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Abstract.  In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by 

using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is 

proposed by altering and redistributing the structural intensity through changing the damping property of the 

structure. The concept of proposed novel method is based on the properties of structural intensity 

distribution on cylindrical shells under different load and damping conditions, which can reflects power flow 

in the structures. In the study, the modal formulas of structural intensity are developed for the steady state 

vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by 

substituting modal quantities, in which the effect of main parameters such as weight coefficients and 

distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first 

carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the 

coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-

acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly 

arranging damping conditions, the structural intensity can be efficiently changed and further the noise 

property can be improved. The proposed methodology has important implications and potential applications 

in the vibration and noise control of fuselage structure. 
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1. Introduction 
 

It is an important subject and key issue in many engineering areas to understand the vibro-

acoustic behaviors of vibrational structures. For example, the reduction of interior/exterior noise 

and vibration levels is a primary concern in automobiles and aircraft industries. In last few 

decades, many approaches and methodologies (Liu et al. 2005, Wang et al. 2005, Wang et al. 

2017, Zhao et al. 2017) for efficiently controlling and reducing the vibration and noise levels in 
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equipment and carrier have been proposed, as people are finding themselves on the receiving end 

of noise pollution and needing more comfort environments. Generally speaking, reducing the 

levels of vibration and noise of thin-walled enclosures structures are broadly classified into active 

and passive control methods, and each one has advantages and disadvantages. The elastic, thin-

walled cylindrical shell is an important type of engineering structure, such as: tubes, columns, 

airplanes and many others which can be simplified to this type of structure. Hence, understanding 

the vibro-acoustic behavior of the thin-walled cylindrical shell is imperative for a satisfactory 

design of this class of structures and there have several studies focusing on vibration analysis of 

thin-walled cylindrical structures (Javed et al. 2016). From their analysis, we know the interior 

noise in thin-walled cylindrical shell structures is mainly caused by vibrations of the shells, 

especially for low frequency vibrations of the shell. This structural-borne noise is due to the 

coupling between the structural vibration and the interior fluid or air. Therefore, the effective noise 

control can be achieved by reducing the vibration levels of the structures (Wu and Zhou 2016, 

Huang and Tseng 2008, Chesnais et al. 2017). The extensive reviews of the literature on passive 

and active structural vibro-acoustic control for suppressing enclosure cavity interior noise have 

been carried out by many researchers (Thompson 1989, Huang and Chen 2000). As the 

effectiveness of passive approach is limited, the research of active control techniques have be 

promoted in last few decades. For thin-walled cylindrical shell structures, the active structural 

noise control has been widely used to reduce low frequency sound transmission. Active structural 

acoustic control involves secondary structural input such as mechanical shakers or actuators 

applied directly to the enclosure structures. With this control method, structural actuators are 

integrated on the structural surfaces or walls in such a way as to modify and cancel the vibration of 

the panels of enclosure and thus reduce the noise radiation/transmission. This active vibration 

noise cancellation approach can offer improved performance that can augment other methods to 

significantly reduce internal noise level. 

To ensure efficient noise reduction of vibrational structures, one needs to determine effective 

locations of dampers, sensors and actuators that installed on the structures. How to properly 

optimize the locations and values of dampers and actuators is the key issue for interior noise 

control of enclosure structures. There are few publications (Sommerfeldt 1993, Alfredsson 1993, 

Audrain et al. 2004, Liu et al. 2006, Murakami et al. 2010), which had discussed the control 

strategy for this active noise control and it is been mentioned the determination of damper 

locations can lead the improved control of the structural field. However, this technique has not 

been clearly demonstrated and extended to the cylindrical structures in previous research. In this 

paper, we will propose an efficient method for characterize the vibro-acoustic behaviors of 

cylindrical shell structures by adopting Structural Intensity (SI) approach. 

This paper will introduce an approach, which can be applied to reducing the levels of vibration 

and noise of the cylindrical shell structure. The appraisal of the structural power flow and vibration 

shape is an important method in vibration and acoustic control. Structural intensity research is a 

new trend in the vibration analysis of structures. When a structure is exciting, the propagation of 

vibrational energy through the structure is related to the results of interaction between the stress 

and the velocity, which means the structural intensity, and it can reflect the structure power flow. 

The concept of structural intensity was introduced firstly as a quantifier for the structural vibro-

acoustic analysis in 1970s by Noiseux (1970). Structural intensity can be expressed as the resultant 

of stress and the velocity, which is a direction sum of the scalar product of the force vectors and 

their corresponding velocity vectors. Structural intensity is the power flow per unit cross-sectional 

area in plate and shell structures and a result of vibration. Pavic (1976) developed the formulation 
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of structural intensity. Verheij (1980) presented the cross spectral density method to measure the 

structural power flow in beams and pipes. Hambric (1990) developed the computational approach 

of structural intensity through the finite element method. Gavric and Pavic (1993) evaluated the 

structural intensity fields of a rectangular plate by using the computational approach and identified 

the source and the sink of the energy flow. Gavric et al. (1997) further extended modal 

superposition method in an experimental approach. Li and Lai (2000) calculated the structural 

intensity and surface mobility for a thin plate with viscous damper and structural damping. 

