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Abstract.  The present study deals with the numerical modelling for the one dimensional contaminant 

transport through saturated homogeneous and stratified porous media using meshfree method. A numerical 

algorithm based on element free Galerkin method is developed. A one dimensional form of the advective-

diffusive transport equation for homogeneous and stratified soil is considered for the analysis using irregular 

nodes. A Fortran program is developed to obtain numerical solution and the results are validated with the 

available results in the literature. A detailed parametric study is conducted to examine the effect of certain 

key parameters. Effect of change of dispersion, velocity, porosity, distribution coefficient and thickness of 

layer is studied on the concentration of the contaminant 
 

Keywords:  contaminant transport; irregular nodes; homogenous and stratified porous media; meshfree 

methods; element free Galerkin method 

 
 
1. Introduction 
 

The groundwater pollution due to contaminant transport from landfills and lagoons has been a 

major concern. Contamination is caused by landfills, lagoons, industries and factories. In order to 

adopt preventive measures, the extent of migration of contaminants must be known accurately. 

From the basic principles, the phenomenon of contaminant transport can be expressed in the form 

of governing differential equation, consisting of molecular diffusion, advection and sorption. Patil 

and Chore (2014) presented an overview of the various numerical and experimental studies on the 

contaminant transport. Analytical solutions find a very attractive approach for the flow equations 

(Ogata and Banks 1961, Van Genuchten 1981, Rowe and Booker 1989, Chen et al. 1989). 

Analytical solutions are very effective for homogenous isotropic medium and simple geometry; 

but they cannot be applied to complex groundwater problems encountered and hence, the need for 

an effective numerical technique arises.  

The numerical methods like finite difference method (Mirbagheri 2004, Chakraborty and Ghosh 

2010, Sharma et al. 2014) and the finite element method (Javadi and Al-Najjar 2007, Cooke and 

Rowe 2008) perform better while handling problems of complexity, heterogeneity and anisotropy. 
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Finite difference method suffers from major disadvantage in modeling of irregular geometry and 

the studies are still going on for developing a robust method capable of using irregular geometry. 

Finite element method (FEM) requires mesh generation and it is time consuming. Further, 

solutions to advection-dominant transport problems by FEM are often corrupted by node-node 

oscillations which can only be removed by severe mesh and time step refinement. Moreover it 

cannot be used for irregular nodes. In recent years, meshfree methods are getting attention as their 

basic idea is to eliminate the structure of mesh and construct approximate solutions for the 

equation in terms of nodes. In the present study, governing differential equation is solved using 

element free Galerkin method (EFGM) for irregularly spaced nodes in the domain. Element free 

Galerkin method is a meshfree method developed recently in order to eliminate the structure of 

mesh and construct approximate solutions for the equation in terms of nodes (Liu and Gu 2005). 

The EFGM is the most successful meshfree method and has been used for solving boundary value 

problems related to various field study (Belytschko et al. 1994, Kumar and Dodagoudar 2008, 

2009, Swati and Eldho 2013, Satavalekar and Sawant 2014). Few researchers developed finite 

difference method (FDM) with arbitrary grids, or the general FDM (Lizska and Orkisz 1980), 

meshless finite difference (Mikewski and Orkisz 2011) for solving various problems in the field of 

Engineering. Pepper and Stephenson (1995) developed unstructured adaptive meshing using finite 

element method. Wang et al. (2008) developed a common technique to develop support domains 

in regular as well as irregular nodes in meshless methods and it can be used with various meshless 

methods in the crack analysis. Mategaonkar and Eldho (2012) observed sensitivity of irregular 

nodes in point collocation method (PCM), a type of meshless method for contaminant transport 

modeling. In the present study, a Fortran program based on element free Galerkin method (EFGM) 

is developed for homogeneous and stratified media considering irregular spacing of the nodes. A 

parametric study is carried out to observe the effect on migration of contaminants by changing 

various parameters. 

 

 

2. Formulation of element free Galerkin method 
 

The one-dimensional form of the governing differential equation for contaminant migration 

through a saturated porous medium is expressed as 
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in which, ρd and n are bulk density and porosity of porous medium, kd is distribution constant, C is 

concentration of contaminant, D is dispersion coefficient,  is the dispersivity and D* is diffusion 

coefficient and vx is seepage velocity. 

