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Abstract.  A successful methodology for modelling controlled destruction and progressive collapse of 2D 

reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects 

including the failure mechanism creation, and dynamic motion in failure represented with multibody system 

(MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-

plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the 

complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second 

phase deals with simulation and control of the progressive collapse of the structure up to total demolition, 

using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on 

MBS. The contact between structure and ground is also considered in simulation of collapse process. The 

efficiency of the proposed methodology is proved with several numerical examples including six story 

reinforced concrete frame structures. 
 

Keywords:  complete collapse; multibody system; plastic joint; geometrically exact beam; energy 

conserving/decaying scheme; contact 

 
 
1. Introduction 
 

This work deals with aging reinforced concrete building presenting the high risk of failure due 

to natural disaster or at the end of their lifespan. The research has been carried out on controlled 

progressive collapse of those structures. Where full understanding of complete failure mechanism 

is needed in densely populated urban areas in order to avoid the damage to adjacent structure. Due 

to the complexity of this kind of problems, only a few works provide a safe and economically 

reasonable method for simulating the structure demolition, with a special attention required to the 

progressive collapse process. 

Some research uses explosive technics for building demolition. Such a strategy is based on 

explosives placed at well-determined zones in the building (Michaloudis et al. 2010) and 

Michaloudis et al. 2011). Other works are based on blasting strategy eliminating some vertical 

supports in the structure and exploiting the force of gravity (Hartmann et al. 2008). 
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the work in (Rodolfo and Humberto 2017) presents finite element methodology that can be 

used to simulate progressive collapse of planar frame. Such strategy is based on the dynamical 

detachment of lose finite elements assembled by Lagrange multipliers. Therefore, such technics 

can only be used for describing the quasi-brittle behavior of the analyzed structure. More general, 

ductile behavior was considered in (Humberto and Rodrigo 2014) where the elasto-plastic law and 

nonlinear behavior of semi-rigid connections are adopted for planar frames. 

Many recent papers give a particular attention for numerical modelling of discontinuities 

(Nanakorn 2004, Juarez and Ayala 2012), and softening plastic hinges in finite element beams and 

frames (Armero and Ehrlich 2006, Wu 2013). A multi scale model for reinforced concrete frames 

is given in (Pham et al. 2013), introducing embedded strain discontinuity in fiber and a systematic 

procedure for estimating frame model parameters. A combined stress resultant beam model and a 

shell model is presented in (Dujc et al. 2010), for computing the complete failure of metal frames. 

In the same manner, a Weak coupling of shell and beam computational models for failure analysis 

of steel frames is studied in (Piculin and Brank 2015). An Euler-Bernoulli stress resultant beam 

model for failure analysis of planar RC beams and frames, considering only the bending failure 

mechanism, is described in (Jukic et al. 2013). The same authors present in (Jukic et al. 2014) 

a multilayer beam finite element formulation for failure analysis of planar reinforced concrete 

frames that combines damage, plasticity and embedded discontinuity. The works in (Bui et al. 

2014, Imamovic et al. 2017) present both bending and shear failure mechanism, using an enriched 

Timoshenko beam for failure analysis.   

In present work, we develop a new methodology that can be used for modelling of controlled 

progressive collapse of planar reinforced concrete structures. Our strategy can be summarized as 

follow: 

1. The creation of mechanism by applying a geometrically linear analysis based on elasto-

plastic law with bilinear isotropic hardening. The plastic hinges are governed by a softening rigid-

plastic law. We suppose that, up to the plastic hinges formation and mechanism creation, the 

response of structure is indeed geometrically linear, and that there is no need for considering large 

rotations and displacements. 

2. Nonlinear dynamic multibody system simulation based on total Lagrangian formulation 

and Reissner’s beam kinematics, where the failing parts of the structure behave like rigid bodies 

during the progressive collapse process. An efficient conserving/decaying energy scheme 

developed by Mamouri et al. (2016a) is used for solving governing dynamic equations. 

3. Simulation of contact between structure and ground is adopted to describe the final phases 

in demolition of structure and its behavior after total collapse. 

Our strategy for progressive collapse is subdivided into several phases of the problem analysis, 

based on failure mechanism creation, mechanism simulation as multibody system and controlled 

demolition as final phase. The proposed strategy present advantages such as: 

(i) The ability to describe the response of reinforced concrete structure from the cracking and 

reinforcement yielding until total failure, post-peak behaviour, and failure mechanism creation.  

(ii) The formation of plastic hinges is done automatically during the analysis at the critical 

zones, providing an efficient modelling in failure mechanism creation. 

(iii) The use of an efficient conserving/decaying time integration scheme with constant mass 

matrix that provides a desirable numerical dissipation in higher modes and reliable presentation of 

full collapse. 

(iv) The ability of modelling the contact problem between the structure and the ground in 

simplified way by using an efficient algorithm based on penalty method, to provide the risk 
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estimate of damage to adjacent structure. 

The outline of this paper is as follows. In the next section we present the theoretical 

formulation of geometrically exact beam model for concrete failure analysis. In subsequent two 

sections we provide, respectively the constitutive relations in hardening and softening plastic hinge 

in bending. In Section 2, we present the model of mechanism created using multibody system 

approach based on master-slave technics and the conserving/decaying time stepping schemes. In 

the subsequent section we provide the description of the model for contact between the structure 

and the ground. In the last section we show the results for several numerical simulations 

illustrating the proposed methodology. The last section gives several concluding remarks. 

 

 
2. Beam model for failure analysis 

 
The localized material failure in critical zones is the reason behind the collapse of the most 

reinforced concrete frame structures (Dujc et al. 2010). In opposite to the classical limit load 

analysis, which is not able to describe the post-peak behavior, the softening plastic hinge is 

characterized by increase of displacement at decrease of loading (Jukic et al. 2013, Buiet al. 2014, 

Imamovic et al. 2017, Ngo et al. 2014). The model ingredients are as follow: First, a 2D 

Timoshenko finite element beam with standard kinematics is presented. The bending is governed 

by an elasto-plastic law with bi-linear isotropic hardening. Second, in order to model the softening 

plastic hinge, the embedded discontinuity has to be taken in account when describing the beam 

kinematics (see Jukic et al. 2013, Bui et al. 2014, Imamovic et al. 2017, Ngo et al. 2014). For our 

case, we deal with displacement field enhanced with jump discontinuity in rotation. The response 

at plastic hinge is described by softening rigid-plastic law. 

 
2.1 Standard kinematics 

 
We consider a (curved) Timoshenko beam of length L and cross section A. The initial 

configuration of the beam is specified by the position vector 𝝋0 of a point on the neutral axis𝑠 ∈
[0 , 𝐿] and the unit vector𝒕1

0 normal of the beam cross section (see Ibrahimbegovic and Mamouri 

1999) 

𝒕1
0 = 𝝋0

′  (1) 

where (•)′ = 
𝑑

𝑑𝑠
(•)  denotes the partial derivative with respect to the s-coordinate. 

