− + (

2(2)
(1) (1)2

1 2 20 2(2)
(1 ) ( ( ) ( ))

2

dr
B is H r H r

dr





 
− + − + 

 
 

)
(2) (2)

(1) (1)2 22
2 21 0(2) (2)

1
( ) ( ) ( )

dr
isH r is W s H r

r dr

 

 
− − + (

2(2)
(2) (2)2

2 2 20 2(2)
(1 ) ( ( ) ( ))

2

dr
B is H r H r
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



 
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 
 

)
(2) (2)

(2) (2)2 22
2 21 0(2) (2)

1
( ) ( ) ( )

dr
isH r is W s H r

r dr

 

 
− − 

, 

(18) 
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1 1(2) (1) (2)(2)
1 1 2 11 12 ( ) 2 ( )rzF

dr dr
A isH r A isH r

dr dr
 


= + +

  

2 (1)2 2
1 21(2 ) ( )

dr
B s W H r

dr
− +

2 (2)2 2
2 21(2 ) ( )

dr
B s W H r

dr
−
 , 

11 21(1) (2) (2)
2 11 2 211 1( ) ( )rF

dr dr
u C H r D isH r

dr dr
= − +

, 
(1) (2) (2)2 2

2 11 2 1 210 0( ) ( ) ( )zFu C isH r D W s H r−= − +
, 

 (
2(1)

11(1) (1)
2 (1)

(1 )
2

rrF

dr
C

dr


 



 
= − +   

 
(2) (2)

11 110 2( ( ) ( ))H r H r− −
 

)
(1) (1)

11 (2) (2)2
11 111 0(1) (1)

( ) ( )
dr

H r s H r
dr

 

 
− + (

2(1)
21 (2) (2)

2 21 210 2(1)
(1 ) ( ( ) ( ))

2

dr
D is H r H r

dr





 
− + − +  

   

(1)
21 (2)

211(1)

1
( )

dr
isH r

r dr




− )

(1)
(2)2 2

210(1)
( ) ( )is W s H r





−


, 


11(1) (2)(2)

2 1112 ( )rzF

dr
C isH r

dr
 = +

21 (2)2 2
2 1 211(2 ) ( )

dr
D s W H r

dr
−
 . 

Substituting the expressions in (18) into the Fourier transformation of the boundary (4), (11) 

and contact conditions (5) we obtain the following system of algebraic equations for the unknowns 

A1, A2, B1, B2, C2 and D2. 

1 1 2 2 1 3j j jA A B  + + +
1

2 4 2 5 2 6 0j j j jB C D P   + + = − , 1,2,...,6j = . (19) 

Note that the explicit expressions of the coefficients αij (i;j = 1,2,…,6) can easily be determined 

from the expressions in (18).  

According to Eq. (19), the aforementioned unknown constants A1, A2, B1, B2, C2 and D2 can be 

presented as follows 

(1)

1

det( )

det( )

mj

mj

A



= , 

(2)

2

det( )

det( )

mj

mj

A



= , 

(3)

1

det( )

det( )

mj

mj

B



= , 

(4)

2

det( )

det( )

mj

mj

B



= , 

(5)

2

det( )

det( )

mj

mj

C



= , 

(6)

2

det( )

det( )

mj

mj

D



=  (20) 

where the matrix 
( )

( )
k

mj  is obtained from the matrix ( )mj  by replacing the k th−  column of 

the latter one with the column 1
0( )jP − .    

Thus, we determine completely the Fourier transformation of the sought functions. The 

originals of these functions are determined from the inverse Fourier transformation (12).  
 

 

4. Numerical results and discussions 
 

In this section, first, we consider the algorithm for calculation of the integral in (12) and 

consider numerical examples illustrating its validation and after these considerations we present 
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and discuss the numerical results on the critical velocity and on the response of the interface 

stresses to the oscillating moving load. All the numerical results which will be considered below 

are obtained in the following three cases. 

Case 1. (1) (2) 0.35E E = , (1) (2) 0.1  = , (1) (2) 0.25 = = . (21) 

Case 2. (1) (2) 0.05E E = , (1) (2) 0.01  = , (1) (2) 0.25 = = . (22) 

Case 3. (1) (2) 0.5E E = , (1) (2) 0.5  = , (1) (2) 0.3 = = . (23) 

Note that Case 1 and Case 2 are selected for comparison of the present results in particular 

cases with the corresponding ones obtained in the paper by Abdulkadirov (1981) (because these 

cases are also considered in that paper) and Case 3 is selected for comparison of the present results 

in particular cases with the corresponding ones obtained in the paper by Babich et al. (1986) in 

which this case is also considered.  
 

