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Abstract. We present for ondimensional model for elastoplastic bar with combined hardening in FPZ
fracture process zone and softening with embedded strong discontinuities. The simplified version of the
model without FPZ iglirectly compared and validated against analytical solution of Bazant and Belytschko
(1985). It is shown that deformation localizes in an area which is governed by the chosen element size and
therefore causes mesh sensitivity and that the length of #iesgiftening region tends to localize into a

point, which also agrees with results obtained by stability analysis for static case. Strain increases in the
softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the
strainsoftening region. The more general case with FPZ leads to more interesting results that also account
for induced strain heterogeneities.

Keywords: dynamics FPZ - fracture process zonestrainsoftening localizatiory finite element
embedded discontinuity

1. Introduction

The development of localized deformation is caused Bgilare pr ocess at t he ma
microscale. The microscap behavior is governed bgrowth, interactionand coalescencef
microcracks which eventuallyesuls in complete fracturend softeningat the macroscale. In a
structural concrete member mieccacking leads to a local decrease in the effective @estonal
area that transmits tensile forces. This phenomenon is commonly called softening and is
accompanied by the formation of narrow bands of intense straining (localization of deformation).
I n addition, according to Rudnicki and Rice (19
in the macroscopic constitutive description of inelasticodefmat i o n of t he mat e
instability allows the constitutive equations of argarally homogeneous material to reach a
bifurcation point where the neumiform deformation localizes. Outside this localization zone the
material continues tainload elatically. Throughout this process the body remainslyinamic
equilibrium expressed in terms of the dO6Al ember
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The strain softening of a material is the decline of stress at increasing strain and represents the
process of progressive failure alamage. The dynamic strasoftening problem is highly
nonlinear leading to instability (Similar problems of instability also occur for geometric
instabilities (IbrahimbegovicHajdo and Dolarevic (2013), Ngo, Ibrahimbegovic an#iajdo
(2014)) An analytich solution for a onalimensional wave propagation problem was derived by
Bazant and Belytschko (1988)r the simplest case of elastoftening responsé-ig. 1 shows the
stressstrain curve osucha strainsoftening material. The linear elastic arealiswn between the
points O& P . The stiffness i sE Themaaimumsyengfidlis reariied mo d ul
for the plastic strain- . The curve in the straisoftening aga (area between points P andig)

given by the functionO- . The slope of this curve@'- | is negative”O- reaches a zero
stress value for a finite strainor an asymptotic strain © . Unloading - 1 and reloading
- mis considered to be elastic and happens wit!l

In order to compare with analytical solution of Bazant and Belytschko (1985), we present a
discrete bar model with strong discontinuities that are embedded into the finite elements through
the proper enhancement of the discrete strain field of theeelerithis developed model is
onedimensionatrussbarcapable of representing tthgnamic fracture.

This paper aims to support the understanding of localizeddditu this and more general case
where strairhardening and straisoftening elastoplastisehavio are combinedn dynamics. The
outline of the paper is as follows: IneStion 2, we introduce thmodel theoreticalormulation A
closedform reference solution for a dynamic straoftening problem is provided in Sectiorfids
a simple case witlmegligible FPZ The numerical implementation for edanensional bar with
embedded strong discontinuities will be discussed in Section 4. Section 5 presents numerical
simulationsfor this and more general case including FPBally, conclusionsare given in Section
6.

2. Theoretical formulation

2.1 Elastoplastic material behavior

For elastoplastic material behavior the straiorease is followedn general bythe stress
increasammediately but there may be a permanent defdomafterstress release, Fig. 2.

Fig. 1 Stressstrain diagram of elasticstrainsoftening material
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Fig. 3Stressstrain response of stramardening material

2.2 Model for isotropic hardening plasticity

Real metdic materials exhibit a characteristics known as strain hardening. Strain hardening is
the strengthening of a metal lccumulatedplastic deformation. This strengthening occurs
because of dislocation movements within the crystal stracof the material. The stréssrain
curvefor strain hardeing material is shown in Fig. 3.