According to Timoshenko/Reissner’s hypothesis, the plane section remains plane after 

deformation but not necessarily perpendicular to the neutral axis of the beam (see Ibrahimbegovic 

and Frey 1993a). The deformed configuration can thus be defined as 

𝝓(𝑠, 𝑡, 휁) = 𝝋(𝑠, 𝑡) + 휁𝒕2(𝑠, 𝑡) (2) 

where 𝝋(𝑠) = (𝑥+𝑢
𝑦+𝑣

) is the position of a point on the neutral axis; whereas 𝒕2 is the unit vector 

attached to the beam cross section. 

In accordance with the basic kinematic hypothesis, the unit vectors 𝒕1 and 𝒕2 are obtained by 

rotation from their initial positions 𝒕1
0 and 𝒕2

0. Thus, we define a two-dimensional rotation matrix as 
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𝒕1 = 𝜦𝒕1
0,   𝒕2 = 𝜦𝒕2

0,   𝜦 = [
𝑐𝑜𝑠 𝜓 −𝑠𝑖𝑛𝜓
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠 𝜓

] (3) 

where 𝜓 is the rotation angle around𝒕3. 

The generalized strain measure (Mamouri et al. 2014) can be written as 

{
𝜺 = 𝝋′ − 𝒕1
𝑘 = 𝜓′𝒕3

 (4) 

Where 𝛆 contain axial and shear strain and k is the corresponding bending strain. 

When considering the small displacement and small rotation theory (Ibrahimbegovic and Frey 

1993a), we can write a simplified linearized form of the governing kinematics equations as 

cos𝜓 ≈ 1   𝑎𝑛𝑑    sin𝜓 ≈ 𝜓   , 𝒕𝟏 = (
1

𝜓
) (5) 

We consider 2D finite element beam with 2node and length𝑙𝑒.  

 

 

 
Fig. 1 two nodes beam finite element with 3 degree of freedom per node 

 

 

The displacement field corresponding to the chosen finite element beam model is written as 

{

𝑢(𝑠) =  𝑁1(𝑠)𝑢1 + 𝑁2(𝑠)𝑢2 = 𝑵𝒖

𝑣(𝑠) =  𝑁1(𝑠)𝑣1 + 𝑁2(𝑠)𝑣2 = 𝑵𝒗

𝜓(𝑠) =  𝑁1(𝑠)𝜓1 + 𝑁2(𝑠)𝜓2 = 𝑵𝝍
 (6) 

where 𝒖 𝑎𝑛𝑑 𝒗 respectively are the axial and transverse components of the nodal displacement 

vector 𝝋. 𝝍 is the nodal rotation vector. 

𝑵 = {𝑁1(𝑠) = 1 −
𝑠

𝑙𝑒
, 𝑁2(𝑠) =

𝑠

𝑙𝑒
} Are the shape functions. 

The discretized form of the beam element deformations can be written as 

{

휀(𝑠) =  𝑩𝒖
𝛾(𝑠) =  𝑩𝒗 − 𝑵 𝝍

𝜅(𝑠) =  𝑩𝝍
 (7) 

Where 𝑩 = {−
1

𝑙𝑒
;  
1

𝑙𝑒
} 

 

2.2 Constitutive relations 
 

We suppose that the response in axial direction is linear elastic leading to axial force; 𝑁 =
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𝐸𝐴휀,̅ where E is elastic modulus, A is cross section area and 휀 ̅is axial strain. However, the bending 

is described by elasto-plasticity with bilinear isotropic hardening which fits well with behavior of 

RC structures (Ibrahimbegovic and Frey 1993b). (See Fig. 2). The behavior is linear elastic up to 

𝑀𝐶 where the first crack in concrete appears. After that, the behavior is elastoplastic linear with 

hardening response up to  𝑀𝑦  when yielding of the reinforcement causes change in hardening 

modulus. 

 

 

 
Fig. 2 Moment-curvature relation for bending stress resultant model 

 

 

The curvature is decomposed into elastic and plastic part. 

𝜅 =  �̅�𝑒 + �̅�𝑝(8) 

The yield criterion is described by the yield function�̅� 

�̅�(𝑀, �̅�) =  |𝑀| − (𝑀𝑐 − �̅�) (9) 

𝑀 =  ΕΙ(�̅� − �̅�𝑝) (10) 

where I is the inertia moment and  �̅�is the stress like bending hardening variable that depends 

linearly on the strain like bending hardening variable 𝜉̅ (Jukicet al. 2013). 

�̅� =  {

−𝐾ℎ1𝜉̅

−(𝑀𝑦 − 𝑀𝑐) (1 − 
𝐾ℎ2
𝐾ℎ1

) − 𝐾ℎ2𝜉̅
 (11) 

Where 𝐾ℎ1 and 𝐾ℎ2 are hardening moduli.  

The evolution equations for plastic strain and hardening variable are 

�̅��̇� = �̇�𝑠𝑖𝑔𝑛(𝑀);  𝜉
̇
=  �̇� (12) 

The loading\unloading condition and the consistency conditions are 

�̇� ≥ 0  ;    �̅� ≤  0   ;  �̇��̅� = 0  ;   �̇��̇̅� = 0 (13) 

 

2.3 Enhanced kinematics with rotation discontinuity 
 

In order to represent the effect of softening plastic hinge, a jump in rotation α is defined at 
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point 𝑠𝑑 on the neutral axis. The expression of rotation after considering the jump 𝛼 is given by 

(Bui et al. 2014) 

𝜓(𝑆) =  �̅�(𝑆) + 𝛼𝐻Γ (14) 

where �̅�(𝑆) is the regular part rotation, and 𝐻Γ𝛼 is the singular part. 

with 

𝐻Γ = {
0      𝑖𝑓 𝑠 < 𝑠𝑑
1      𝑖𝑓 𝑠 ≥  𝑠𝑑

 (15) 

The expression of total rotation can be written as 

𝜓(𝑆) =   �̃�(𝑆) + 𝛼(𝐻Γ −  Ω(𝑆)) (16) 

where 

 �̃�(𝑆) =  �̅�(𝑆) + 𝛼Ω(𝑆) (17) 

and 

Ω(𝑆) = {
0      𝑖𝑓 𝑠 = 0
1      𝑖𝑓 𝑠 = 𝐿

 (18) 

With this particular form, the contribution of discontinuity is canceled on the element nodes 

and does not further propagates into the domain. (for more detail for the choice of 𝛺(𝑆) see (Bui et 

al. 2014) 

The curvature 𝑘(𝑠)of the element can be also decomposed into a regular part and a singular 

part 

𝜅(𝑠) =  �̅�(𝑠) +  𝛼𝛿𝑥𝑑(𝑠) (19) 

where �̅�(𝑠) denotes the regular part of the curvature. 𝛼 with the Dirac delta function 𝛿𝑥𝑑 denotes 

the singular part of rotation of hinge at point  𝑠𝑑 (Jukicet al. 2013). 

The displacement field corresponding to the finite element beam with 2 nodes including 

rotation discontinuity is written as 

{

𝑢(𝑠) =  𝑁1(𝑠)𝑢1 + 𝑁2(𝑠)𝑢2
𝑣(𝑠) =  𝑁1(𝑠)𝑣1 + 𝑁2(𝑠)𝑣2

𝜓(𝑠) =  𝑁1(𝑠)𝜓1 + 𝑁2(𝑠)𝜓2 + (𝐻Γ − 𝑁2(𝑠))𝛼

 (20) 

where 𝛼 is the jump in rotation.      
 