Williams (1991) investigated structural intensity in thin cylindrical shells. Xu, X.D et al. (2005) 

and Liu et al. (2005) first introduced the structural intensity streamline concept based on plate 

structures. Furthermore, Liu et al. (2005) theoretically derived the formulations for structural 

intensity streamline according to the concept of fluid mechanics streamline. The structural 

intensity streamline can be used to clearly display the structural intensity flow paths. Structural 

intensity streamline which represent the spatial distribution of the structural power flow can be 

visualized to show the positions of energy sources and sinks. After that, the structural intensity 

streamline concept was introduced into different engineering applications, such as the area of 

impact problem (Liu et al. 2005), snoring study in biomechanics (Liu et al. 2007), fracture 

mechanics and noise control etc. In noise control aspect, Liu et al. (2006) use structural intensity 

approach to propose a basic method of active and passive interior noise control for box structures. 

This research is a further extension of previous works and it uses structural intensity method to 

study the vibro-acoustic behaviors of cylindrical shell structures. In this paper, we first theoretical 

derived the structural intensity formulas of cylindrical shell structures. Based on structural 

intensity general expression, a vibration mode method to calculate the structural intensity of 

cylindrical shell structures is proposed, which can be used to efficiently evaluate the structural 

intensity by introducing the vibration modes. Furthermore, the vibro-acoustic behaviors are 

investigated for cylindrical shell structures. This paper investigates the structural power flow in the 

cylindrical shell structure and studies the vibro-acoustic coupling for sound radiation using the 

structural intensity vector and streamline patterns. According to structural intensity characteristics 

of cylindrical shell, a new method for structural intensity distribution control is proposed by 

changing exciting and damping conditions. The proposed method could be used to reduce interior 

noise in the cylindrical shell structures. 

This paper contains five parts. In section 2, the primary theory of structural intensity concept is 

reviewed and discussed. In this section we derived structural intensity formulations of cylindrical 

shell structures. The relationship of structural intensity and acoustic intensity of cylindrical shell is 

also provided. In section 3, according to the proposed formulations, the analytical solutions and 

numerical simulations of cylindrical shell are performed. From analytical and simulation results, 

some methods for controlling and altering structural intensity distribution are discussed. As an 

application example, the interior noise and vibro-acoustic behavior of the cylindrical shell which 

represent simplified fuselage structures are briefly described in section 4. Finally, the concluding 

remarks are provided in section 5. 

 

 

2. Preliminary theory and formulation 
 

2.1 Instantaneous and steady structural intensity 
 

Analogous to the concept of acoustic intensity in acoustic medium, the structure power flow  

299



 

 

 

 

 

 

Yuran Wang, Rong Huang and Zishun Liu 

 

Fig. 1 Plate and shell element with forces and displacements 
 

 

through per unit cross section area of a vibrational structure is defined as the structural intensity. 

The structural intensity can be expressed as the result of stress and the velocity, a scalar product of 

the force vectors and their corresponding velocity vectors. The instantaneous structural intensity 

component in the time domain can be defined as (Gavric and Pavic 1993) 

     ,     , 1,2,3k kl li t t v t k l    (1) 

where 𝑣𝑙(𝑡) is the lth component of the velocity vector and 𝜎𝑘𝑙(𝑡) is the klth component of the 

stress tensor, there are both functions of time. 

The average of time mean of the kth instantaneous structural intensity component can be 

defined as 

  ,k kI i t  (2) 

where 〈… 〉 denotes time average. 

For a steady state vibration, the steady structural intensity component in the frequency domain 

can be defined as 

       1/ 2 Re ,    , 1,2,3k kl lI v k l         (3) 

where the superscript ~ and * denote complex number and complex conjugate respectively, Re 

denotes real part. The �̃�𝑘𝑙(𝜔)�̃�𝑙
∗(𝜔) is the function of cross-spectral density between stress and 

velocity components. 

Finally, the integration of the steady structural intensity in the whole frequency domain equals 

the temporal mean of the instantaneous structural intensity 

   ,k k kI i t I


    (4) 

 

2.2 Structural intensity in thin plates and cylindrical shells 
 

With the development of the structural intensity concept and its application, specific 

formulations of structural intensity in plates and shells are given in form of displacements and 
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velocities, which can be easily measured. The computation of spatial derivatives of structural 

displacements and velocities are obtained by using analytical and finite element methods. 

The computation of structural intensity in plates was calculated by Gavric and Pavic (1993) and 

Gavric et al. (1997). And the state of stress vectors distribution over the thickness of the thin plate 

can be expressed by the stress resultants at the mid plane of the thin plate. When it comes to the 

shell structure, since the stress resultants for the shell elements include the shear forces, the 

membrane forces, the bending moments and the twisting moments at the mid plane should be 

expressed as shown in Fig. 1. After the stress resultants integral along the thickness of the thin 

shell elements, we can derive that the structural intensity in terms of stress resultants is the net 

power flow per unit width. To sum up, velocities corresponding to the moments are the angular 

velocities and velocities corresponding to the forces are the in plane and transverse velocities, 

respectively. 