2.2.1 Assumptions, Observations, Definitions
(i) The total strain- splits into an elastic pa#t and a plastic part

- - - (1)
(i) The stress, is given by the linear elastic relationship
. O O- - 2
(iii) The set of admissible stresses is denoted by
W ,vaah ,h s , 0O, ™ (3)

where ,, is called the flow stress or yield stress

A ,h denotes the yield function
K refers to isotropic hardening modulus

Kis the internal variable in which & s is the simplest evolution equation f§r
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The center ofM  remains at the origin. The hardening is linear in the amount of plastic flow

(linearing 9.
(iv) If A ,h T no change in- takes place- 1. The instantaneous response is
governed by elastic regime. The elastic range is defined as the open set

ETVO ,Nah A s ., 0, T 4)

where the interior o , denoted byE MO , is refered to as the elastic domain
(v) A change in- can take place only ik , h Tt If this condition is met the material
experiences slip in the direction of the applied stress with constant slip rate

rh QQ, ., LIS

'h QQ, , T ©)
These cases can be recast into the followingle equation
- ri QQE QAQ, h mh (6)
which goes by the name of flow rule. The signction is defined by
¢ e ph QQan
i "Q'Qae pﬁ 0 QT (7)

The boundary of the elastic ranife , denoted byl M , is refered to as the yield surface in
stress space

T\A nNHlA nﬁ 515 ” 01 T (8)

(vi) The evolution of- can be completely described with the evolution equation
ri "Q°Q¢ provided thatt and, are restricted by certain unilateral constraints:
a), must be admissible, thatis™ M , and[ must be nonnegative

r m and A R T )
by mif A ,h mandl Tonlyif A ,h T It follows
ra ,h i (10)

c)Consistency condition:. 1 A mandA 1 [ T which can be recast into the
single condition

A LR (11)
Condition (a) and (b) go by the name Kthincker complementary conditions

2.2.2 Model summary

One-dimensional rate-independent plasticity with isotropic hardening

9 Constitutive relation
” 'O - - (12)
9 Plastic flow rule
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S (13)
1 Isotropic hardening evolution law
- (14)
1 Yield function
AR oss L, 0, om (15)
9 Kuhn-Tucker complementary conditions (loadingloadingconditiong
r m,h 1A LR m (16)
9 Consistency condition
A ,h T (17)

2.2.3 Stress-strain rate form

The complementary condition8n 1t implies that whenan 1T we will havel 1 and
when 1 we willhaven T1U

In the first casg 11 the material shows instantaneous elastic response. -Thusrt and
we obtain the rate formp O-.

In the second case 1t and consequentin Tt Becausen 1T remains constant as long
as! T also the rate ol vanishes,n 11, and we obtain

TA TA
T 1!” T 1,
i QQs0- - 0,
i QQEO0 - i QQEO0 or I —-1 "QQ¢ (18)

i QQEO ri QQE QQREO  Ur
i QQEOC 10O U ™

- i —- (19)

W o+

Fig. 4 Stresstime function
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Fig. 5Stressstrain curve of the isotropic hardening model

Hence, we obtain the following form for stress rate equation
on mn

. _n o« (20)

The stress response of a body subjected to the -sitreénfunction shown in Fig. 4 is given in
Fig. 5.

3. Reference solution in a bar i analytical solution of dynamic strain-softening

Consider a bar oiength2L, with a unit crosssectional area and a densttper unit lengthLet
the bar be loaded by forcing both ends to move simultaneously outward, with constant opposite
velocities of magitudev. The longitudinal coordinatei s measur ed f r(Bign6.t he bar
The boundary conditions are
&I 046 (Vo] .
&id 0do o (foro (21

Fig. 6 Geometry and loading of stresnftening bar
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Two step waves are generated in the bar. One wave travels from the right boundary in the
negativex-direction. The other wave travels from the left boundary in the postilieection. The
two step waves of constant strain travel to the center of tharthmeetx = 0 for the time
0 07&. When the two waves meet strain doubles instantaneously at the center of the bar if
- - Tcand the midsection enters immediately the stsaiftening regime with an increase to
infinite strainif - ¢ - - .

Before the onset of stragoftening the problem is governed the differential equation of

motion with the elastic wave speeéd —. Thisstandard equatiois the wave equation, which is

hyperbolic for real wave speeds
o— — (22)

The longitudinal displacement function in the linear elastic domain is derived from appropriate
initial and boundary conditions.
6 ofd vew —O Vv —O (23

in which the symbob Ois defined as®O 6 if 6 mand®O mif & ™
Thecorrespondingtrain function needs to be positivecordingly, the Heaviside step function
H is used.

- — —"006 — 0o — (29

The stress caused by ttiee f or mat i on i s described with Hookebd
” IO- (25)
Obviously, if- - 7T¢, the assumption of elastic behavior hold®for¢0¥®, i.e., until the
time each wawront runs the entire length dig bar. If, however; ¢ - - , the solution for

the displacemeni(x,t)n Eq. (23 holds only ford  07.