 4.1 The algorithm for calculation of the integrals (12) 
 

The integrals in (12) are called the wavenumber integrals, because if we equate to zero the 

det(αmj) in (20) and consider the Fourier transform parameter s as the wave number, then we obtain 

the dispersion equation for the corresponding longitudinal axisymmetric wave propagation. In the 

case under consideration, for construction of the dispersion curve it is necessary to consider not 

only the positive wavenumbers s, but also the negative wavenumbers s. In other words, the 

solution W = W(s) to the equation det(αmj) = 0 must be obtained for s∈(-∞, +∞). It is evident that 

this solution is also the singular points of the integrated functions in (12), i.e., the integrated 

functions in (12) have singular points with respect to s and if the order of this singularity is equal 

to one, then the integrals have a meaning in Cauchy’s principal value sense. However, in the cases 

where the order of the singularity is equal to two, then these cases cause resonance type behavior 

of the system under consideration. Namely, this situation complicates calculation of the integrals in 

(12). How to calculate these integrals is described and applied in the works by Tsang (1978), 

Jensen at al. (2011), Akbarov (2015), Akbarov and Ismailov (2016b) and others listed therein.  

 Thus, the algorithm which we use in the present investigation is based on Cauchy’s well-known 

theorem, according to which, the contour [-∞, +∞] is “deformed” into the contour C (Fig. 2) and 

the latter one is called the Sommerfeld contour in the complex plane s = s1 + is2 and in this way the 

real roots of the equation det(αmj) = 0 are avoided. It should be noted that despite this avoidance, 

the values of the integrals calculated by the Sommerfeld contour algorithm have a jump in the near 

vicinity of the second order singular points and using this statement the aforementioned algorithm 

can be employed for determination of the critical values of a moving or oscillating moving load 

velocity. Such applications with respect to concrete problems, as examples, are made in the 

monograph by Akbarov (2015).  

Hence, according to the foregoing discussions, the integrals in (12) can be presented as follows 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); ; ; ; ; ; ; ( , )k k k k k k k k
z r nn rz nn rzu u r z      =     

 ( ) ( ) ( ) ( ) ( )1
; ; ; ;

2

k k k k k
F F zF rF nnFC

u u  
  ( ) ( ) ( )

; ; ( , )
k k k isz

rzF nnF rzF r s e ds   − , ; ;nn rr zz= . 

(24) 
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Fig. 2 The sketch of the Sommerfeld contour 

 

 

Using the configuration of the contour C  given in Fig. 2 the following relation for the 

integrals in (24) can be written. 

 1 10
( ) ( ) ( )isz

C
f s e ds f s i f s i 

+− = + + − −    

1 1cos(( ) )s i z ds+ −  1 10
( ) ( )i f s i f s i 

+
+ − − −  1 1 2 2sin(( ) ) ( )s i z ds i f is ds







+

−

+ +  . 

(25) 

Supposing that ε « 1 we can neglect the last integral on the right side of the relation (25) and 

use the following expression for calculation of the integrals in (24). 

 1 10
( ) ( ) ( )isz

C
f s e ds f s i f s i 

+−  + + − −  1 1cos(( ) )s i z ds+ −  

 1 1 1 10
( ) ( ) sin(( ) )i f s i f s i s i z ds  

+
+ − − − + . 

(26) 

Note that under calculation of the integrals in (26) the improper integral 10
( )ds

+
•  is replaced 

with the corresponding definite integral 
*
1

10
( )

S
ds•  and the values of *

1S  are defined from the 

corresponding convergence requirement. Moreover, under calculation of the integral 
*
1

10
( )

S
ds• , 

the interval *
1[0, ]S  is divided into a certain number (denote this number through N) of shorter 

intervals and within each of these shorter intervals the integrals are calculated by the use of the 

Gauss quadrature method with ten integration points. The values of the integrated functions at 

these integrated points are calculated through the solution of the system of algebraic equations in 

(19) and it is assumed that in each of the shorter intervals the sampling interval Δs1 of the 

numerical integration must satisfy the relation Δs1 « min{ε,1/z}. All these procedures are 

performed automatically in the PC by use of the corresponding programs constructed by the 

authors of the paper in MATLAB.   

 

4.2 Testing of the calculation algorithm 
 

We test the calculation algorithm with respect to Case 1 (21) for the frequency response of the 
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normal stress 

(1) (2)( ) ( , ) ( , )rr rr rrz R z R z  = =  (27) 

i.e., the relation between the stress σrr (=σrr(0)) and dimensionless frequency Ω determined by the 

expression in (15) under *
1 9S = , ε = 0.01, h/R = 0.1 and c = 0.5, where c is also determined by the 

expression in (15).  

Thus, we consider the results illustrated in Figs. 3a and 3b which illustrate the convergence of 

the numerical results with respect to the number N . Note that for clarity of the illustrations, the 

results obtained for the cases where N ≤ 100 (in the case where N ≥ 150) are given in Fig. 3a (in 

Fig. 3b). It follows from these results and other ones which are not given here, that under N ≥ 200 

the numerical results obtained for various N coincide with each other with accuracy 10-8 -10-9. 