When we solve flat thin plate problems under bending condition, membrane forces usually can 

be ignored. However, when it comes to the thin cylindrical shell structure, membrane forces must 

be taken into consideration. Finally, for a thin flat plate element can employ the shell element, 

when both bending and in plane movement are investigated. The formulation of structural intensity 

in the shell element is 

 

 

1 2 Re ;

1 2 Re ,

x x xy x x y xy x

y y yx y y x yx y

I N u N v Q w M M

I N v N u Q w M M

 

 

    

    

      
  

      
  

 (5) 

where �̃�𝑥 , �̃�𝑦, �̃�𝑥𝑦 = �̃�𝑦𝑥 and �̃�𝑥 , �̃�𝑦 are complex membrane and transverse shear forces per unit 

width of plate, respectively; �̃�𝑥 , �̃�𝑦 and �̃�𝑥𝑦 = �̃�𝑦𝑥 are complex bending and twisting moments 

per unit width of plate, respectively; �̇̃�∗, �̇̃�∗, �̇̃�∗ are complex conjugate of translational velocities in 

x, y, z directions; �̇̃�𝑥
∗, �̇̃�𝑦

∗ are complex conjugate of rotational velocities around x and y axis. 

This formulation has been examined previously in rectangular plates and extended to 

cylindrical shells in present research. From the finite element method of curved shell, an 

approximation of the physical process rather than the mathematical problem is introduced to solve 

the difficulties concerning the influence of the shell’s curvature. This approach based on the finite 

element method separates the continuously curved thin shell to a group of small flat thin elements, 

and every element allow use of shell finite elements when the size of the elements decreases and 

the convergence of results occurs. For the thin cylindrical shell, the Eq. (5) which is expressed 

under the rectangular coordinate system will be transformed from the rectangular to the cylindrical 

coordinate system. The formulation of structural intensity in the cylindrical shell is 

 

 

1 2 Re ;

1 2 Re ,

x x x x x x x

x x x

I N u N v Q w M M

I N v N u Q w M M

  

      

 

 

    

    

      
  

      
  

 (6) 

where x denotes the axial direction and θ denotes the circumferential direction under the 

cylindrical coordinate system, other quantities correspond to forces, moments, translational and 

rotational velocities under the cylindrical coordinate system. 

For the steady state vibration derive from a harmonically excited system at frequency ω, the 

velocities can be replaced by displacements by using the commonly adopted complex algebra.  
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Fig. 2 Model of cylindrical shell and the definition of cylindrical coordinate 
 

 

Therefore, the structural intensity for the steady vibrational cylindrical shell become 

 

 

2 Im ;

2 Im ,

x x x x x x x

x x x

I N u N v Q w M M

I N v N u Q w M M

  

      

  

  

    

    

       

       

 (7) 

where �̃�∗, �̃�∗, �̃�∗ are complex conjugate of translational displacements in x, y, z directions; �̃�𝑥
∗, �̃�𝑦

∗ 

are complex conjugate of rotational displacements around x and y axis. 
 

2.3 Displacement solution of vibrational cylindrical shells 
 

In present study, the cylindrical shell model is assumed as elastic thin cylindrical shell and 

excited by a symmetrical harmonic transverse point force. The geometry and situation of load and 

support for the model is show in Fig. 2. 

In order to calculate the structural intensity in this model, displacement fields and stress 

resultants should be obtained primarily. The material of this model is isotropic, elastic. The stress 

resultants are proportional to the spatial derivatives of the displacement fields. Therefore, the 

structural intensity can be expressed as the function of the displacement fields. 

The displacement solution of this model through vibration theory is (Werner 1981) 

     

     

     

1

1

1

, , , ;

, , , ;

, , , ,

n n

n

n n

n

n n

n

u x t T t U x

v x t T t V x

w x t T t W x

 

 

 

























 

(8) 

where u, v, w are displacement fields; 𝑈𝑛, 𝑉𝑛,𝑊𝑛  are displacement mode shapes; 𝑇𝑛  is weight 

coefficient of time; n is the number of mode. 

Under this special circumstance, the displacement solution Eq. (8) can be written as 

 

 

 

0 0
0

0 2 2 2 2
1 1 0

0 0
0

0 2 2 2 2
1 1 0

0
0

0 2 2

sin cos
2

, , sin cos cos ;
1

sin cos
2

, , sin sin sin ;
1

sin c
2 1

, , sin
1

mn

m n mn mn mn

imn

m n mn mn mn

mn mn

m
x n

P A mLu x t t x n
L h A B L

m
x n

P B mLv x t t x n
L h A B L

m
x

P Lw x t t
L h A B





  

   





  

   



 
 

 

 

 

 


  


  


 





0

2 2
1 1 0

os

sin cos ,
m n mn

n
m

x n
L





 

 

  


 

(9) 
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where L and h are length and thickness of the cylindrical shell, respectively; ρ is mass density; 𝑃0  

and 𝜔0 are the amplitude and frequency of exciting force, respectively; m and n are wave number; 

�̅�𝑚𝑛, �̅�𝑚𝑛 are the ratio of displacement modes; 𝜔𝑚𝑛 is modal frequency. 
 