The slope of the stresgraindiagramin the strairsoftening domain i§0'- that is less than
zera Becaus@)'- mithe differentialequation of motioiin the strairsoftening domain is elliptic,
which means that interaction over finite distances is immediate

~ ~ Nj
H— — mwithd — (26)

Strainsoftening is limited to an area around 0. The displacements develop a discontinuiy at
= 0, with a jump of magnitudev® 07O Q' Strain starts to increase infinitely and stress drops to
zero in the straksoftening zone. The rest of the Iséarts to unloaélastically.

Strainnearx = 0, i.e.,at the center of the baan be expreed by the Dirac Delta function

- 0 0TOQ ® 27)
The solution for the strain field outside the stiaspftening zonep 076 andx <0, is
- —006 — Vo6 — 1Wd MOPw (28)

Forthe right half of the bax> 0, a symmetric solution applies.
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4. Numerical implementation: finite element with embedded strong discontinuities
4.1 Standard finite element interpolation
The displacement interpolation for edemensional truss bavith 2 nodes can be written as
ow B 0 wo TE (29
whereu represents nodal displacement vectors.

For this case of element, wase standard linear interpolation functions for qmniim
displacement approximation

E 0w p - o - (30
The strain interpolation can be obtained fromdfsplacement field resulting in
-0 —— ATl (3D
whereB is the strairdisplacement matrix

A —< — pp (32)

4.2 Strong discontinuity kinematics

Once the localized failure occurs, the crack opening (further denotez] ase Fig. B

contributest o a Ajumpod or irregular part in the disp
field is thesum of regular (smooth) part and irregular part.
oo 6ad | O @ ¢ (33
6o oD | e |0 @ (34)
where'O @ is the Heaviside function introducing the displacement jump.
v~ p
0O w Mo G (35
o ®
@ @
| I° L
‘1 Ny =1- 5

Fig. 7 Shape function



Combined hardening and localized failure with softening plasticity in dynamics

ande+ wis a (smooth) function, introduced to limit the influence of the displacement jump within
the fAfail ureodo do maiimthe fiklte eleanent implemnentaton fedatosthe
shape function of seleatenterpolation. For a 1D trudsar with 2nodes, we can choose

e U © - (36)
The corresponding illustrations f6® @ ande+ @ for a twonode trussar element are
given in Fig.9. 5 3
Denoting witho afd 6 aid | * w the continuous part of the displacement field, and

with a the fjlumpo in displacement, we can further write additive decomposition of displacement
field:

et oO6cd® |0 W (37)

6l oD | e | O ® * ® (38)
M(x)

o o6ad |0 ® | O ® U w (39

In Eq. (38) above,M(X) is the additional iterpolation function (see Fig.),9and can be used
alongside standard interpolation function to describe the heterogeneous displacement field with
activated jump inside the finite element. TM&) is defined as follows

— N 1 8
0 . (40
p —MoN awh
The finite element displacement irelation can thus be stated as
6w B 0 wo | lw 41
Thecorrespoding strain field can then be obtained bylexing the kinematic relation
- B 6 wd6 | @ (42
where
0w O — 1 hov o (43
and
Pl o | . N :
1 Tﬂ'OEAO'xDE'dAaCOS Delta fun@4i on
ol
Q T QF
A

Fig. 8 Displacement discontinuity at localized failéwethe mechanical load
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Fig. 9Displacement discontinuity for2ode bar element: Heaviside function, smooth function and add
interpolation function

4.2 Computational procedure

The solution will be computed at discrete psetide values Oty, to, ¢, t by means of
incremental iterative scheme. The local phase will be treated separately from gzl p
The local (element) computation should provide the values of internabhesria the end of time

step guaranteeing the plastic admissibility of the stress field. Implicit backward éhdereswill be
taken for time integration of evolution equations.

Given:'Q RTATATH R Yo o o

Find: - BT AT AR

In the global phase, we compute the current iterative values of nodal displacemgntstale
keeping other variables fixed.

Given:'Q h 5
FindQ Q YQ

The subscript denotes the values of variablesfa discrete pseudo tinig First, we need to
solve the elastoplastic part of the task, and once passed the ultimate stress, deal with localized
failure andthe softening phase.