Taking this statement into consideration, obtaining the numerical results given below are 

calculated under N = 200.  

Now we consider the results given in Fig. 3c which illustrate the convergence of the 

numerical results with respect to *
1S  under N = 200. It follows from these results and other ones 

which are not given here, that in the cases where *
1 9S   the numerical results obtained for 

various *
1S  coincide with each other with accuracy 10-8 -10-9. Taking this situation into 

consideration, the results discussed below are obtained in the case *
1 9S = . 

Finally, we consider the numerical results given in Fig. 3d which illustrate the convergence of 

the employed algorithm with respect to the parameter ε. These results show that it is sufficient to 

take ε = 0.01 in order to avoid the real roots of the corresponding dispersion equation and to obtain 

guaranteed numerical results.  

Thus, according to the foregoing results and other similar ones which are not illustrated here, 

under obtaining all the numerical results which will be discussed below, we assume that N = 200, 
*
1 9S = and ε = 0.01.  

 

4.3 Numerical results related to the critical velocity 
 

According to the data given in (21), (22) and (23), it can be written that  

(1)
2

(2)
2

3.5
c

c
=   in Case 1,  

(1)
2

(2)
2

5
c

c
=  in Case 2 and 

(1)
2

(2)
2

1.0
c

c
=  in Case 3. (28) 

It follows from the relations in (28) that the shear wave propagation velocity in the material of 

the hollow cylinder in Case 1 and Case 2 is less than, while in Case 3 it is equal to, that of the 

surrounding elastic medium. We recall that the critical velocity of the moving load appears in the 

cases where the modulus of elasticity of the hollow cylinder is greater than that of the surrounding 

elastic medium. Moreover, we recall that in the present investigation it is assumed that the velocity 

of the moving load is subsonic, i.e., it is assumed that 
(2)
2 1.0c V c=  .  

Thus, we consider the numerical results related to the critical velocity and to the influence of 

the problem parameters on this velocity. First, we note the approach where the critical velocity is 

determined. This approach is based on construction of the graphs between the sought quantities 

and load moving velocity (for instance, between σrr (=σrr(0)) and c).  
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(a) (b) 

  

(c) (d) 

Fig. 3 Convergence of the numerical results with respect to the number N (a; b), to the integration interval 
*
1S (c) and to the parameter ε(d) 

 

 

Fig. 4. Example results for determination of the critical velocities 
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Table 1 Dimensionless critical velocities in Case 1: Numerator (denominator) shows the numbers of the set 

Ccr.1 (the set Ccr.2) 

Ω 
h / R  

0.5 0.2 0.1 0.02 

0.0 
0.935 

(0.935 Abdulkadirov 1981) 
0.864 0.843 0.831 

0.01 
0.933

0.936

 0.858;

0.868;0.924

 0.836

0.848;0.922

 0.824

0.838;0.920

 

0.05 
0.922;0.931

0.946

 0.836

0.888;0.916;0.928

 0.810

0.872;0.926

 0.796

0.862;0.926;0.958

 

0.1 
0.907;0.925

0.947
 0.806;

0.910;0.936

 0.774

0.896;0.908;0.932

 0.754

0.890;0.908;0.932
 

0.2 
0.873;0.914

0.958
 

0.734

0.900;0.950

 0.676

0.898;0.938;0.948
 

0.896;0.934;0.946

−  

0.3 
0.835;0.903

0.970
 0.635

0.889;0.956

 

0.887;0.964;0.971

−  
0.885; 0.963

−  

0.4 
0.790;0.892

0.979
 

0.878;0.976

−  

0.876;0.964

−  

0.874;0.963

−  

0.5 
0.739;0.880;0.833

0.980
 

0.866;0.988

−  0.864

0.988

 
0.864

−  

0.6 
0.681;0.870; 0.717

0.969

 0.855

0.967

 0.853

0.967

 
0.852;0.967

−  

0.7 
0.609;0.858

0.958
 0.844

0.956
 0.842

0.956

 
0.840;0.936

−  

0.8 
0.847

0.947
 0.825

0.869
 0.831

0.945

 0.830

0.945

 

1.0 
0.825

0.924
 0.810

0.922

 0.808

0.898

 0.808

0.922

 

 
 

If in a certain value of c the absolute value of σrr has a jump, such as illustrated in Fig. 4, then 

this value of c is selected as a critical velocity. As an example, this procedure is illustrated in Fig. 4 

with respect to Case 1 under various values of the oscillation frequency Ω of the moving load 

under h/R = 0.2. The numerical results given in Fig. 4 and many others which are not given here 

show that in the case where Ω = 0 the moving load has only one critical velocity (denote it by 

ccr.0). However, in the cases where Ω > 0 the moving load has several critical velocities, some of 

which are greater than ccr.0 (the set of such critical velocities we denote through Ccr.2 in Fig. 4), but 

the other ones are less than ccr.0 (the set of such critical velocities we denote through Ccr.1 in Fig. 4).  