2.4 Formulation of structural intensity by vibration mode shapes 
 

For the steady state vibration, the stress resultants and displacement fields can be expressed by 

quantities of vibration mode shapes. And the formulation of structural intensity can be expressed 

as following 

 

 

0

0

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ2 ;

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ2 ,

x x x x x x x

x x x

I N u N v Q w M M

I N v N u Q w M M

  

      

  

  

      
 

      
 

 
(10) 

where ˆ denotes quantities of vibration mode shapes. 

The quantities of vibration mode shapes also can be written in more detail. Substituting the 

stress resultants and displacement fields into the formulation of structural intensity, the structural 

intensity in the model for can be defined as 

     

2 0 0 0 0
0 0

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 0 0

sin cos sin cos
4

2 1 1

sin cos cos cos

1
cos sin sin

2

x

m n r s mn mn mn rs rs rs

mn mn rs

mn mn rs

m r
x n x s

P K L LI
L h A B A B

n m m r
B A A x n x s

R R L L L

m n m r
B A B x n

L R L L

 
 



     

    
 

   


   

   

  
     

 
   

 

  
 

 



  

2 2

2

2

2 2

2

2

sin

1
cos cos sin cos

2

cos cos sin cos

1
2 cos sin sin sin

2

mn

mn

mn rs

x s

m n m n m r
kR B x n x s

L R L R L L

n m n r m r
kR B x n x s

R L R L L L

m m r
k B n r B x n x s

L L L



    
 

    
  

   
 





 



     
       

      


    
      

     


 



     

2 0 0 0 0
0 0

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 0 0

;

sin cos sin cos
4

2 1 1

1
sin cos sin sin

1

2

m n r s mn mn mn rs rs rs

mn mn rs

mn mn

m r
x n x s

P K L LI
L h A B A B

n m m r
B A B x n x s

R R L L L

m n
B A

L R



 
 



     

   
 

 

   

   













 
 
 
 
 



  
     

 
   

 

  






 

2 2 2 2

2 2

2

cos sin cos cos

1
sin sin sin cos

2

sin cos sin sin

rs

mn

mn rs

m r
A x n x s

L L

n m m n m r
kR n B x n x s

R L L R L L

n m n m r
kR B r B x n x s

R L R L L

 
 

    
 

  
  




            
              

               

    
       

     

 

.

1
2 cos sin cos cos

2
mn

m r m r
kR B n x n x s

L L L L

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

(11) 

The Eq. (11) shows that the structural intensity is an infinite weighted sum of function of 

vibration mode shapes. Simplify the detailed formulation to weight coefficients about load 

conditions and distribution functions of vibration mode shapes, the SI can be further expressed as 
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where C is model coefficient; 𝑓𝑚𝑛 ∙ 𝑓𝑟𝑠  are weight coefficients; 𝑋𝑚𝑛𝑟𝑠, Θ𝑚𝑛𝑟𝑠   are distribution 

functions; m, n, r, s are wave numbers. The wave numbers indicate the number of waves on the 

vibration shapes and represents a definite modal. The (m, n) mode means that there is m half 

waves in the axial direction of the vibrating cylindrical shell, and n waves in its circumferential 

direction. We use (m, n) to represent the modality of a force condition, using (r, s) for a 

displacement of the modal. Finally, the (m, n, r, s) can represent a modal state of the structural 

intensity component. In this equation, the weight coefficient components show the load conditions 

and reflect the weight coefficient of time. The distribution functions indicate the spatial derivative 

relationships between the stress resultants and displacement fields in structural intensity. 

In the previous derivation, the range of sum is infinite and it is difficult to compute those 

equations. Therefore, the equations need to be approximated numerically in the numerical 

computation of the displacement fields or their time derivatives, and the number of modes which 

enter the analysis has to be appropriately chosen in such a way that the upper limit of frequency 

used in computation needs to be a few times higher than the excitation frequency. 

For a certain number of mode, the weight coefficients and distribution functions can be 

obtained through Eq. (12). The results of distribution functions can reflect the pattern of structural 

intensity in specific mode and the weight coefficients decide the influence of this specific pattern 

on the sum range. As a result, an approach has been developed that a destination pattern of 

structural intensity can be reached approximately by enumerating distribution functions and 

selecting correct weight coefficients. 

 

2.5 Structural intensity streamline presentation in cylindrical shells 
 

The structural intensity in the thin cylindrical shell surface is expressed as a vector field, and 

the vector field can be visualized by a vectogram to provides the magnitude and direction 

distributions of structural intensity. However, to represent the trend of structural power flow in the 

cylindrical shell, the streamlines display technique should be employed. 