Initial Conditions:  

at t=0 , C(x,y,0)=0 

Boundary Conditions:  

C(0,y,t) = C0 on Гs (Dirichlet Boundary Condition) 
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(C).ns=g on ГE (Neumann Boundary Condition) 

C0 and g are concentrations at source and concentration gradient at exit boundary, ns is the unit 

normal to the domain Ω and ГS and ГE are the portions of boundary where source concentration 

and concentration gradient are prescribed.  

Element free Galerkin method (EFGM) uses only set of nodes to model the boundary and 

generate discrete equations. It employs moving least squares (MLS) approximants formulated by 

Lancaster and Salkauskas (1981) to approximate the function C(x) with C
h
(x) in which C(x) is the 

contaminant concentration at x, where x is a position coordinate. EFGM do not satisfy the 

Kronecker delta criterion and hence the Lagrangian multiplier technique (Dolbow and Belytschko 

1998) is used to enforce the Dirichlet boundary condition.  

 

2.1 Moving least squares approximations 
 

According to the moving least squares proposed by Lancaster and Salkauskas (1981), the 

approximation C
h
(x) of C(x) is 
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] and a

T
(x)= [a0(x),a1(x),a2(x)….am(x)] (3) 

in which, p(x) is a monomial basis function and a(x) is a vector of undetermined coefficients, 

whose values can vary according to the position of x in Ω and m is the order of the basis. 

The discrete L2 norm is given by 
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where, n is the number of nodes in neighbourhood of x for which weight function w(x-xI) is non-

zero and CI refers to nodal parameter of C at x=xI 

A support domain of a point xG determines the number of nodes that participate to approximate 

the function value at xG and are usually common in circular or rectangular shape. A suitable 

support domain should be chosen as the accuracy of the approximation depends on it. For a point 

of interest at xQ, the dimension of the support domain ds is determined by 

ccs dd   

where ds is the dimensionless size of the support domain, and dc is the nodal spacing near the point 

at xQ. If the nodes are uniformly distributed, dc is simply the distance between two neighbouring 

nodes. The dimensionless size of the support domain ds controls the actual dimension of the 

support domain. The actual number of nodes, n, can be determined by counting all the nodes 

included in the support domain. 

The minimum of J in Eq. (4) with respect to a(x) leads to the following set of linear equations 

      CxBxaxA )()(  (5) 
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in which,  
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Then vector of undetermined coefficients a(x) is obtained by inverse operation. 
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By substituting Eq. (9) in Eq. (2), the MLS approximants can be defined in terms of shape 

function φI(x) as 
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in which, m is the order of polynomial p(x).  

Derivative of shape function are obtained by 
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EFGM shape functions do not satisfy the Kronecker delta criterion φI(xJ)≠δIJ. Therefore they 

are not interpolants, and the name approximants is used. For imposing essential boundary 

conditions Lagrangian multipliers are used (Belytschko et al. 1994) 
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2.2 Weight function description 
 

Weight function is an important parameter for the calculation of shape functions in EFGM and 

is presented in Eq. (15). The weight function is non-zero over a small neighbourhood of xI, called 

support domains. The weight function should be smooth and continuous. The choice of weight 

function affects the approximation results. Present study considers quartic spline function given by 
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where di=||x-xI|| and r=dI/dmI, where dmI is the size of domain of influence of I
th
 node. The size of 

the domain of influence at node, dmI is computed by  

dmI = dmaxzI (16) 

where, dmax is a scaling parameter which is typically in the range of 2.0 to 3.0 for static analysis 

(Liu and Gu 2005). The distance zI is determined by searching for enough neighbour nodes for a to 

be regular.  

The derivatives for weight function are as follows 
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The discretisation of the governing differential Eq. (1) is performed by observing following 

changes in implementation of boundary conditions. 
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In the present study, Crank Nicolson time marching scheme is employed for discretization in 

time domain adopting constant   equal to 0.5.  

KNew = M + ∆t K  ; MNew = M -(1-) (∆t) K (19) 

GIK = φK |ΓSI ; QI = φIDg|ΓE ; qK = CoK (20) 

f = MNew{Cn-1} (21) 

Individual matrices are defined by following relation 
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In the above expression, Cn and Cn-1 are concentrations at present and previous time. K and G 

are global matrices.  