The local computation for the elastoplastic phase can be summarized itidhéntp Return
Mapping Algorithm:
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Initial data: - [h [

Strain: - B | Qs
Compute elastic trial stress and test for plastic loading
” 'O - - II— (45)
A , , 0, b e
If A Tthen i
Elastic step:, . T 0O (47
Exit
Else
' 49

T T TR (49
Tt im0

, O - -T (51

5§ — (52

End

elastic trial step

trial
9 O-n‘]
E return mapping
L
0, n+Il - ___/ __ *AE'%K)
0-}' _____ '
Oy --+
E;
1) 3
& & nt+l &

Fig. 10 Return mappinglgorithm
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Once the ultimate stress is reached, we carry on with solving the softening part of the task.
Similar to hardening part, the local computation for this phase is summarized in the Return
Mapping Algorithm as follows:

Initial data: - [h
Compute elastic trial traction force and test for plastic loading
0 O- -T 0 (53
A o ., 0. (59
If A Tthen f
Elastic step:0 o] (55)EXxit
Else
I ~— (56)
| | o0 QaE (57)
N )
o o " i "QaQE (59
End

After the local computation is finished and the values of internal variables obtained, we turn to
the global phase in order to provide new iterative values of nodal displacements. In this phase, we
consider the numerical simulatiobg implicit NewmarkscremeandNewtortRaphson method.

The system of lineazed equations can be written as

. : _— omh
\lé 8h \lg 8 ;’F:“ \li'lﬁ- (60)
in which the parts of elemeastiffness matrix are as follows
g g ——E (61)
g . A0RQw (62
€ . AodeQw (63
g . € 06EQw L (64)

andr® andh® are residuals
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"l H "H 'E™H (65)
i®m ¢ 0Qmo (66)

with t is the traction force acting at discontinuity.
In Eq.(61) above M ®@is the element mass matrix.

E .y EBEW (67)

andH and"H in Eq.(65) are external and internal force, respectively.

H WW“E“T-H:4|'QW "Eldlg, (68)

Ho A Gow (69)

4.3 Static condensation

One of the main features of finite element framework witibedded strong discontinuities is
the ability to statically condense out the local element parameters on the element level, leaving the
focus again on the solution of the global problem in terms of the global displacemedt Tigkeh,
the final staticdy condensed system is:

L T

¢ 2¢

(70)

The effective stiffness matrix and effective residual of elethare respectively defined by

3 3 ¢ & g n (72
" " ¢ & i (72)
A
F r,
/
r

I |
I | |
| | |
| |
F i | |
I | ||
| | |
I | ||
| | |

| | || qa_
d | Ad | Ad. ||
d; J |
d; |
d |

Fig. 11 NewtorRaphson method
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5. Numerical simulations
5.1 Quasi-brittle case

We first carry out numerical analysis of a bar of a unit esestional area subjected to constant
velocityv = 15m/s applied at both ends in the outward direction. The geometric and material properties of

the bar ard. = 2m,E = 10000MPa, pE® ,, onm®A, o 1R ® AThe numerical

results are compared far 2 m @and for 6 L 8t Gwith analytical results of the elastic

solution.
For o 8 T8t @the waves from the left and right have both travelled 1/2 of the bar, i.e.

at this time the two waves have not yet crossed and, therefore, all areas of the bar are elastic in
which the bar area of 07¢ @ 0F¢ has approximate values of zero of displacement and
strain. Propagation of wavesprdsenedn Fig.iZdswelot h end:
compatible withthese predictions. Meanwhile, a comparigorrig. 13shows a good agreement

between nmerical and analytical solutions.

DISPLACEMENT 1 DISPLACEMENT 1
5.25E-02 1.02E-01
4.37E-02 8.50E-02
3.50E-02 6.80E-02
2.62E-02 5.10E-02
1.75E-02 3.40€-02
8.75E-03 1.70E-02

- - 0.00E+00 | 1.39E-17
-8.75E-03 -1.70E-02
-1.75E-02 -3.40E-02
-2,62E-02 -5.10E-02
-3.50E-02 -6.80E-02
-4.37E-02 -8.50E-02
-5.25E-02 -1.02E-01
Time = 3.50E-03 Time = 8.80E-03

DISFLACEMENT 1 DISPLACEMENT 1

1.19E-01 1.50E-01
9.B8E-02 1.25E-01
7.90E-02 1.00E-01
5.93E-02 7 80E-02
3.95E-02 5.00E-02
1.98E-02 2 50E-02
[ - ol . < 130E17
1.98E-02 -2.50E-02
-3.95E-02 -5.00E-02
-5.93E-02 -7.50E-02
-7.90E-02 -1.00E-01
-0.BBE-02 -1.25E-01
-1.19E-01 -1.50E-01
Time = 7. 90E-03 Time = 1.00E-02

Fig. 12Wave propagation from the right and left end to the center of thet ldiferent instants in time
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Fig. 13 Comparison between analytical and numerical solution for t = 0.01s