Thus, we analyze the obtained critical velocities which are determined by employing the 

foregoing approach and according to this analysis we determine the character of the influence of 

the problem parameters such as Ω and h/R on these critical velocities for the pairs of materials 

determined through the relations (21), (22) and (23). Under the discussion below, as in Fig. 4, 

through ccr.0 we will denote the critical velocity obtained under Ω = 0, however, through Ccr.1 

(through Ccr.2) we will denote the set of critical velocities obtained in the cases where Ω > 0 and 

which are less (greater) than ccr.0. 

Consider Tables 1, 2 and 3 which show the values of the aforementioned critical velocities in 

Case 1, Case 2 and Case 3, respectively. Note that in Case 1 and Case 2 under h/R = 0.5 and 
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Table 2 Dimensionless critical velocities in Case 2: Numerator (denominator) shows the numbers of the set 

Ccr.1 (the set Ccr.2) 

Ω 
/h R  

0.5 0.2 0.1 0.05 0.02 

0 

0.826 

(0.826 by Abdulkadirov 

(1981)) 

0.617 0.529 0.478 0.471 

0.01 
0.820

0.830;0.922;0.962
 

0.608

0.626
 

0.516

0.540
 

0.473

0.502
 

0.454

0.488
 

0.05 
0.804

0.846;0.916;0.928
 

0.570

0.660
 

0.460

0.588
 

0.404

0.558
 

0.374

0.546
 

0.1 
0.780

0.866;0.910;0.932
 

0.518

0.702
 

0.382

0.640
 

0.622

−
 

0.608

−
 

0.2 
0.732

0.902;0.944
 0.400

0.776
 

0.734

−
 

0.718

−
 

0.714

−
 

0.3 
0.681

0.888;0.935;0.955
 

0.249

0.635
 

0.812

−
 

0.802

−
 

0.799

−
 

0.4 
0.624

0.877;0.919;0.962
 

0.869

−
 

0.877

−
 

0.871

−
 

0.869

−
 

0.5 
0.562

0.866;0.978
 

0.858

−
 

0.856

−
 

0.856

−
 

0.856

−
 

0.6 
0.495

0.855;0.897;0.988
 

0.847

−
 

0.846

−
 

0.845

−
 

0.845

−
 

0.7 
0.420

0.844;0.866
 

0.836

−
 

0.834

−
 

0.834

−
 

0.834

−
 

0.8 
0.730

0.833;0.875
 

0.825

−
 

0.823

−
 

0.823

−
 

0.823

−
 

1.0 
0.810

0.852
 

0.802

−
 

0.802

−
 

0.800

−
 

0.800

−
 

 
 

Ω = 0.0 the critical velocities are also calculated in the paper by Abdulkadirov (1981). Therefore, 

in Tables 1 and 2 the corresponding results obtained in the paper by Abdulkadirov (1981) are also 

given for comparison with the present ones obtained in related particular cases. It follows from this 

comparison that the present results coincide completely with those obtained in the paper by 

Abdulkadirov (1981). Moreover, the numerical results in Case 3 must be approaching to 

corresponding ones obtained in the paper by Babich et al. (1986) with decreasing of the ratio h/R. 

This prediction is proven with data obtained under Ω = 0.0 and given in Table 3. Consequently, the 

foregoing comparison shows that the numerical results obtained in the present paper, in particular 

cases, coincide with the corresponding ones obtained earlier by other researchers. This situation 

gives certain guarantees on the reliability of the solution approach and PC algorithm and programs 

used in the present paper. 

Thus, we turn to the analysis of the data given in Tables 1, 2 and 3 and note that in these tables 

the values of the critical velocities which enter into the set Ccr.1 (the set Ccr.2) are obtained for the 

cases where Ω > 0 and given in the numerator (denominator). Moreover, we note that in these 

tables, the symbol “-” denotes that in the corresponding case there is no critical velocity. It follows 
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Table 3 Dimensionless critical velocities in Case 3: Numerator (denominator) shows the numbers of the set 

Ccr.1 (the set Ccr.2) 

 

 

from the tables that the sets Ccr.1 and Ccr.2, may contain one, two or three numbers for each selected 

value of the frequency Ω.  

We introduce the notation ccr.11, ccr.12 and ccr.13 (ccr.21, ccr.22 and ccr.23) for the numbers of the set 

Ccr.1(Ccr.2) for which the relation ccr.11 < ccr.12 < ccr.13 < ccr.0 < ccr.21 < ccr.22 < ccr.23 takes place. It 

follows from the tables that for each fixed case some of the critical velocities from the sets Ccr.1 

and Ccr.2 exist and sometimes these velocities may disappear.  