Inspired by flow line concept in fluid mechanics, the structural intensity streamlines are a 

family of curves that are instantaneously tangent to the vector of the structural intensity. For steady 

vibration, the structural intensity streamlines are the vibrational power flow paths and allow to 

effectively assess vibrational sources and sinks. The same as fluid mechanics concept, the 

structural intensity streamlines can be defined as 

 d , 0,t r I r  (13) 

where r is particle position; I is structural intensity vector. The structural intensity vectors that 

located on the streamlines are perpendicular to r and parallel to dr. For the cylindrical shell, the 

differential equation describing is 

0.
x

dx Rd

I I


   (14) 

Every particular point that locate on the cylindrical shell corresponds with a structural intensity 

vector, and the vector is tangential to a streamline at this point. Therefore, the group of streamlines 

can describe the power flow travel paths on the cylindrical shell 

 

2.6 Relationships between structural intensity and acoustic intensity 
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The energy governing equation can be derived by using three relationships: (a) a transmission 

equation relating energy density and intensity; (b) an energy balance equation from continuum 

mechanics; (c) an energy loss relationship where dissipated power is related to the local energy 

density in the vibrational medium using a loss factor. These three relationships are coupled to 

develop equations which govern the energy density in various vibrational systems. 

An energy balance in an elastic medium can be described using a control volume approach. The 

flow of energy across any given closed surface is equivalent to the rate of change of the total 

energy inside the surface which encloses the volume (Bouthier and Bernhard 1995) 

  ,in diss
V S V

de d
dV d dV

dt dt
  
 

    
 

  
u

A  (15) 

where e is the energy density inside the control volume; u is the displacement vector of any 

particle on the boundary of the control volume; 𝜋𝑖𝑛 is the input power density or energy input per 

unit volume per unit time; 𝜋𝑑𝑖𝑠𝑠  is the power density dissipated or energy per unit volume 

dissipated per unit time; dA is the vector normal to the surface of the control volume for a given 

point on the surface. 

By using the divergence theorem and concept of structural intensity, the Eq. (15) can be 

rewritten as 

  .in diss
V V V

de
dV IdV dV

dt
         (16) 

And the integration limits in Eq. (16) are arbitrary, it becomes 

.in diss

de
I

dt
     (17) 

Eq. (17) is an energy balance relationship for all elastic media and is valid for steady or 

transient analysis. For vibro-acoustic case, the loading term is composed of internal driving force 

distribution density and external fluid loading. This model is excited by a transverse point force 𝐹𝑒 

and interacts with external fluid loading 𝐹𝑎 , the input power flow density can be expressed as 

.in e a

d d
F F

dt dt


   
      

   

u u
n n  (18) 

Recognizing that the term of fluid loading is the normal component of the instantaneous 

acoustic intensity vector J, therefore Eq. (18) can be further expressed as 

.in eF w   J n  (19) 

Substituting Eq. (19) into Eq. (17), the relationship between structural intensity and acoustic 

intensity can be obtained and expressed as 

.e diss

de
F w I

dt
    J n  (20) 

For the analysis of steady state vibrational energy propagation, all terms in Eq. (20) are time 

averaged over one cycle and the time variation of all energy is zero, then 
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0 .e diss

de
F w I

dt
     J n  (21) 

Finally, the relationship between the acoustic density and the structural intensity and the 

changing power density that any power input by exciting force and loss from vibrating is obtained 

.e dissI F w     J n  (22) 

 

2.7 Analysis of structural acoustic coupling 
 

Acoustic intensity is the sound energy which passes through a specific area at a certain point in 

the sound field in a specific time. Acoustic intensity at a point in the sound field in a specific 

direction r can be expressed as (Fahy and Gardonio 2007) 

1
,

2
J pv  (23) 

where p and v are sound pressure and particle velocity; * denotes the complex conjugate. 

The acoustic pressure field is related to the surface integral of the acoustic parameters over the 

surface of the structure of interest. For a harmonically vibrational cylindrical shell surface 

extending over an internal space, which the reflected sound is able to neglect, the acoustic pressure 

field can be described as 

 0 0( , , ) ,
2

j t krn

s

jk c v
p x z e ds

r







   (24) 

where p is the sound pressure at any field point; 𝑣𝑎 is the normal velocity of the vibrational surface 

at any point; r is the distance between the two point; k is the acoustic wave number; 𝜌0 and 𝑐0 are 

density and sound velocity of air. Dividing the shell surface into curved elements and interpolating 

the structural normal velocity and surface pressure over each element allow Eq. (24) to be written 

in terms of the nodal normal velocity {𝑣𝑛} and surface pressure {𝑝} as 

    ,np D v  (25) 

where [𝐷] is the acoustic impedance matrix. 

In the previous part, the acoustic intensity is recognized as the term of fluid loading. Therefore, 

the acoustic intensity in the vibrational cylindrical shell surface can be further written as 

,a

d
F

dt
 

u
J  (26) 

This equation provides the contact between the sound pressure and normal velocity on the plate 

surface. In order to further investigate the coupling relation between structural intensity and 

acoustic intensity, the two expressions are compared and some similarities are obtained as follow. 

For flexural wave motion in shell structure, the bending moment energy contribution is the main 

component of structural intensity, and acoustic intensity is significantly affected by bending 

motion. In the case of interaction between vibrational shell and air medium, both structural 

intensity and acoustic intensity can reflect the level of vibration. Therefore, in some conditions, the  
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c  

Fig. 3 The mapping procedure 
 
Table 1 Geometrical model and materials properties of structure and air 

Length 10 m Model density 2618 kg·m-3 

Radius 3 m Young modulus 72.4 MPa 

Thickness 0.1 m Air density 1.2 kg·m-3 

Poisson’s ratio 0.33 Speed of sound in air 343 m·s-1 

 

 

change trend of acoustic intensity is similar to structural intensity. 