 

 
Fig. 3 The jump rotation 𝛼 within an element 
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The discretized form of the beam element deformations including the jump in rotation can be 

written as 

{

휀(𝑥) =  𝑩𝒖
𝛾(𝑥) =  𝑩𝒗 − 𝑵𝝍

𝜅(𝑥) =  𝑩𝝍+ 𝐺𝛼  
 (21) 

where 𝐺 = �̅� + �̿� =  −
1

𝑙𝑒
+ 𝛿𝑥𝑑 

The generalized deformations ordered in a matrix can be expressed as 

𝜺(𝑠) =  𝑩𝒅 + 𝑮𝜶 (22) 

with  

𝑩 = (𝑩𝟏, 𝑩𝟐); 𝑩𝒊 = 

[
 
 
 
 
 
𝑑𝑁𝑖
𝑑𝑠

0 0

0
𝑑𝑁𝑖
𝑑𝑠

−𝑁𝑖

0 0
𝑑𝑁𝑖
𝑑𝑠 ]

 
 
 
 
 

 (23) 

and  

𝑮 = �̅� + �̿� = [

0
0

−
1

𝑙𝑒

] + [
0
0
1
] 𝛿𝑥𝑑 (24) 

The general vector of nodal displacement is defined as 

𝒅 = 〈𝑢1, 𝑣1, 𝜓1, 𝑢2, 𝑣2, 𝜓2〉
𝑇 (25) 

The weak form of the equilibration equation can be written for two levels: global that concerns 

all elements and local that concerns particular elements with activated hinges (see Bui et al. 2014). 

A typical element contribution at these two levels can be written as 

{
 
 

 
 ∫ 𝒅∗𝑇𝑩𝑇𝝈𝑑𝑠 − ∫ 𝒅∗𝑇𝑵𝑇𝒇𝑑𝑠

𝑙𝑒

0

− 𝒅∗𝑇𝑭 = 0
𝑙𝑒

0

∫ 𝛼∗𝑮𝑻𝝈𝑑𝑠
𝑙𝑒

0

=  0                            ∀𝑒 ∈ [1, 𝑁𝑒𝑙
𝛼]

 (26) 

By using the finite element assembly procedure (e.g., see Zienkiewicz and Taylor 2005), we 

obtain the set of global and local equations 

{

𝐴𝑒=1
𝑁𝑒𝑙 [𝒇𝑖𝑛𝑡(𝑒) − 𝒇𝑒𝑥𝑡(𝑒)] = 0 , ∀𝑒 ∊ [1 , 𝑁𝑒𝑙]

ℎ𝑒 = ∫ �̅�
𝑙𝑒

0

𝑀𝑑𝑠 + 𝑀𝑠=𝑠𝑑 = 0 , ∀𝑒 ∈ [1, 𝑁𝑒𝑙
𝛼]

 (27) 

Here 𝒇𝑖𝑛𝑡
(𝒆)

 is the internal force vector 

117



 

 

 

 

 

 

Mourid El houcine, Mamouri Said and Ibrahimbegovic Adnan 

𝒇𝑖𝑛𝑡
(𝑒)

= ∫ 𝑩𝑇𝝈𝑑𝑠
𝑙𝑒

0

 (28) 

and 𝒇𝑒𝑥𝑡
(𝒆)

 is the external force vector 

𝒇𝑒𝑥𝑡
(𝑒)

= ∫ 𝑵𝑇𝒇𝑑𝑠
𝑙𝑒

0

+  𝑭 (29) 

The first equation in (27) enforces the equilibrium at all the nodes in the mesh, and the second 

requires weak equilibrium between the moment at discontinuity and moment in the bulk for each 

element in the mesh with activated plastic hinge. 

By using consistent linearization (Ibrahimbegovic 2009); we obtain the equilibrium equations 

(27) written in the incremental form 

{
𝐴𝑒=1
𝑁𝑒𝑙 [𝑲𝑓𝑑Δ𝒅+ 𝑲𝑓𝛼Δ𝛼 − 𝒇𝑒𝑥𝑡(𝑒)] = 0

𝑲ℎ𝑑𝚫𝒅 + 𝐾ℎ𝛼Δ𝛼 = 0                               
 (30) 

where 

𝑲𝑓𝑑 = ∫ 𝑩𝑇𝑪
𝑙𝑒

0
𝑩𝑑𝑠 ;      𝑲𝑓𝛼 = ∫ 𝑩𝑇𝑪

𝑙𝑒

0
�̅�𝑑𝑠 

𝑲ℎ𝑑 = ∫ �̅�𝑇𝑪
𝑙𝑒

0
𝑩𝑑𝑠 ;       𝐾ℎ𝜶 = ∫ �̅�𝐶

𝑙𝑒

0
�̅�𝑑𝑠 + 𝑘𝑠 

By static condensation at the element level, the Eq. (30) turns into 

𝐴𝑒=1
𝑁𝑒𝑙 [�̂�𝑒Δ𝒅 − 𝒇𝑒𝑥𝑡(𝑒)] = 0 (31) 

With  

�̂�𝑒 = 𝑲𝑓𝑑 − 𝑲𝑓𝛼(𝐾ℎ𝜶)−𝟏𝑲ℎ𝑑 (32) 

The solution of this equation will give the corresponding displacement increment and new 

displacement. 
 

2.4 Softening plastic hinge in bending 
 

When the ultimate moment 𝑀𝑢 is reached at 𝑠𝑑 (the most critical cross section), the rotation 

discontinuity is activated as is described before, and the softening plastic hinge forms at the same 

location. The moment in the hinge is related to the jump in rotation by rigid softening plastic 

response. Fig. 4 shows that the moment in plastic hinge decrease linearly with increase of jump 

rotation (see Jukic et al. 2013). 
 

 

 
Fig. 4 Moment-jump relation for softening 
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Fig. 5 Replacing softening plastic hinges with revolute joints 

 

 

We note that during the softening process, the moment in plastic hinge remains in weak 

equilibrium with the moment in the bulk of finite element. 

The plastic hinge forms at the most critical cross section, generally, at integration point where 

we first reach the ultimate moment. After activation of the plastic hinge, all components of the 

curvature expressions are non-zero. The plastification process of the bulk material stops and 

plastic curvature will not be changing anymore (Jukic et al. 2013). The curvature decomposes into 

elastic, plastic and singular part 

𝜅 =  �̅�𝑒 + �̅�𝑝 + �̿� (33) 

with   �̅�𝑝 that remains frozen subsequently. 

The failure yield function �̿� can be written as 

�̿�(𝑡, �̿�) =  |𝑡| − (𝑀𝑢 − �̿�) (34) 

𝑡 =  −∫ �̅�𝑀𝑑𝑥
𝑙𝑒

0

 (35) 

where �̿� represents bending moment like softening variable, which grows linearly with internal 

strain-like bending softening variable 𝜉̿ up to 𝑀𝑢 when carrying capacity drops to zero (Jukic et al. 