 

2.3 Algorithm 
 

Based on the above mathematical formulation following steps are considered in the algorithm. 

1. Set up nodal points using the subroutine for irregular nodes and background cells  

2. Set parameters for material properties like dispersion, velocity, retardation factor for each 

background cell of a given layer (for stratified case)   

3. Set up initial concentrations CI 

4. Set up integration points and Jacobian for each cell  

5. Loop over integration points  

i) Calculate weights at each node for given integration point xG 

ii) Calculate shape functions and derivatives at points xG 

iii) Assemble stiffness matrix (K) and mass matrix (M) 

iv) Assemble G matrix at 1
st
 integration point  

6. Apply the Crank Nicolson time marching scheme on stiffness matrix (KNew) and mass matrix 

(MNew) 

7. Assemble global stiffness matrix (KG) by adding stiffness matrix (KNew) and G matrix and 

inversing the global stiffness matrix (KGI) 

8. Construct qK vector  

9. Loop over time  

i) Construct F matrix (FMAT) by multiplying mass matrix (MNew) and concentrations of the 

previous time step  

ii) Construct new concentrations (Cnew) by multiplying inverse of global stiffness matrix (KGI) 

and F matrix (FMAT) 

Based on the algorithm, a Fortran program is developed for the one dimensional analysis in 

domain. To consider irregularity of nodes in the domain, random numbers are generated between 0 

and 1 in the subroutine. The subroutine consists of a multiplication number, a base number and a 

random base number given as 16807, 2147483647 and 4.65661287524579692 D-10. The seed is 

calculated using the multiplication number and base number and further SEED is multiplied with 

the random base number to get co-ordinates ranging in 0 to 1. These are sorted either in the 

increasing order and scaled in the domain of contaminant transport. SEED chosen is large and 

preferably a prime number.  
 

 

3. Model verification 
 

The numerical procedure developed using Fortran program is validated with three problems in 

the literature. Problem-1 is an advection-dispersion example discussed by Kumar and Dodagoudar 

(2008). In problem-2 experimental results from Rowe and Badv (1996) are used for comparison, 

whereas analytical results presented by Wang and Apperley (1994) are considered in problem-3.  

 

3.1 Problem-1  
 

The authors are going to demonstrate the accuracy of the numerical procedure developed with 
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Fig. 1 Comparison of irregular nodes with Kumar and Dodagoudar (2008) 

 

 

Fig. 2 Comparison of results using different SEED 

 

 

the one done by previous researchers (Kumar and Dodagoudar 2008). The Péclet number is 20 that 

makes it advection dominant case. The properties like velocity v and dispersivity α are selected 

from Kumar and Dodagoudar (2008) as 1.6302 cm/min and 0.1 cm, respectively. The total length 

of domain is 50 cm and total time 20 mins. From Fig. 1, it can be observed that results for irregular 

nodes and regular nodes using EFGM are in good agreement and error in concentration is 12.8% at 

a distance of 29 cm from origin. The nodes for irregular spacing are 40, whereas for regular 

spacing nodes are 26. The SEED convergence study has been carried out by varying the SEEDs as 

718800, 71880 and 3731523.  

The results achieved are in good agreement with the available results, for the chosen SEED 

3731523 (Fig. 2). The results are also compared with those from FEM. A good agreement is 

observed with the results reported by Kumar and Dodagoudar (2008).  
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Fig. 3 Comparison of results from irregular nodes and Rowe and Badv (1996) 

 
Table 1 Material properties from Wang and Apperley (1994) 

Parameter Value 

Dispersion constant for 1
st
 layer D (cm

2
/hr) 0.18 

Dispersion constant for 2
nd

 layer D (cm
2
/hr) 0.18 

Average velocity for 1
st
 layer (cm/hr) 0.10 

Advection velocity for 2
nd

 layer (cm/hr) 0.05 

Length of clay liner and natural soil (cm) 7.5 & 24.5 

Time (hours) 100 

Time step (years) 0.5 

Retardation factor 1.0 

 

 

3.2 Problem-2 
 

The accuracy of the numerical procedure for a pure diffusion case is demonstrated by 

comparing with results from Rowe and Badv (1996). The material properties of different 

parameters are as follows. Diffusion is 0.8536
 
cm

2
/day, length of domain is 13.1 cm and total time 

is 2.96 days. The nodes considered are 31 and SEED is 3731523. It can be observed from Fig. 3 

that the results for the irregular nodes using EFGM and those reported by Rowe and Badv (1996) 

are in good agreement and the error in concentration is 7.8% at a distance of 1.7 cm from origin it 

reduces with further increase in distance.  