 

 

3. Analytical solution and numerical simulation 
 

3.1 The structural intensity calculation 
 

In this section, the structural intensity of a cylindrical shell under steady excitation is calculated 

by theoretical analyses and numerical simulation. This cylindrical shell structure which consists of 

an aluminum open cylindrical shell with a 0.10 m thickness and surrounded by air circumstance is 

excited by a symmetrical harmonic normal point force. Fig. 2 shows the geometry of the structure 

and the coordinate system in the analysis. The materials properties and main geometrical 

parameters of the cylindrical shell are represented in Table 1. According to previous derived 

formulations, the MATLAB programs are used for calculation. In the analyses, the amplitude of 

excitation is 1000N and frequencies of excitation are selected as follow: 100rad·s-1, 210rad·s-1 and 

250rad·s-1. To clearly visualize the results, we transform the cylindrical shell results into a two-

dimensional plane. In the transformed form, the excitation position is the center of the two-

dimensional plane. The mapping procedure is shown in Fig. 3. And the structural intensity 

streamline maps of the cylindrical shell under series excitations are given in Fig. 4. From Fig. 4 it 

can be found that the results are different under different excitations. Comparing three figures in 

Fig. 4, we can find that Fig. 4(b) is the most regular pattern. Meanwhile, the excitation frequency 

of Fig. 4(b) is closest to the natural frequency of (1, 3) mode (210.86 rad·s-1). 

 

3.2 Control method of structural intensity 
 

Based on the former theoretical analysis, structural intensity distribution is mainly affected by  
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(a) Excitation frequency 100 rad·s-1 

 

(b) Excitation frequency 210 rad·s-1 

 

(c) Excitation frequency 250 rad·s-1 

Fig. 4 Streamline maps of structural intensity of cylindrical shell at 2-D plan view 

 

 

weight coefficients 𝑓𝑚𝑛 ∙ 𝑓𝑟𝑠  and distribution functions 𝑋𝑚𝑛𝑟𝑠, Θ𝑚𝑛𝑟𝑠 . Distribution functions 

decide the pattern of structural intensity on cylindrical shell at any (m, n, r, s) mode, while weight 

coefficients determine the proportion of corresponding mode pattern in total structural intensity. 

Distribution functions are mostly related to structural vibrational mode. The distribution functions 

for each mode is determined and the streamline maps of the distribution functions for several 

modes are shown in Fig. 5. From Fig. 5, it can be observed that the streamline map of structural 

intensity at exciting frequency of 210 rad·s-1 (as shown in Fig. 4(b)) is almost the same as the 

streamline pattern of distribution functions in Fig. 5(a), where mode is (1, 3, 1, 3). Therefore, the  
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(a) (1,3,1,3) mode 

 

(b) (1,3,1,4) mode 

 

(c) (1,2,1,2) mode 

Fig. 5 Streamline maps of distribution functions 

 

 

structural intensity map at 210 rad·s-1 exciting frequency is mainly contributed by the distribution 

functions at (1, 3, 1, 3) mode. The magnitude of contribution is decided by weight coefficients and 

the formula of them shows that weight coefficients are affected by exciting frequency and position. 

When the streamline patterns of distribution functions at certain modes are obtained, we can 

calculate the change curves of weight coefficients with the exciting frequency. The curves based 

on the value of weight coefficients under various exciting frequency, are shown in Fig. 6. It is  
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(a) (1,3,1,3) mode (b) (1,2,1,3) mode 

  
(c) (1,3,1,4) mode (d) (1,2,1,2) mode 

Fig. 6 Weight coefficients in different conditions 

 

 

found that, when exciting frequency is close to a natural frequency, the weight coefficients reach 

their peak of the mode. Figs. 6(a)-(d) show the peak of main mode (1, 3, 1, 3) and (1, 2, 1, 2) of 

distribution functions when exciting frequencies are close to mode (1.3) and (1.2). Whereas the 

weight coefficients of minor modes (1, 2, 1, 3) and (1, 3, 1, 4) reach their peak and correspond to 

natural frequency of the modes (1, 2), (1, 3) and (1, 3), (1, 4), but far much smaller than the figure 

of weight coefficients in main mode. In the process, main mode is referring to m=r, n=s in mode 

targets (m, n, r, s), while minor modes refer to the others. 

It represents that when exciting frequency is close to a natural frequency, the weight coefficient 

of this main mode reaches the peak, because of resonance phenomenon. Thus, it reveals why the 

streamline map of structural intensity is similar to pattern of distribution functions of the main 

mode. According to this, when exciting frequency is at 210 rad·s-1, due to its closeness with (1, 3) 

mode frequency (210.86 rad·s-1), its weight coefficients of main mode (1, 3, 1, 3) reach the peak. 

Then leads to a larger proportion of distribution functions pattern of main mode (1, 3, 1, 3) in 

structural intensity map, as shown in Fig. 5(a) and 4(b). 