2013) 

�̿� = 𝑚𝑖𝑛 {−𝐾𝑠�̿�   ;  𝑀𝑢} ;  𝐾𝑠 < 0 (36) 

The evolution equations for softening variable, the loading/unloading conditions and the 

consistency conditions are 

�̇� = 𝛾
̇
𝑠𝑖𝑔𝑛(𝑀);  𝜉

̇
=  𝛾

̇
 (37) 

�̇̅̅� ≥ 0  ;    �̅̅� ≤  0   ;  �̇̅̅��̅̅� = 0  ;   �̇̅̅��̅̅�
̇
= 0 (38) 

 
 
3. Dynamic nonlinear analysis of multibody system 
 

The application of the theoretical aspects and computations described in previous part provides 
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a structure completely or partially failed. After formation of most plastic hinges, the structure 

obtained a new equilibrium state, with redistribution of the stress resultants and moments, giving a 

mechanism like multibody system. For well representing the behavior of mechanism, we replace 

the plastic hinges with the revolute joints which allow a free components rotation in the plane (see 

Fig. 5).  

 

3.1 Joints constraint and relative motion 
 

The joint is defined when two beam elements are not rigidly attached to each other. In 

particular, the revolute joint allows a free rotation of the two adjacent elements around a given 

axis. With the chosen master-slave approach, one of connected nodes in joint is called a master 

and the other node is called slave (see Ibrahimbegovic and Mamouri 2000). 

The motions of the master and the slave nodes in 2D are specified by their position vectors and 

rotation matrices 

𝝋𝑡
𝑚, 𝜦𝑡

𝑚 = [𝒕1
𝑚, 𝒕2

𝑚]; 𝝋𝑡
𝑠, 𝜦𝑡

𝑠 = [𝒕1
𝑠 , 𝒕2

𝑠] (39) 

The master and slave nodes share the same coordinates, which allows us to write 

𝝋𝑡
𝑠 −𝝋𝑡

𝑚 = 0 (40) 

Such constraint can be handled by using the Lagrange multiplier procedure, which requires 

adding to the equilibrium equations, a supplementary condition according to 

𝜆𝜑(𝝋𝑡
𝑠 −𝝋𝑡

𝑚) = 0 (41) 

where 𝜆𝜑 is the Lagrange multiplier. Such an approach leads to considerable increase in total 

number of global unknowns, in addition to the unknown motion components for both master and 

slave nodes (for more detail see Ibrahimbegovic and Mamouri 2000). In order to avoid this 

constraint, we propose an alternative approach, which consist to impose the master slave joint 

constraint kinematic; by considering a relative motion. In the case of revolute joint, the coordinates 

of slave node are the same as those of the master node. The slave node rotation matrix can be 

obtained as the multiplication of the master node rotation matrix and relative rotation matrix. The 

slave node rotation matrix can be defined as 

𝜦𝑡
𝑠 = 𝜦𝑡

𝑚𝜦𝑡
𝑟 (42) 

where 𝜦𝑡
𝑟 is the relative rotation matrix. In 2D, the rotation of slave node can be expressed as sum 

of master node rotation and a given relative rotation𝜓𝑟 

𝜓𝑠 = 𝜓𝑚 + 𝜓𝑟 (43) 

This approach can be used in our work to represent MBS which is employed here for modelling 

the controlled progressive collapse. Such process requires the ability of describing large rotations 

and displacements. Thus, a nonlinear dynamic analysis must be applied using geometrically 

nonlinear Reissner’s beam as the proper generalization of the Timoshenko beam from the first 

phase of the analysis. In the following section, we present nonlinear kinematic beam and time 

integration scheme. 

 

3.2 Non-linear Reissner’s beam kinematic with master-slave constraint 
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A controlled destruction and progressive collapse of 2D reinforced concrete frames 

In this section, we describe the equations governing the motion of 2D beam presented in 

section 1 considering large rotations and displacements (Mamouri et al. 2014, Mamouri et al. 

2016b, Brank et al. 1998), and including the master slave joint constraint. 

The deformed configuration and generalized strain measures are defined in Eqs. (2) and (4). 

The stress resultants and moment can be defined in the deformed configuration as 

{
𝒏 = 𝑁𝒕1 + 𝑇𝒕2
𝑚 = 𝑀𝒕3

 (44) 

where 𝒏,𝑚: are work conjugate to 𝜺, 𝑘 , respectively. It is important to note that, 𝒏,𝑚 are the 

spatial object defined in the deformed configuration, but parameterized by the coordinate set in the 

initial configuration. They are equivalent to the stress resultants of the first Piola-Kirchhoff stress 

tensor (Ibrahimbegovic and Frey 1993a). 

The material objects of stress resultants and strain measures are given by 

𝑵 = 𝜦𝑇𝒏,𝜮 = 𝜦𝑇𝜺 (45) 

𝑀 = 𝑚,𝐾 = 𝑘 (46) 

where 𝑵 = 𝑁𝒕𝟏 + 𝑇𝒕𝟐and  𝜮 = (
𝛴
𝛤
) 

By considering the linear elastic constitutive relation, the material objects of stress resultant and 

moment are given by 

(
𝑁

𝑇
) = 𝑪(

𝛴

𝛤
) ,     𝑀 = 𝐶𝑚𝑘  ; 𝑪 = (

𝐸𝐴 0
0 𝐺𝐴

) , 𝐶𝑚 = 𝐸𝐼 (47) 

where 𝐸 is the Young modulus, 𝐺 is the shear modulus, 𝐴 is the beam cross section and 𝐼 is the 

inertia of the section. 

The weak form of the equations of beam large motion is obtained as 

∫ (δ𝛆. 𝐧 + δk.m)ds
L

0

 + ∫ (δ𝛗. Aρ�̈� + δψ. Iρψ̈)ds −
L

0

δΠext = 0 (48) 

where  �̈� , ψ̈  are the acceleration components, (𝐴𝜌 = ∫𝜌𝑑𝐴    and   𝐽𝜌 = ∫𝜌휁
2𝑑𝐴  are inertia 

coefficients. δΠext is the virtual work of external forces. 

The virtual strainsδ𝛆, δ𝑘are obtained by using the Lie derivative formalism (Ibrahimbegovic 

2009). The variations of spatial objects are computed in initial configuration, followed by the 

push-forward of the result to the deformed configuration (Ibrahimbegovic and Mamouri 1999). 

Accordingly, the axial and shear virtual strains can be written as 

𝛿𝜺 = 𝜦𝛿(𝜦𝑇𝜺) = 𝜹𝝋′ −𝑾𝝋′𝛿𝜓 (49) 

where δ𝝋, δψ are respectively the virtual displacement and the virtual rotation.  