 
3.3 Problem-3 

 

The authors are going to demonstrate the accuracy of the numerical procedure developed for 

stratified layer case discussed by Wang and Apperley (1994). In the first layer, 11 nodes are  
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Fig. 4 Comparison of results from irregular nodes and Wang and Apperley (1994) 

 

 

considered whereas 30 nodes are used for the second layer. SEED considered is 3731523. The 

material properties are reported in Table 1. The results are compared with those obtained by Wang 

and Apperley (1994) in Fig. 4. A good agreement is observed in the results obtained using EFGM 

developed in the present study for the irregular nodes and those reported by Wang and Apperley 

(1994). The maximum error in concentration is observed to be 10% at a distance of 8.5 cm from 

the origin which reduces with further increase in distance.  
 

 

4. Parametric study 
 

It is aimed to examine the effect of key parameters like diffusion/dispersion, thickness of layer, 

porosity, retardation factor and velocity on contaminant transport phenomena. In the detail 

parametric study carried out in the present investigation, selected parameter are varied to consider 

suitable range while others were set to the typical values reported in Tables 1-4.  

 

4.1 Change in dispersivity/dispersion 
 

The dispersion is the apparent mixing and spreading of the contaminant within the flow system. 

It is due to mechanical mixing and molecular diffusion. The mixing component, often called 

mechanical dispersion arises from velocity variations in porous media and dispersivity. 

Dispersivity varies from 0.1 to 100 m. An approximate value for dispersivity is 0.1 times the scale 

of test (Gelhar et al. 1992). The molecular diffusion is a process where ionic or molecular 

constituents move in the direction of their concentration gradients. The parameters are reported in 

Table 2 and Table 3. The parameters in Table 2 are meant for the homogeneous media having 

length 13.1 cm and total time 2.96 days, while the parameters in Table 3 are meant for stratified 

media having length of first layer and second layer as 7.5 cm and 24.5 cm, and the total time is 100 

hours. The variation in concentration with respect to distance is obtained for four different cases as 

mentioned in Table 2 and is presented in Figs. 5 and 6. It is observed that with increase in 

dispersivity the concentration increases. Dispersivity causes the plume/contaminant to spread on 

the advective front and hence concentration increases. Similar phenomena can be observed for the  
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Table 1 Material properties for different dispersion on concentration for homogeneous media  

Case Velocity (cm/day) Dispersivity (cm) Dispersion (cm
2
/day) 

1 0.1 0.4 0.04 

2 0.1 1 0.1 

3 0.05 0.4 0.02 

4 0.05 1 0.05 

 

 

Fig. 5 Effect of change of dispersion on transport of concentration for homogeneous media 

 

Table 2 Material properties for different dispersion on concentration for stratified media 

Case 
Velocity (cm/hr) Dispersivity (cm) 

first layer second layer first layer second layer 

1 0.1 0.05 0.4 0.02 

2 0.1 0.05 1 0.05 

3 0.1 0.05 2 0.1 

 

 

case of stratified media where three cases are described. It is seen that with increase in 

dispersivity, the concentration from source travels at faster rate. Therefore, at a given distance and 

the time, the concentration migrated from the constant source will be more. 
 