The influence of weight coefficients by the position of excitation can be analyzed by drawing 

the contour of weight coefficients on the cylindrical shell, as shown in Fig. 7; the different shades  
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(a) (1,2,1,2) mode 

 

(b) (1,3,1,3) mode 

 

(c) (1,4,1,4) mode 

 
(d) (1,2,1,3) mode 

Fig. 7 The contour of weight coefficients on the cylindrical shell 
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Table 2 Vibration modes and the modal frequencies of the cylindrical shell 

Mode Frequency/Hz Mode Frequency/Hz 

( 1, 3 ) 45.75 ( 2, 4 ) 77.45 

( 1, 4 ) 50.77 ( 2, 5 ) 87.37 

( 1, 2 ) 63.27 ( 2, 3 ) 88.46 

( 1, 5 ) 71.27 ( 1, 6 ) 100.47 

 

 

Fig. 8 Damping position on the cylindrical shell 

 

 

of color illustrate the magnitude of weight coefficients at that exciting point. The contours show 

that the weight coefficient distribution on the cylindrical shell is correlated with normal 

displacement of vibration modes. As presented in Fig. 7(a), the contour is correlated with the (1, 2) 

mode on the cylindrical shell. Besides, weight coefficients corresponding to minor mode are far 

smaller than the one corresponding with main mode, as shown in Fig. 7(d). 

Based on the former analysis, a design method of structural intensity distribution is presented. 

Firstly, calculating distribution functions of several main modes, and finding the main mode of 

desired structural intensity distribution. Selecting excitation frequency and position corresponding 

to the main mode. Then structural intensity distribution will be resulted by exciting the vibration 

on certain point. If desired structural intensity distribution has no directly corresponding main 

mode, the data can be calculated by using superposition principle. In former research, it’s pointed 

out that redistribution of structural intensity can be done by changing exciting frequency and 

position, but the mechanism behind had not been explored. The mechanism of how to alter 

redistribution of structural intensity is given based on the formulation of structural intensity on the 

cylindrical shell and the formulation of its weight coefficients and distribution functions. 

 

 

4. Application example for structural intensity approach 
 

4.1 Simulation of the cylindrical shell 
 

The vibro-acoustic behavior of a cylindrical shell, which represents the fuselage structure, is  
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Fig. 9 The interior sound pressure frequency response for different damping cases 

 

 

carried out by using finite element method and proposed SI approach. In this simulation, a 

COMSOL Multi-physics is used to simulate the structure vibration and vibro-acoustics. The 

structural intensity of the cylindrical shell structure is computed based on the formulations 

presented in Section 2.  

Table 2 shows the vibration modes and their modal frequencies in the frequency range up to 

100 Hz. The comparison of the simulation results and SI method for reducing noise level 

demonstrated that the proposed SI method is feasible and the results are reasonable. 

Based on the natural frequencies, we use the following three conditions to select excitation 

frequencies: (a) below the first order natural frequency; (b) near the first order natural frequency; 

(c) between the first two order natural frequencies. The excitation frequencies are as follows: 10 

Hz, 20 Hz, 45 Hz, 50 Hz, 56 Hz, 63 Hz, 71 Hz, 74 Hz and 77 Hz. 

 

4.2 Damping properties of cylindrical shell 
 

Referring to the vibrating shapes of the cylindrical shell, we symmetrically put two dampers on 

the structural surface in every case, except for case 1 without damping. Damping factor is selected 

to be 107 Ns·m-1. The positions of two dampers from case 2 to case 7 are shown in Fig. 8. These 

positions are near the extremes of transverse displacement in first few order vibrating shapes. 

Therefore, the displacement fields will be influenced by dampers in different case. 

 

4.3 Sound pressure of central point 
 

The central point of cylindrical shell is selected to be objective position. The data of internal 

sound at objective point in the model is obtained by simulation for different excitation frequency 

and damping cases. The sound pressures of objective point are shown in Fig. 9 for the case 1, case  
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(a) For case 5 damping 

 

(b) For case 2 damping 

Fig. 10 The structural intensity streamline map in excitation frequency 45 Hz 

 

 

2, case 5 and case 6. From Fig. 9, it can be seen that the trend of sound pressure at central point 

with excitation frequency varies for different damping cases. 

In the following, the relationship between structural intensity and internal sound field will be 

analyzed. It is because the changing place of damper in cases also changed the structural intensity 

distribution, thus affected the central sound pressure. Take 45 Hz excitation frequency for 

example, the low sound pressure in case 5 and high one in case 2 of streamline maps are shown in 

Fig. 10, it can be seen that the sources and sink are identified. The direction of structural intensity 

flow is clear for case 5, where most of the streamlines can be linked from the source to sink. 

However, there are many eddies for case 2, and only few streamlines flow from source to sink, 

which means damper doesn’t have much effects. These eddies pattern have the potential of 

confining the structural power flow into a specific area of the structure. 

Analyzing from the vibration mode, normal displacement vibration mode of no-damper case 

and in case 5 are shown in Fig. 11 respectively. Since the excitation frequency of 45 Hz is close to 

natural frequency at (1, 3) mode, these two dampers in case 5 are placed coincidently around the 

maximum point, thus reduced the vibration amplitude efficiently and lead to the reduction of 

vibro-acoustic energy. 