Due to the planar nature of problem, the virtual bending strain is computed in simple way, 

using the identity tensor for pull-back and push-forward as follows 

𝛿𝑘 = 𝑰𝛿(𝑰𝑘) = 𝛿𝜓′ (50) 

 

3.2.1 Finite element approximations 
By using the simplest finite element interpolations based upon two node elements defined in 
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(6), the weak form of equation of motion in (47) can be recast in term of a set of nonlinear 

algebraic equations (see Mamouri et al. 2016b) 

𝑮ℎ(. ) = 𝑨𝑒=1
𝑁𝑒𝑙𝑮𝑒(. ) (51) 

where 𝑨𝑒=1
𝑁𝑒𝑙  denotes the finite element assembly procedure. The weak form contribution of typical 

element  𝑮𝒆(. ) can be obtained as 

𝑮𝑒(𝛗𝑎 , 𝜓𝒂, 𝜹𝛗𝑎 , δ𝜓𝑎) = ∑ (
𝜹𝛗𝑎

δ𝜓𝑎
)

2

𝑎=1

. (
�̃�𝑎

�̃�𝑎) (52) 

where 

�̃�𝑎 = ∫ (𝑵𝑎
′ 𝒏+ 𝑵𝑎Aρ�̈�

𝑎)𝒅𝒔 − 𝒏𝑒𝑥𝑡
𝑎

𝑙𝑒

0

 (53) 

�̃�𝑎 = ∫ (𝑵𝑎
′ 𝑚− 𝑵𝑎(𝐖𝝋

′). 𝒏 + 𝑵𝑎Iρψ̈
𝑎)𝒅𝒔 −𝑚𝑒𝑥𝑡

𝑎
𝑙𝑒

0

 (54) 

with 𝒏𝑒𝑥𝑡
𝑎  and 𝑚𝑒𝑥𝑡

𝑎  are external nodal forces and moments. We apply the master slave approach, 

and consider node a in the element e as slave node whose motion is governed by the motion of the 

master node m with respect to the revolute joint constraint (see Ibrahimbegovic and Mamouri 

2000); the modified contribution of an element to the weak form of equation of motion can be 

written, starting from (51), in term of master node motion, as 

𝑮𝒆(𝛗𝑏 , 𝜓𝒃, 𝛗𝑚, 𝜓𝑚, 𝜓𝑟, 𝛿𝛗𝑏 , δ𝜓𝑏 , 𝛿𝛗𝑚, δ𝜓𝑚, δ𝜓𝑟) =

(

 
 

𝜹𝛗𝑚

δ𝜓𝑚

𝜹𝛗𝑏

δ𝜓𝑏
)

 
 
.(

�̃�𝑠

�̃�𝑠

�̃�𝑏

�̃�𝑏

)+ (
0
δ𝜓𝑟

) . (
�̃�𝑠

�̃�𝑠) (55) 

 

3.3 Energy conserving\decaying time integration scheme 
 

In this section we discuss shortly the time integration schemes designed for controllable energy 

conservation or decay to overcome the loss of accuracy especially for the computed internal forces 

in presence of the high frequency contribution that can be resolved by reasonably coarse finite 

element mesh. 

This scheme is based on the mid-point rule approximation. This concept is used for time 

derivation of weak form, which should be written at middle of time step increment 

(Ibrahimbegovic and Mamouri 2002, Brank et al. 1998) 𝑡𝑛+1/2 = 𝑡𝑛 + 
Δ𝑡

2
, where Δ𝑡 = 𝑡𝑛+1 −

 𝑡𝑛, as 

∫ ((𝜹𝝋′ −𝑾𝝋′𝛿𝜓). 𝒏
𝑛+

1

2

+ 𝛿𝜓′.𝑚
𝑛+

1

2

)𝑑𝑠
𝐿

0

+ 

∫ (𝛿𝝋. 𝐴𝜌�̈�𝑛+1
2

+ 𝛿𝜓. 𝐼𝜌�̈�𝑛+1
2

)𝑑𝑠 − 𝛿𝛱
𝑛+

1

2

𝑒𝑥𝑡 = 0
𝐿

0

 

(56) 
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The displacement and rotation, at the middle of time step are computed as 

{
𝝋𝑛+1/2 =

𝝋𝑛+1 + 𝝋𝑛
2

𝜓𝑛+1/2 =
𝜓𝑛+1 + 𝜓𝑛

2

 (57) 

when using this approach, we note that the rotation matrix is orthogonal (see Mamouri et al. 

2016a), when described at the middle of time step as 

𝜦𝑛+1/2 = [
𝑐𝑜𝑠 𝜓+1/2 −𝑠𝑖𝑛𝜓+1/2
𝑠𝑖𝑛𝜓+1/2 𝑐𝑜𝑠 𝜓+1/2

] (58) 

For the energy decaying scheme, the constitutive equations and update of velocities are 

constructed in the manner that ensures that the energy will be dissipated by filtering out the high 

frequency contribution over each time step where it needed. The latter is achieved by using two 

control parameters for internal and kinetic energy, and the algorithmic constitutive equations as 

𝑵
𝑛+

1

2

= 𝑪
1

2
(𝜮𝑛+1 + 𝜮𝑛) + 𝛼(𝜮𝑛+1 − 𝜮𝑛) (59) 

𝑀
𝑛+

1

2

= 𝐶𝑚(𝐾𝑛+1 +𝐾𝑛) + 𝛼(𝐾𝑛+1 + 𝐾𝑛) (60) 

where 𝛼 ∈ [0 ,
1

2
] is the internal energy dissipation parameter.  

In order to ensure the decay of the total energy in the case of vanishing strains, we ought to 

introduce dissipation in the inertia term, resulting with an appropriate velocity modification by 

adding the corresponding dissipation term. The update of velocities can be performed by using 

{

𝛗n+1 − 𝛗n
Δ𝑡

= �̇�n+1/2 + 𝛽(�̇�n+1 + �̇�n)

𝜓𝐧+1 − 𝜓n
Δ𝑡

= �̇�n+1/2 + 𝛽(�̇�n+1 + �̇�n)
 (61) 

with 𝛽 ∈ [0 ,
1

2
] is the kinetic energy dissipation parameter. 

With the controllable parameters 𝛼 𝑎𝑛𝑑 𝛽, the scheme proposed is able to dissipate the energy 

with filtering out the high frequency contribution. With the choice of parameters:𝛼 =  𝛽 = 0, the 

dissipation terms are equal to zero, which leads to energy conserving scheme preserving the total 

energy. 

For more details about the energy conserving/decaying scheme, we refer to (Mamouri et al. 

(2016a) and (Ibrahimbegovic and Mamouri 2002). 