Thus, it follows from the analyses of these tables that, in general, before a certain value of Ω, 

the values of ccr.11, ccr.12 and ccr.13 decrease with Ω. At the same time, it follows from the tables that 

before a certain value of Ω the values of ccr.21, ccr.22 and ccr.23 increase. However, after the 

mentioned “certain value” of Ω, the value ccr.1 or all the numbers of the set Ccr.1 or some of them, 

can disappear. Thus, if ccr.11 disappears only, then ccr.12 becomes the minimum of the set Ccr.1. In a 

similar manner, after the aforementioned “certain value” of Ω the values of ccr.21 decrease with Ω. 

It follows from Tables 1 and 2 that in Case 1 and Case 2 there are many cases under which all the 

critical velocities which are less than ccr.0 disappear. However, in Case 1 and Case 2 for the 

considered range change of the problem parameters the critical velocity from the set Ccr.2 exists 

under each selected value of the problem parameters. At the same time, Table 3 shows that in Case  

  
/h R  

0.5 0.2 0.1 0.05 0.02 

0 0.944 0.874 0.854 0.847 
0.843  

0.839 (by Babich et al. (1986)) 

0.01 
0.937

0.941;0.945
 0.868

0.879
 

0.847

0.861
 

0.839

0.854
 

0.835

0.850
 

0.05 
0.925;0.937

0.951
 

0.844

0.900
 

0.816;0.832

0.885
 

0.803

0.879
 

0.794

0.877
 

0.1 
0.909;0.931

0.953
 

0.808

0.922
 

0.824

0.911
 

0.906

−
 

0.904

−
 

0.2 
0.871;0.920

0.961
 

0.907

−
 

0.818

0.951
 

0.948

−
 

0.904;0.947

−
 

0.3 
0.821;0.909

−
 

0.896

−
 

0.808

0.894
 

0.894;0.967

−
 

0.893;0.960

−
 

0.4 
0.898

−
 

0.885

−
 

0.883

−
 

0.882;0.971

−
 

0.882;0.971

−
 

0.5 
0.886

−
 

0.874

−
 

0.872

−
 

0.871;0.987

−
 

0.871;0.982

−
 

0.6 
0.875

−
 

0.863

−
 

0.861

−
 

0.860

−
 

0.860

−
 

0.7 
0.864

−
 

0.852

−
 

0.850

−
 

0.849

−
 

0.849

−
 

0.8 
0.853

−
 

0.841

−
 

0.839

−
 

0.838

−
 0.838

−
 

1.0 
0.831

−
 

0.818

−
 

0.817

−
 

0.816

−
 0.816

−
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Table 4 The values of the “weak” critical velocities 

  

/h R  

0.5 0.2 0.1 0.05 0.02 

Case 1 

0.2 - - - 0.626 0.612 

0.3 -  0.502 0.495 0.448 

0.4 - 0.460 0.328 - - 

0.8 0.511 - - - - 

 Case 2 

0.1 - - - 0.266 0.194 

0.3 - - 0.496 - - 

0.33 - 0.177 - - - 

0.38 - 0.119 - - - 

 Case 3 

0.1 - - 0.754 0.737 0.731 

0.2 - 0.697 0.682 0.636 0.614 

0.3 - 0.604 0.590 0.549 0.555 

0.4 0.764 0.516 0.572 - - 

0.5 0.706 0.418 - - - 

0.6 0.641 0.310 - - - 

0.7 0.591 - - - - 

0.8 0.522 - - - - 

1.0 0.406 - - - - 

 

 

3 after a certain value of Ω, not only can all the critical velocities which are greater than ccr.0 

disappear, but there is also the case under which all the critical velocities from the set Ccr.1 can 

disappear.  

The numerical results given in the foregoing tables also show that the critical velocities 

decrease with the ratio h / R and with decreasing of this ratio the “certain value” of Ω, after which 

the critical velocities from the set Ccr.1 disappear completely, decreases. For instance, in Case 2 for 

h / R = 0.2 under Ω ≥ 0.4, for h / R = 0.1 under Ω ≥ 0.2 and for h / R ≤ 0.05 under Ω ≥ 0.1 the 

critical velocities which are less than ccr.0 disappear completely. A similar relation can also be 

formulated for the data given in Tables 1 and 3 for Case 1 and Case 3, respectively. 

Note that this statement in the qualitative sense agrees with the corresponding ones obtained in 

the papers by Dieterman and Metrikine (1997), Akbarov and Salmanova (2009) and other ones 

which are detailed and listed in the monograph by Akbarov (2015).  

Thus, according to the foregoing discussions and according to the numerical results given in 

Tables 1, 2 and 3 some general conclusions, which are given in the next section, can be made.  