4.2 Change in hydraulic conductivity 
 

The hydraulic conductivity is the ease with which flow takes place through porous medium. It 

has large values for permeable units like sand and gravel and relatively small values for poorly 

permeable materials like clay. The hydraulic conductivities of fine sand, silt and clay are in the 
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Fig. 6 Effect of change of dispersion on transport of concentration for stratified media 

 

 
(a) 

Fig. 7 Variation of concentration with time for different soils 
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(b) 

Fig. 7 Continued 

 

 
Fig. 8 Variation of concentration with time for clay having different gradients 

 

 

range of 2×10
-7

-2×10
-4 

m/s , 1×10
-9

-2×10
-5 

m/s and 1×10
-11

-4.7×10
-9 

m/s, respectively (Schwartz 

and Zhang 2012). The advection is the main process conveying dissolved mass from one point to 

another. For most practical problems, groundwater and dissolved mass will move at the same rate 

and in the same direction and is given by  
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 v K n g r a d h   (25) 

where, v is advective velocity, K is hydraulic conductivity, n is porosity, grad h is gradient of soil.  

Grad h is taken as 0.07, 0.02 and 0.01, diffusion coefficient D* for chlorine Cl
-
 is 20.3×10

-6 

cm
2
/s, dispersivity is 0.1m and therefore, the advective velocities for sand, silt and clay are 3.456 

m/day, 0.3456 m/day and 8.12×10
-5 

m/day. The distribution coefficient Kd is 0.0, porosity is 0.35, 

density is 2 t/m
3
. The depth is 1 m for the contaminant transport in homogeneous soils. Fig. 7 

shows the variation of concentrations with time. It is observed that the concentrations reach the 

maximum in few days for sand and silt, whereas in clays the normalized concentrations that reach 

in 365 days is close to 0.1. From Fig. 8, it is observed that in order to reach the maximum 

concentration in clays, it takes close to 40 years. The gradient changes from 0.07 to 0.01 has a 

negligible effect on the transport of contaminants.  

 

4.3 Effect of advective velocity on layered soil 
 

The advective velocities mentioned for the different soils above are considered for observing 

the variation of the contaminant transport in a 2 m thick stratified strata, equally divided into two 

soil layers. The predicted response for variations in concentration with time and distance are 

presented graphically in Figs. 9-16.  

Figs. 9 and 10 show the variation in contaminant transport with distance and time in clay-silt 

soils. The advective velocity for clay is very low as compared to other two types of soils (sand and 

silt). It is observed that the effect of concentration diminishes from 1 to 0 as the depth increases 

from 0 to 2 m. It can be seen from Fig. 10 that concentration is close to zero till 230 days after 

which it increases gradually.  

Similar trend is observed for clay-sand layers (Figs. 11-12) as well. Figs. 13-14 show the 

variation in contaminant transport with distance and time in sand-clay soils. Advective velocity of  

 

 

 

  

Fig. 9 Variation of concentration with distance 

for layered soil (clay-silt) 

Fig. 10 Variation of concentration with time for 

layered soil (clay-silt) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1

D
is

ta
n
ce

 (
m

) 

Normalized Concentration C/C0 

Time 365 days 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

N
o

rm
al

iz
ed

 C
o

n
ce

n
tr

at
io

n
 C

/C
0
 

Time (days) 

Depth 2m  

215



 

 

 

 

 

 

S. Rupali and Vishwas A. Sawant 

 
Fig. 11 Variation of concentration with distance for layered soil (clay-sand) 

 

 

Fig. 12 Variation of concentration with time for layered soil (clay-sand) 

 

 

silt is higher than clay, making the contaminant travel rapidly. Throughout the silt layer 

concentration is maximum (Fig. 13) and it starts diminishing as the clay layer is encountered at 1 

m depth). Concentration is further observed to be diminishing gradually till it reaches the end of 

the depth (2 m). This is also evident from Fig. 14. Normalized concentration at the tip of clay layer 

after 275 days is negligible and then it increases at very slow rate. Similar trend is observed in case 

of silt clay combination (Fig. 15). Fig. 16 shows the variation in contaminant transport with time 

for sand and silt soils. Due to high advective velocities of both type of soil, the contaminant attains 

the maximum concentration in few days (7 days). Then it is maintaining the same concentration 

level till the last time step. This observation highlighted the effect of advective velocity on 

contaminant transport phenomenon. Therefore, in order to reduce contaminant transport the 

advective velocity should be very less and the gradient should not be high.  
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1D contaminant transport using element free Galerkin method with irregular nodes 

 

Fig. 13 Variation of concentration with distance for layered soil (sand-clay) 

 

 

Fig. 14 Variation of concentration with time for layered soil (sand-clay) 