Linearization and computational procedure:  

Using the expressions of velocity and acceleration update, the weak form of equation of motion 

in (56) can be written as an explicit function of the nodal displacements and rotations at time tn+1 

 

(62) 
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The linearized form of the result (62) can be obtained by consistent linearization 

(Ibrahimbegovic 2009) 

𝑳𝒊𝒏(𝑮(𝛗
n+

1

2

, 𝜓
n+

1

2

, 𝛿𝛗, δ𝜓)) = 𝑮
n+

1

2

+
𝑑

𝑑𝜖
|
𝜖=0

[𝑮(𝛗n+1,𝝐, 𝜓n+1,𝜖 , 𝛿𝛗, δ𝜓)]  (63) 

where 

{
𝛗n+1,𝜖 = 𝛗n+1 +  𝜖∆𝛗n+1
𝜓n+1,𝜖 = 𝜓n+1 +  𝜖∆𝜓n+1

 (64) 

with 𝛗n+1 , 𝜓n+1 are respectively the incremental displacements and rotations. The second term in 

(63) can be written as 

𝒅

𝒅𝝐
|
𝝐=𝟎

[𝑮
𝐧+

1

2
,𝝐
] =  ∫ (

𝜹𝛗
δ𝜓
) [𝑯]. (

∆𝛗n+1
∆𝜓n+1

)
𝒍𝒆

𝟎

𝒅𝒔  +  ∫ (

𝜹𝛗′
δ𝜓

δ𝜓′

) . [𝑫](

∆𝛗′n+1
∆𝜓n+1
∆𝜓′n+1

)
𝒍𝒆

𝟎

𝒅𝒔 (65) 

with 

[𝑫] = [𝑬 + 𝑮] 

The explicit forms of the matrices [𝑯], [𝑬]𝑎𝑛𝑑[𝑮] are given below. With the respect to the 

joint constraint, considering node a as a slave node s whose motion can be governed by the master 

node m motion and relative displacement and rotation, the discretized form of (65) can be written 

as 

𝑑

𝑑𝜖
|
𝜖=0

[𝑮
n+

1

2
,𝜖
] =  (

𝜹𝛗𝑏
δ𝜓𝑏
𝜹𝛗𝑚
δ𝜓𝑚

) . [�̂�]

(

 
 
∆𝛗𝑛+1

𝑏

∆𝜓𝑛+1
𝑏

∆𝛗𝑛+1
𝑚

∆𝜓𝑛+1
𝑚

)

 
 
+(

𝜹𝛗𝑏
δ𝜓𝑏
𝜹𝛗𝑚
δ𝜓𝑚

) . [�̂�]∆𝜓𝒏+𝟏
𝒓  + δ𝜓𝒓[�̂�]

(

 
 
∆𝛗𝑛+1

𝑏

∆𝜓𝑛+1
𝑏

∆𝛗𝑛+1
𝑚

∆𝜓𝑛+1
𝑚

)

 
 

+ δ𝜓𝑟[�̂�]∆𝜓𝑛+1
𝑟  

(66) 

Where 

[�̂�] = ∫ ([𝑩𝑖𝑛𝑒𝑟]
𝑇[𝑯][𝑩𝑖𝑛𝑒𝑟])

𝒍𝒆

𝟎

𝑑𝑠 + ∫ ([𝑩𝑖𝑛𝑡]
𝑇[𝑫][𝑩𝑖𝑛𝑡])

𝒍𝒆

𝟎

𝑑𝑠 

[�̂�] = ∫ ([𝑩𝑖𝑛𝑒𝑟]
𝑇[𝑯][𝑩1𝑟])

𝒍𝒆

𝟎

𝑑𝑠 + ∫ ([𝑩𝑖𝑛𝑡]
𝑇[𝑫][𝑩2𝑟])

𝒍𝒆

𝟎

𝑑𝑠 

[�̂�] = ∫ ([𝑩1𝑟]
𝑇[𝑯][𝑩𝑖𝑛𝑒𝑟])

𝒍𝒆

𝟎

𝑑𝑠 + ∫ ([𝑩2𝑟]
𝑇[𝑫][𝑩𝑖𝑛𝑡])

𝒍𝒆

𝟎

𝑑𝑠 

[�̂�] = ∫ ([𝑩1𝑟]
𝑻[𝑯][𝑩1𝑟])

𝒍𝒆

𝟎

𝑑𝑠 + ∫ ([𝑩2𝑟]
𝑻[𝑫][𝑩2𝑟])

𝒍𝒆

𝟎

𝑑𝑠 

[𝑩𝑖𝑛𝑒𝑟], [𝑩𝑖𝑛𝑡], [𝑩1𝑟] 𝒂𝒏𝒅 [𝑩2𝑟] are given as 
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[𝑩𝑖𝑛𝑒𝑟] = [
𝑵𝑏 𝟎 𝑵𝑠
0 𝑁𝑏 0

0
𝑁𝑠
]; [𝑩1𝑟] = [

0
𝑁𝑠
] 

[𝑩𝑖𝑛𝑡] = [

𝑵𝑏
′ 0 𝑵𝑠

′

𝟎 𝑁𝑏 𝟎

𝟎 𝑁𝑏
′ 𝟎

0
𝑁𝑠
𝑁𝑠
′
] ;  [𝑩2𝑟] = [

0
𝑁𝑠
𝑁𝑠
′
] 

Since the additional relative variables are assigned to a particular element only, they can be 

handled locally by using the static condensation procedure. For that, the relative incremental 

rotation vector can be written as 

∆𝜓𝒏+𝟏
𝒓 = −[�̂�]

−𝟏
[�̂�]

(

 
 

∆𝛗𝒏+𝟏
𝒃

∆𝜓𝒏+𝟏
𝒃

∆𝛗𝒏+𝟏
𝒎

∆𝜓𝒏+𝟏
𝒎

)

 
 

 (67) 

By replacing the last result in (67), we obtain the condensed form of tangent stiffness matrix by 

[�̃�] = [�̂�] − [�̂�][�̂�]
−1
[�̂�] (68) 

This Tangent matrix will be used to define the corresponding displacement increment and 

update for new displacement. 

 

 

4. Contact problem governing equations 
 

Considering complete collapse of a structure, we need finally to describe its contact with the 

ground. To that end, we provide here a short description of contact problem and its governing 

equations. We only consider the frictionless case, which is sufficient to obtain the structure debris 

dispersion.   

 

4.1 Kinematic 
 

We consider the cantilever beam which can be enter in contact with a rigid obstacle as 

presented in Fig. 6. Initially, the distance between the beam free end and the rigid obstacle is 

defined by g0. In subsequent deformed configuration, the new distance to the obstacle is gt. 
 

 

 
Fig. 6 Contact of beam with rigid obstacle 
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The chosen sign convention implies that this distance can be either positive, if there is no 

contact, or zero, when the beam is in contact with obstacle 

gt ≥ 0 (69) 

With the respect to the action-reaction principle, the rigid obstacle produces a reaction opposite 

to the beam action. The latter can be positive, in the case of contact, and zero otherwise. 

p̅t ≥ 0 (70) 

The contact constrains can be written in term of the Kuhn-Tucker condition as 

gt. p̅t = 0 (71) 

It means that always one between the contact gap gtand the reaction contact p̅t is equal to zero. 