Note that more concrete special conclusions can easily be made from the tables for each 

selected pair of materials, the examples for which are done above. With this we restrict ourselves 

to the analysis of the numerical results related to the critical velocity and to the influence of the 

problem parameters, such as the mechanical properties of the selected pairs of materials,  
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(a) (b) 

  

(c) (d) 

Fig. 5 Graphs of the dependence between the interface normal stress σrr and load moving velocity c for 

various frequency Ω of the oscillation of this load under h / R = 0.5 (a), 0.2 (b), 0.1 (c) and 0.05 (d) in 

Case 1 

 

 

oscillation frequency of the moving load and ratio of the cylinder’s thickness/radius. In the 

authors’ opinion, the main conclusion of the foregoing analysis is that an increase of the oscillation 

of the moving load and a decreasing of the thickness of the hollow cylinder under constant 

external radius of this cylinder can cause the critical velocity of the oscillating moving ring load 

acting in the interior of the cylinder surrounded with an elastic medium, to decrease significantly.  

 

4.3 Numerical results related to the stress responses 

 

First, we analyze the graphs of the dependence between σrr (=σrr(0)) (27) and load moving 

velocity c constructed for various values of the frequency Ω and of the ratio h / R. The graphs 

obtained for Case 1, Case 2 and Case 3 are given in Figs. 5, 6 and 7 respectively and the graphs in 

these figures grouped by letters a, b, c and d correspond to the cases where h / R = 0.5, 0.2, 0.1 and 

0.05, respectively. Note that in the cases where the critical velocity related to the set Ccr.1 exists, the  
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(a) (b) 

  

(c) (d) 

Fig. 6 Graphs indicated in Fig. 5 caption and constructed in Case 2 
 

 

corresponding graphs are constructed before a certain value of c which is less than the mentioned 

critical velocity. However, in the cases where the critical velocity related to the set Ccr.1 does not 

exist, the graphs are constructed for the considered change range of c which is indicated in the 

figures. Namely, in these latter cases, in certain values of the frequency Ω, the dependence 

between σrr and c has a clearly identified maximum in the absolute value sense for a certain value 

of c. For instance, such maximums in Case 1 appear under Ω = 0.8 for h / R = 0.5 (Fig. 5a), under 

Ω = 0.4 and 0.5 for h / R = 0.2 (Fig. 5b), under Ω = 0.3, 0.4 and 0.5 for h / R = 0.1 (Fig. 5c) and 

under Ω = 0.2, 0.3 and 0.4 for h / R = 0.05 (Fig. 5d). Such maximums also appear in Case 2 and 

Case 3. For instance, in Case 3 these maximums appear in the following values of the frequency 

Ω: Under all considered Ω for h / R = 0.5 (Fig. 7a), under Ω = 0.1, 0.2, 0.3, 0.4 and 0.5 for h / R = 

0.2 (Fig. 7b), under Ω = 0.1, 0.2, 0.3 and 0.4 for h / R = 0.1 (Fig. 7c) and under Ω = 0.1, 0.2 and 

0.3 for h / R = 0.05 (Fig. 7d). However, in the cases where Ω is greater than a certain value of that, 

the absolute values of the stress σrr decrease with the moving velocity of the ring load.  
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(a) (b) 

  

(c) (d) 

Fig. 7 Graphs indicated in Fig. 5 caption and constructed in Case 3 
 

 

Note that in some references (for instance, see Hasheminejad and Komeili (2009), Shi and 

Selvadurai (2016) and others listed therein), the moving velocities corresponding to the foregoing 

maximums are also called the critical velocities, although in these cases resonance type accidents 

do not take place. Taking this statement into consideration we can also define the aforementioned 

values of the load moving velocity as the critical velocities and call them “weak” critical velocities 

in order to distinguish them from those determined in the previous sub-section. Note that as 

follows from the numerical results given in Figs. 5, 6 and 7 and other ones which are not given 

here, in many cases the “weak” critical velocities may also be dangerous ones for systems 

consisting of the hollow cylinder and surrounding elastic medium.  

Table 4 shows the values of the aforementioned “weak” critical velocities obtained in Case 1, 

Case 2 and Case 3 from which it follows that the values of these velocities decrease monotonically 

with the oscillation frequency of the moving load Ω and with the ratio h / R. As in the previous 

tables, in Table 4 the symbol “-” means that in the corresponding case there is no “weak” critical 

velocity.  
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(a) (b) 

  

(c) (d) 

Fig. 8 Frequency response of the interface normal stress σrr obtained for various values of the load 

moving velocity under h / R = 0.5 (a), 0.2 (b), 0.1 (c) and 0.05 (d) in Case 1 

 

 

Now we consider the results related to the frequency response of the interface stress σrr 

(=σrr(0)) which are obtained for various moving velocities of the ring load and for various ratios h / 

R. The graphs of these responses are given in Figs. 8 (for Case 1), 9 (for Case 2) and 10 (for Case 

3) and in these figures the results grouped by letters a, b, c and d relate to the cases where h / R 

=0.5, 0.2, 0.1 and 0.05, respectively. Note that under construction of these graphs it is assumed that 

0≤ c ≤0.6. 