Through preceding text comparison, it is found that the sound pressure response curve at 

objective point changed in different cases. Therefore, the internal sound field in vibrating  
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(a) No-damper case 

 

(b) For case 5 damping 

Fig. 11 The normal displacement in excitation frequency 45 Hz 

 

 

cylindrical shell is changing with different structural intensity distribution. In effect, the changing 

of vibration shape affects the internal sound field, and structural intensity distribution can reflect 

this changing in vibration shape. 

 

4.4 Energy relationship between structural intensity and acoustic intensity 
 

From the energy aspect, if loop-integration of structural intensity is applied on the inner surface 

of vibrating cylindrical shell, which is the coupling surface of vibration and sound, structural 

intensity energy can be obtained; and at mean time if the volume integral of internal acoustic 

intensity is used as sound energy, the changing pattern between structural intensity energy and 

sound energy under different excitation frequency can be discovered. 

Structural intensity energy and sound energy profiles with different damping cases are shown 

in Fig. 12 for excitation frequencies of 20 Hz and 56Hz. According to the energy relationship for 

20 Hz and 56 Hz excitation cases, we can find that although these two physical quantities represent 

the vibration of cylindrical shell and its internal sound field characteristic, their changing 

tendencies are almost the same while the damping condition is changed. Thus, if structural 

intensity energy can be reduced, sound energy of radiation can decrease, the sound energy of 

internal sound field also can be reduced. In short, the tendency of radiation sound energy can be 

predicted directly by monitoring the tendency of structural intensity energy. 
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(a) Excitation frequency 20 Hz 

 

(b) Excitation frequency 56 Hz 

Fig. 12 Structural intensity and sound energy trends in various cases 

 

 

4.5 Sound control in the cylinder shell 
 
According to previous analysis, reducing sound energy in sound field can be obtained by 

decreasing the structural intensity energy. By observing the distribution of structural intensity, we 

can find the collecting point of energy and place dampers to create a sink. These points can 

significantly absorb energy in structure. 

Take 50 Hz excitation frequency for example, the SI streamline map with and without damper 

are shown in Fig. 13. There are some eddies formed by streamline, and a damper is set at th= -4.7 

m, x=2.0 m in the eddy, thus a new distribution of streamlines is created and shown in Fig. 13(b). 

It is shown that the eddy is replaced by a sink, and all the streamlines are pointed to the sink where 

energy can flow into specific area. 

The structural intensity contours for excitation frequency at 50 Hz with and without damper are 

shown in Fig. 14 respectively. By comparing the amplitude of structural intensity between two 

cases, reducing structural intensity level can be obtained by setting damper in the particular 

position. The before and after calculations of structural intensity energy and acoustic energy in 

selected objective point are shown in Table 3. Compared with no-damper situation, structural 

intensity energy and acoustic energy are reduced significantly. Other cases also got the similar 

results. In general, reducing structural intensity energy and radiation acoustic energy in objective 

point can be reached through properly placing dampers at eddies formed by streamlines. 
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(a) No damper 

 

(b) With damper 

Fig. 13 The structural intensity streamline map in excitation frequency 50 Hz 

 

 

(a) No damper 

 

(b) With damper 

Fig. 14 The structural intensity contour in excitation frequency 50 Hz 
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Table 3 Comparison of energy changing by setting damper 

 Structural intensity energy/W Sound energy/W 

No damper 3.7522 0.05525 

With damper 2.1517 0.03488 
 
 

5. Conclusions 
 

Through theoretical analyses and modeling simulation for the coupling vibration and acoustical 

radiation problem, the relationship between vibro-acoustic energy and structural intensity 

distribution of the cylindrical shell is derived. First, the structural intensity method has been 

adopted to evaluate the vibrations of a cylinder shell. Then, according to derived relationship of 

structural intensity and vibration and acoustic energy for cylindrical shell structure, we proposed 

an approach of changing vibro-acoustic properties by altering structural intensity. In the study, the 

structural intensity streamlines method, which can be used to clearly indicate the source, the sink 

and the direction of power flow paths from the source to the sink of the structures, are adopted. 

From present study, we find that the internal acoustic pressure field has the close connection 

with structural intensity in the interface of structural-acoustic coupling. From the energy aspect, 

this work computes loop-integration of structural intensity and volume-integral of internal acoustic 

intensity and defines these integral respectively as structural intensity energy and sound energy. 

These energy in different damping-cases and exaction frequencies are calculated. Comparing the 

results, we discover that the trend of these energy change is similar in same cases. It can be 

concluded that the control of the sound radiation energy for a vibrating structure can be achieved 

by changing the structural intensity energy. 

Furthermore, a method which can reduces the acoustic energy through properly putting damper 

position and redistributing the structural intensity in the cylinder shell is developed. For cylinder 

shell structures, there are some eddies pattern in the structural intensity streamline, and these 

eddies have potential of collecting energy. When the damper is put in the eddy position, the stored 

energy will be released and a new sink appears. According to source and sink positions, we can 

modify the structural intensity distribution so as to reduce the acoustic energy of cylinder shell 

structure. 
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