 

4.2 Penalty method for contact problem 
 
The contact problem described previously is here handled by the penalty method 

(Ibrahimbegovic 2009). The simple quadratic penalty function can be written in standard way 

𝑃(𝑔𝑡) = {

1

2
𝑘(𝑔𝑡)

2𝑔𝑡 ≥ 0

0                 𝑔𝑡 < 0
 (72) 

Where 𝑘 is the chosen penalty parameters. The use of this penalty function is equivalent to 

considering the rigid obstacle as an elastic spring with elasticity coefficient equal to 𝑘  (see 

Ibrahimbegovic 2009 for more details). The contact force can be written in term of displacement 

as 

p̅t = {
𝑘(𝑔𝑡)         𝑔𝑡 ≥ 0
0                 𝑔𝑡 < 0

 (73) 

Using the mid-point scheme, the contact force can be written in term of conservation as 

𝑝cons = 𝑘
1

2
(𝑔𝑛+1 + 𝑔𝑛) (74) 

In order to take into account, the effect of dissipation, we introduce the parameter 𝛼 

𝑝diss = 𝑝cons + 𝛼𝑘(𝑔𝑛+1 − 𝑔𝑛) (75) 

 

4.3 Motion equations with contact using energy conserving\decaying scheme 
 

The time integration of equation of motion is done using the mid-point scheme. The equations 

to solve can be obtained starting from the linearized form in (66), and considering the contact of 

structure with the ground at𝑡𝑛+1/2 = 𝑡𝑛 + 
Δ𝑡

2
 

([�̃�]
𝑛+

1

2

𝑖−1
+𝑲

𝑛+
1

2

𝑐𝑜𝑛𝑡𝑎𝑐𝑡,𝑖−1)∆𝒖𝑛+1
𝑖 = 𝑭

𝑛+
1

2

𝑒𝑥𝑡 −𝑭
(𝑛+

1

2
)

𝑖𝑛𝑡(𝑖−1) − 𝑭
𝑛+

1

2

𝑐𝑜𝑛𝑡𝑎𝑐𝑡,(𝑖−1)
 

–𝑴(
2

Δ𝑡2
(𝐮n+1

i−1 − 𝐮n) −
2

Δ𝑡
�̇�n) 

(76) 
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where, [�̃�]  is the condensed matrix defined in (71), 𝑭
𝑛+

1

2

𝑐𝑜𝑛𝑡𝑎𝑐𝑡,(𝑖−1)
 is the contact residual and 

𝑲
𝑛+

1

2

𝑐𝑜𝑛𝑡𝑎𝑐𝑡,𝑖−1
 is the linearized contact stiffness matrix, 𝑴  is the mass matrix, ∆𝒖𝑛+1

𝑖  is the 

incremental displacement and rotation vector. The equations of mid-point rule are computed using 

the same updates as used before in (57) and (61). By solving the Eq. (76), we get the incremental 

displacements and new values of displacements, which allow us to compute the new values of 

velocities and accelerations 

 

 

4. Numerical examples 
 

All the computations in this work are performed by a research version of FEAP program (see 

Zienkiewicz and Taylor 2005). To illustrate the efficiency of proposed models for different phases 

of collapse simulations, several numerical examples are presented in Jukic et al. (2013). 

• The cantilever beam and two-story frame are used to illustrate the efficiency of the model. 

The Static analysis of failure is used. 

• The six-story building is used explain the methodology for complete Progressive collapse of 

construction. 

 

5.1 Cantilever beam 
 
We consider the cantilever beam of rectangular cross section with length L = 2.5 m, three 

loading cases at the end of the cantilever beam are tested. 

The geometric and material proprieties are chosen as: 𝐸𝐼 = 77650 𝐾𝑁𝑚2, 𝑀𝑐 = 37.9 𝐾𝑁𝑚, 

𝑀𝑦 = 268 𝐾𝑁𝑚 , 𝐾ℎ1 = 29400 𝐾𝑁𝑚
2 , 𝐾ℎ2 = 272 𝐾𝑁𝑚

2 , 𝑀𝑢 = 274 𝐾𝑁𝑚 ,  𝐾𝑠 =

−18000 𝐾𝑁𝑚 . 

1. The cantilever beam is loaded at the free end by a moment (Fig. 7). 

 

 

 
Fig. 7 Cantilever beam with end moment 

 

 
Fig. 8 Cantilever beam with end moment: Different number of elements 
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Fig. 9 Cantilever beam with end moment: Different number of elements with one weakened 

 

 

2. The second load case of the cantilever beam concerns the free end moment and axial force 

applied simultaneously (Fig. 10), which is representative of conditions for a column. 

The material parameters chosen for this example are:𝑁 = 100 𝐾𝑁𝑚,𝑀𝑐 = 55 𝐾𝑁𝑚, 𝑀𝑦 =

395 𝐾𝑁𝑚,𝐾ℎ1 = 35000 𝐾𝑁𝑚
2, 𝐾ℎ2 = 352 𝐾𝑁𝑚

2, 𝑀𝑢 = 401 𝐾𝑁𝑚𝐾𝑠 = −26000 𝐾𝑁 

 

 

 
Fig. 10 Cantilever beam with end moment and constant axial force 

 

 

Fig. 11 shows the deference obtained in cantilever beam response in failure analysis, with and 

without axial force. 

 

 

 
Fig. 11 Cantilever beam response under end moment with and without axial force 
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3. Third load case of the cantilever beam concerns the free end vertical force. We use the 

same geometric and material proprieties as for load case 1, except the ultimate moment value 

where we use𝑀𝑢 = 374 𝐾𝑁𝑚. (Fig. 12). 

The cantilever beam is modeled with 10, 15, 20 and 25 finite elements. An imposed vertical 

displacement is applied at the free end in order to get the failure analysis. 
 

 

 
Fig. 12 Cantilever beam under transversal force 

 

 

Fig. 13 shows that the different mesh grading presents the same slope softening but not the 

same ultimate load. This difference can appear from the use of only one integration point, which 

leads to a shift of the plastic hinge. In this example, there is no need for weakening one of finite 

elements, because the nature of problem presents non-homogeneous stress state. 
 

 

 
Fig. 13 Cantilever beam response under transversal force: Different mesh 

 

 

5.2 Two-story reinforced concrete frame 
 
 

 
Fig. 14 Two-story frame 
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We consider two-story reinforced concrete frame with height H =2 m and span L =3.5 m. 

Columns and beams have the same rectangular cross section𝑏 × ℎ = 0.3 × 0.4 𝑚2. The material 

proprieties needed for computation are given by (see Dujc et al. 2010). 

𝑀𝑐 = 100 𝐾𝑁𝑚;  𝑀𝑦 = 245 𝐾𝑁𝑚;  𝑀𝑢 = 265 𝐾𝑁𝑚;   𝐾ℎ1 = 12450 𝐾𝑁𝑚
2;   𝐾ℎ2 =

195 𝐾𝑁𝑚2;    𝐾𝑠 = −2410 𝐾𝑁𝑚 for columns. 

𝑀𝑐 = 30 𝐾𝑁𝑚;  𝑀𝑦 = 150 𝐾𝑁𝑚;  𝑀𝑢 = 170 𝐾𝑁𝑚;   𝐾ℎ1 = 11190 𝐾𝑁𝑚
2;   𝐾ℎ2 =

137 𝐾𝑁𝑚2;    𝐾𝑠 = −1310 𝐾𝑁𝑚 for beams. 

 

 

 
Fig. 15 Response of the frame up to the total collapse using different mesh 

 

 

Columns are clamped at the bottom. The load is applied in two steps. First, constant vertical 

force act at the top of both columns. Second, we impose horizontal displacement u at the left top of 

the frame. 