It follows from Figs. 8, 9 and 10 that in all the cases under consideration (except the case where 

h / R =0.5 and 0≤ c ≤0.3 in Case 1 and Case 2 and 0≤ c ≤0.1 in Case 3 under which the absolute 

values of the stress increase with Ω in the considered change range) the frequency responses have 

non-monotonic character, i.e., there are such values of Ω (denote this value of Ω by Ω*) before  
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(a) (b) 

 
 

(c) (d) 

Fig. 9 Graphs indicated in Fig. 8 caption and constructed in Case 2 
 

 

which the absolute value of the stress σrr becomes maximum and this maximum increases with the 

moving velocity of the ring load. At the same time, it follows from the results that the values of Ω* 

decrease monotonically with c. Moreover, Figs. 8a, 8b, 9a, 9b, 9c and 9d show that there may be 

cases where an increase in the values of c leads to resonance cases. Such resonance cases and the 

corresponding resonance frequencies are indicated in these figures (except Fig. 9d). 

The above-noted resonances can be estimated as a parametric resonance and as a parameter it 

can be taken as the load moving velocity. Consequently, under oscillating moving load action of 

the ring load, resonance type accidents appear not only under critical moving velocities of this load 

but also under the foregoing type of parametric resonances. Analyses of the foregoing results also 

show that the absolute maximum values of the stress under consideration increase with decreasing 

of the ratio h / R. Moreover, comparison of the results obtained for Case 1, Case 2 and Case 3 with 
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(a) (b) 

  

(c) (d) 

Fig. 10 Graphs indicated in Fig. 8 caption and constructed in Case 3 

 

 

each other shows that the responses of the interface normal stress to the moving velocity of the 

ring load and its vibration depend not only on the values of this velocity and frequency, but also 

depend significantly on the ratio of the mechanical properties of the selected pairs of materials, as 

indicated in (21)-(23) and (28) for the hollow cylinder and surrounding elastic medium. At the 

same time, the latter dependence has not only quantitative, but also qualitative character. 

Consider the numerical results related to the distribution of the normal stress σrr(z) (27) and 

shear stress  

(1) (2)( ) ( , ) ( , )rz rz rzσ z σ R z σ R z= = , (29) 

with respect to /z h . For this purpose we select Case 3 and consider the graphs given in Figs. 11 

(for the normal stress σrr) and 12 (for the shear stress σrz) which illustrate these distributions under  

547



 

 

 

 

 

 

Surkay D. Akbarov and Mahir A. Mehdiyev 

 

 

(a) (b) 

 

(c) 

Fig. 11 Distribution of the interface normal stress σrr with respect to the axial coordinate z / h obtained for 

various oscillation frequencies Ω of the moving load in the case where the load moving velocity is c = 0.3 

under h / R = 0.5 (a), 0.2 (b) and 0.1 (c) in Case 3 

 

 

c = 0.3 for various values of the dimensionless frequency Ω. In these figures, the graphs grouped 

by letters a, b and c correspond to the cases where h / R = 0.5, 0.2 and 0.1, respectively. Note that 

the corresponding distributions related to the case where c = 0.5 are given in Figs. 13 (for the 

normal stress σrr) and 14 (for the shear stress σrz) and in these figures the graphs grouped by letters 

a and b relate to the cases where h / R = 0.5 and 0.2, respectively. 

Thus, analyze the foregoing distribution and first of all note that in the case where Ω = 0 the 

distribution of the stress σrr(σrz) is symmetric (asymmetric) with respect to the point z / h = 0. This 

symmetry and asymmetry for the stresses and other quantities of the problem under consideration 
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(a) (b) 

 

(c) 

Fig. 12 Distribution indicated in Fig. 9 for the interface shear stress σrz 
 

 

follow from the mechanical consideration, from the expressions of the equations given in (14) and 

from direct calculation of the corresponding distribution. However, in the case where Ω > 0, as 

shown in Figs. 11-14, the aforementioned symmetry and asymmetry are violated and this violation 

increases with increasing of the frequency Ω and of the load moving velocity c. This is because the 

violation is caused by the term -2sΩc of the expression for W2 (15) which enters into the equation 

(14) and the magnitude of this term increases with increasing of Ω and c. 