 

 

Fig. 15 Variation of concentration with time for layered soil (silt-clay) 
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Fig. 16 Variation of concentration with time for layered soil (sand-silt) 

 

Table 4 Retardation factor in stratified media 

Case First layer Second layer 

1 1 1 

2 2 2 

3 5 5 

4 1 2 

5 1 5 

6 2 1 

7 2 5 

8 5 1 

9 5 2 

 

 

Fig. 17 Effect of change of retardation factor on transport of concentration for stratified media 
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1D contaminant transport using element free Galerkin method with irregular nodes 

 

Fig. 18 Effect of change of thickness on transport of concentration 

 

 

Fig. 19 Effect of change of thickness by changing velocity on transport of concentration 

 

 

4.3 Change in retardation factor 
 

The retardation factor R comprises of porosity (n), distribution coefficient (Kd) and density (ρ). 

It is used for determining the retardation of mass of solute moving while undergoing adsorption. 

Kd varies for different elements and type of soil. The porosity is usually ranging from 0.2 to 0.4 for 

good aquifers and ranges of density vary from 1.6 to 2 g/cc. The values of retardation factor for 

heterogeneous case are considered and are varied are reported in Table 4 to examine their impact 

on the transport. Other parameters were same as reported in Table 2. It can be observed from Fig. 

17 that when the retardation factor increases for both the layers, transport of concentration reduces 

towards the end of the domain.  

 

4.4 Change in thickness of layer 
 

While designing the landfill, the variation in thickness is more appropriate in order to reduce 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

N
o

rm
al

iz
ed

 c
o

n
ce

n
tr

at
io

n
 C

/C
0
 

Distance (cm) 

Thickness ratio of first and second layer 

 
12.5:19.5

16:16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

N
o

rm
al

iz
ed

 C
o

n
cn

et
ra

ti
o

n
 C

/C
0

 

Distance (cm) 

Thickness ratio of first and second layer 
7.5:24.5

12.5:19.5

16:16

219



 

 

 

 

 

 

S. Rupali and Vishwas A. Sawant 

the contaminant transport. By varying the thicknesses of the liner one can observe changes in the 

contaminant transport. The parameters are same as in Table 1 and the thickness for top layer is 

taken as 7.5 cm, 12.5 cm and 16 cm. The results are indicated in Figs. 18 and 19. Since the 

velocity of the top layer is 0.1 cm/hr and bottom layer is 0.05 cm/hr, the change in thickness 

doesn't reduce the transport of contaminants but when the velocities of top and bottom layer are 

reduced to 0.05 cm/hr and 0.1 cm/hr, a small change is observed. It can be concluded that for 

reducing the migration of contaminant by changing the thickness, the velocity also should be 

reduced whereby a considerable change can be observed in the transport.  
 

 

5. Conclusions 
 

From the present study it can be concluded that, irregular nodes can be used in Element free 

galerkin method which can be used for predicting contaminant transport for homogeneous as well 

as stratified porous media. The size of support domain (Dmax) should be kept 1.25 for good results 

and the SEED considered is 3731523 for generating random numbers. Parametric study has been 

conducted by varying Dispersion, velocity, retardation factor and thickness of layer. Following 

observations are concluded from present study: 

• The dispersivity of the medium has important bearing in the migration of contaminant. With 

increase in dispersivity, concentration from source travels at faster rate. So at a given distance and 

time, the concentration migrated from constant source will be more.  

• Study highlighted the effect of advective velocity on contaminant transport phenomenon. In 

order to reduce contaminant transport the advective velocity should be very less and the gradient 

should not be high. 

• Reduction in advective velocity and a low gradient helps in reducing the transport of 

contaminant in the field. Sand and Silt soils can be used effectively for removal of leachate and 

reduction in transport of contaminant.  

• The retardation factor is inversely proportional to the porosity of the soil and directly 

proportional to the distribution coefficient. These properties can vary for different soil layers in the 

landfill. Increase in retardation factor for the top layer as well for the bottom layer decreases the 

migration of the contaminant transport and vice versa.  

• Increasing the thickness of the top layer reduces the contaminant transport but it is also 

dependent on velocity of the flow, dispersion and retardation factor. 
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