The structure is modeled by 30, 60 and 120 finite elements. Fig. 15 shows that we get better 

results when increasing number of elements. The results illustrate that the model is able to predict 

the complete failure after creating six plastic hinges located in joints beam-column and two bottom 

clamped support (Fig. 16).  

 

 

 
Fig. 16 plastic hinges in Two-story frame 
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5.3 Six-story building 
 

We consider six-story frame with floor height H =3m and span L =4m. Columns and beams 

have the same rectangular cross section𝑏 × ℎ = 0.3 × 0.4 𝑚2. The material proprieties needed for 

computation are given by (see Imamovic et al. (2015) for the material proprieties identification). 

𝑀𝑐 = 100 𝐾𝑁𝑚;  𝑀𝑦 = 245 𝐾𝑁𝑚;  𝑀𝑢 = 265 𝐾𝑁𝑚;   𝐾ℎ1 = 12450 𝐾𝑁𝑚
2;   𝐾ℎ2 =

195 𝐾𝑁𝑚2for columns. 

𝑀𝑐 = 30 𝐾𝑁𝑚;  𝑀𝑦 = 150 𝐾𝑁𝑚;  𝑀𝑢 = 170 𝐾𝑁𝑚;   𝐾ℎ1 = 11190 𝐾𝑁𝑚
2;   𝐾ℎ2 =

137 𝐾𝑁𝑚2for beams. 

Columns are clamped at the bottom. The frame is modeled with 84, 144 and 288 elements. The 

progressive collapse analysis is performed in two steps: 

Step 1: static analysis is performed by considering an elasto-plasticity with bi-linear isotropic 

hardening followed by the softening producing the failure mechanism. 

The load is applied in two steps. First, constant vertical force act at the top columns. Second, 

we impose horizontal displacement with function u(t), which grows linearly with the pseudo-time, 

at the left top of the frame. 

Fig. 18 present the response of frame using different mesh. The use of 288 elements give better 

result than 84 and 144 elements.  Fig. 19 present the response of frame using different values of 

the softening modulus. When we use small value of the softening modulus, the structure fails when 

the most of softening plastic hinges are activated. In opposite, the structure fails after that the first 

hinges are activated, and the rest of hinges are not activated anymore, because of redistribution of 

stress in frame.  

A static analysis is performed using 288 elements model with softening's module   𝐾𝑠 =
−393 𝐾𝑁𝑚 for beam and 𝐾𝑠 = −723 𝐾𝑁𝑚  for columns. Such values of softening moduli allow 

the creation of most plastic hinges. (Fig. 20).  

 

 

 
Fig. 17 Six story frame 
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Fig. 18 Response of six story frame using different mesh 

 

 
Fig. 19 Response of six story frame using different softening’s modulus 

 

 
Fig. 20 Response of six-story frame up to the creation of all plastic hinges 

 

 

Fig. 21 shows the locations of softening plastic hinges in the frame. It is important to note that 

the most of plastic hinges are formed in beams. There are only four hinges formed in clamped 

columns and two hinges in top columns. 

A second step of the analysis is performed in order to complete the progressive collapse.  A 

multibody system dynamic analysis is performed for six-story frame mechanism formed after the 

creation of the softening plastic hinges (obtained at the end of the previous analysis in the first 
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step). The mesh of the first step is modified by replacing all of the plastic hinges by kinematic 

conditions between connected nodes, for getting a hinge mechanism.  We also consider the contact 

between the frame and the ground and assume an elastic behavior of the structural mechanism. 

Both Newmark scheme and energy conserving/decaying scheme are used and compared. We 

impose horizontal displacement which grows linearly with time u(t) at the left top of the frame, 

and we monitor the reaction force at the same location. We note that the gravity load is not 

considered in the dynamic analysis. Figs. 25 and 27 show that with Newmark scheme, the 

response is too far to the realistic structure behavior, due to the high frequency oscillations. In the 

same figures, we observe that with energy conserving scheme, the response describes a behavior 

better than first scheme; but the structure oscillates and it is not able to find its stable final position. 

However, as is shown in Figs. 26 and 28, with energy decaying scheme we are able to capture 

response of structure without oscillations by using values of parameters α = β = 0.01, 0.1, 0.25 and 

0.5, which describe the structure behavior in realistic way. 

 

 

 

 
Fig. 21 Location of softening plastic hinges in six-story frame 
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Fig. 22 Deformed shape of six story frame 

 

 
Fig. 23 Progressive collapse with contact: with conserving energy scheme (alpha= beta=0.5) 

 

 

  
(a) frame at t = 158 s (b) frame at t = 170 s 

Fig. 24 Deformed shape of six story frame 
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(a) (b) 

Fig. 25 Force versus Time computed by Newmark scheme (a) and energy-conserving scheme (b) 

 

 

 

Fig. 26 Force versus Time using energy-decaying scheme 
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(a) (b) 

Fig. 27 Force versus Time computed by Newmark scheme (a) and energy-conserving scheme (b): structure 

in contact with ground 

 

 

 

 
Fig. 28 Force versus Time using energy-decaying scheme: Structure in contact with ground 
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Fig. 29 Dynamic response of six-story frame until total collapse 

 

 

Fig. 23 illustrates the progressive collapse of six-story frame. At time t = 170 s, the frame is 

completely collapsed. (Fig. 24). From Fig. 29, it is clear that, with frictionless impact 

consideration with the ground, the structure is pushed up again when touching the ground at t = 

158 s and is shot down slowly which require larger force at final stages of the collapse; this 

observation can be explained by the absence of gravity load which can accelerate the demolition of 

structure. In other hand, the imposed loading may be not sufficient for total collapse in presence of 

the contact reaction of the ground. 

 

 

6. Conclusions 
 

In this paper, we presented an efficient methodology that can be applied to control the 

progressive collapse of 2D reinforced-concrete frame structures.  

First, we described the stress-resultant Timoshenko finite element with embedded discontinuity 

in rotation. Such model based on elasto-plastic law with bilinear isotropic hardening followed by 

softening. The concept    of softening plastic hinge is modeled to capture the post-peak softening 

behavior. The cantilever beam and two-story frames illustrate that the presented model is able to 

describe the response of reinforced-concrete frame up to complete failure and mechanism creation.  

Second, we showed here nonlinear dynamic analysis can be performed with the mechanism 

created in first phase.  The complete collapse computations also consider the contact between the 

building and the ground using penalty method, to investigate the progressive collapse of the frame 

structures up to total collapse. The presented six-story reinforced-concrete 2D frame illustrates that 

the strategy proposed in this paper is capable to describe the progressive collapse process for 

reinforced concrete 2D frame structures. The final failure mechanism depends upon the softening 

modulus, triggering small or large number of plastic hinges. 

An efficient conserving/decaying energy scheme is used for solving dynamic governing 

equations. The scheme introduces a desirable numerical dissipation of high frequency oscillations 

that can be observed in dynamic structure response, especially when triggering the contact of the 
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structure with ground.  

The numerical examples illustrate the efficiency of the methodology proposed and its ability to 

describe the controlled progressive collapse of 2D reinforced-concrete frame structures in rather 

realistic way. The results are direct interest for controlled destruction in densely constructed urban 

areas.   
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