It follows from Figs. 11 and 13 that the normal stress σrr has its absolute maximum value at 

point z / h = 0 and dependence between this maximum and Ω are monotonic in the case where h / 

R = 0.5 and are non-monotonic in the cases where h / R = 0.2 and 0.1. Moreover, it follows from 

Figs. 11 and 13 that for relatively thick cylinders (for instance, for h / R = 0.5) attenuation of the 

normal stress with respect to |z / h| takes place more rapidly than for relatively thin cylinders (for 

instance, for h / R = 0.2 and 0.1). Moreover, the results show that in the cases 

549



 

 

 

 

 

 

Surkay D. Akbarov and Mahir A. Mehdiyev 

 
 

(a) (b) 

Fig. 13 Distribution indicated in Fig. 9 and obtained for c = 0.5 under h / R = 0.5 (a) and 0.2 (b) 

 

 
 

(a) (b) 

Fig. 14 Distribution indicated in Fig. 10 and obtained for c = 0.5 under h / R = 0.5 (a) and 0.2 (b) 

 

 

where h / R = 0.2 and 0.1, for behind and ahead of the moving load, non-attenuated periodic 

distributions appear and the amplitude of the behind distribution is greater than the corresponding 

one of the ahead distribution. At the same time, the amplitude (the period) of these distributions 

increases (decreases) with Ω and with c.  

Note that in the qualitative sense the foregoing results relate also to the distribution of the shear 

stress σrz and are given in Figs. 12 and 14. However, this stress has its absolute maximum at a 

point which is behind the moving load. 
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4. Conclusions 
 

Thus, in the present paper the axisymmetric problem on the dynamics of the oscillating moving 

ring load acting on the interior of the hollow cylinder surrounded by an elastic medium is 

investigated. The investigations are made with employing the exact equations and relations of 

linear elastodynamics. The focus is on the influence of the oscillation of the moving load on the 

values of the critical velocities. At the same time, the influence of the oscillation of the moving 

load on the dependence between the interface stress and moving load velocity, as well as the 

influence of the moving load velocity on the frequency response of the mentioned stress are also 

studied. Moreover, the distribution of the interface normal and shear interface stresses with respect 

to the axial coordinate is also detailed in the present study. 

Thus, according to the discussions and the numerical results, the following general conclusions 

with respect to the critical velocities can be made: 

•  in the case where the moving load acting in the interior of the hollow cylinder does not have 

any oscillation, there is only one critical velocity of this load and this velocity decreases with 

decreasing of the ratio h / R; 

•  in the case where the moving load has oscillation, many critical velocities can appear, some 

of which are greater and others which are less than that obtained in the case where the oscillation 

of the load is absent; 

•  appearance and disappearance of the critical velocities for relatively great values of the 

oscillation frequency depend also on the selected pairs of materials of the hollow cylinder and 

surrounding elastic medium and on the ratio h / R; 

•  before a “certain frequency” of the oscillation, the minimum critical velocity which appears 

for relatively small values of the frequency and are less (greater) than ccr.0, decreases (increases) 

with the frequency Ω and after this frequency the minimum critical velocities can disappear; 

•  all kinds of critical velocities decrease with decreasing of the ratio h / R; 

•  comparison of the critical velocities given in Tables 1, 2 and 3 allows us to formulate the 

following relation: In general, the critical velocities obtained in Case 2 are less than the 

corresponding ones obtained in Case 1 and the latter ones are less than the corresponding ones 

obtained in Case 3; 

•  it follows from the foregoing conclusion and from the data given in (21), (22) and (23) that 

despite the fact that the critical velocities of the moving load appear only in the cases where the 

modulus of elasticity of the cylinder material is greater than that of the surrounding elastic 

material, the values of the critical velocity depend not only on the ratio of these moduli but also on 

the ratio of the densities and on the Poisson coefficients of the selected pairs of materials; 

•  under studying the dependencies between the interface stress and load moving velocity it is 

established that under certain values of the load frequency, the so-called “weak” critical velocity 

can appear for which the absolute value of the stress becomes maximum. 

The following conclusions can also be made for the response of the interface normal stress, 

from which the adhesion strength of the bi-material elastic system under consideration depends 

significantly on the moving velocity of the load and its oscillation frequency: 

•  in the cases where there exists the critical velocity ccr.11 the absolute values of the stress 

increase monotonically with the moving velocity c (< ccr.11) of the load;  

•  in the cases where the critical velocity ccr.11 does not exist, then depending on the values of 

Ω two types of response of the stress to the moving velocity may appear: In the one which relates 
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to relatively small values of Ω, the dependence between the stress and velocity has non-monotonic 

character, but in the other one, which relates to relatively great values of Ω, the absolute values of 

the stress decrease monotonically with the moving load velocity; 

•  the frequency response of the stress depends not only on the moving load velocity, but also 

depends significantly on the ratio of the mechanical properties of the constituents of the system 

under consideration; 

•  as a result of the oscillation of the moving load, a parametric resonance of the system under 

consideration may appear and this appearance is very real in Case 2 and in similar cases. 
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