DISPLACEMENT 1 DISPLACEMENT 1
1.03E-01 2.25E-01
B.82E-02 1.88E-01
8.90E-02 1.50E-01

1 517602 4 113601
3.45E-02 7.50E-02
1.72E-02 3.75E-02

— = 0.00E+00 — 0.00E+00
-1.72€-02 W—" -3.75E-02
-1 45E.02 -7.50E-02
-5.17E-02 1.13E-01
-B.90E-02 -1.50E-01
-B.B2E-02 -1.88E-01
-1.03E-01 -2.25E-01
Time = 6.90E-03 Time = 1.50E-02

DISPLACEMENT 1 DISPLACEMENT 1

337E-01 4.50E-01

281E-01 3.75E-01

22501 3.00E-01

1.80E-01 + 225601

1.12E-01 1.50E-01

5.62E-02 7.50E-02

S ———" 0.00E+00 0.00E+00
w;" -5.62E-02 TROE00
-1.12E-01 -1.50E-01

-1.69€-01 -2.25E-01

-2.25€-01 -3,00E-01

-281E-01 -3.75E-01

-3.37E-01 .4 50E-01

Time = 2.25E-02 Time = 3.00E-02

Fig. 14Wave propagation from the right and left end to the center of the bar at different instants in ti
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Fig. 15Comparison between analytical and numerical solution for t = 0.0&% ahd

At 2 mr @ two step waves from the left and right crossed in the arealdt
® 0F¢ and strain doubles instantaneously in this area. Nevertheless, the linear elastic regime
still continues happeninthroughoutthe completelength of the bar as the stragsmainssmall
enough in comparison with the ultimate streéféve propagation of théwo waves in Fj.

14followswell these predictions.

Similarto 6 - T8t © the difference in results between numerical and analytical solution

incase ofd —— T8t @is negligible and is obviousghowed in Fig. 15

Next keepingv = 15m/s,L = 2m, E = 10000MPa) = -2500MP4, pE I{j fixed and
changing values of yield stress and ultimateess,,, w TT-1I0 A, Y P-1t0 Arespectively.
All numerical results will be compared with the analytical results of the stcdiening solution

for © —— T8t @ At this time, the bar area agf- @ -is governed byhe strairsoftening

solution. Therestof the bar,0 @ - and- « 0 still maintairs the elastic regime
The Fig. B(a) illustratesthe longitudinal displacement along the Ihar different choice of
finite element discretizatioat 6 ——. A strong sensitivity of resuldue to mesh discretizatios

visible in the strainsoftening region Meanwhile, for the remaining elastic amnain mesh
sensitivity is not presenalthough an improvement iaccuracy of resultsan be seewith finer
mesh spacinglhe numerical results approach #wactsolution withincreasing refinement of the
mesh size

The results in Fig. @(a) agreequite well with the predicted straisoftening behavior for
longitudinal displacement. The exact solution predicts that displacement develops a discontinuity
at infinitely smallareaneax= 0 wi th a Aj umpo. OQutside of thi
displacements accumulatexat 0. The numerical results reflect this straoftening behavior well.
The strairsoftening area narrows with increasing the number of element and all dispht&em
accumulate in one element.

Results for longitudinal strain along the bar are exhibited in i) 1For the strairsoftening
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zoneastrong sensitivityof resultscan be observed, whees mesh sensitivitys not visible in the
remaining elastic domai Howeverthe accuracy of results rises with finer mesh spadihg.strain
measured in the strasoftening elements increases with increasing element number.

The resultsllustratedin Fig. 16(b) conform to the predicted stragoftening behavior well.
Analytically, strain is supposed to be infinite in the stsaftening discontinuity at = 0. Qutside
the discontinuity the bar unloads and strain gradually reduces to zero. Thisssftairing
behavior is well representaad the numerical results. hstrairsoftening element in the middle of
the bar undergoes intense deformation. Strain increases with increasing mesh refinement. Strain in
elements outside the strasnftening element gradually deass to zero.

The process in which the two step wa¥iem the right and left boundary travel to the center of
the bar in Fig. T indicates straisoftening behavior as expected with a displacement jump around
an area ok = 0. Fig. B exhibits typical stresstrain curve for quadirittle case. It can beeen that
after reaching ultimate stressthesttessr ai n r es pons e i stainsoftensd owno an

5.2 Quasi-ductile case

Similarly, numerical analysis of a bar of unit crssstional area subjected to constant velacityl5
m/s applied at both ends in the outward direction was performed.The bar has the geometric and material
parameters as follows: = 2 m, E = 10000MPaK = 10000MPa) = -2500MPa,” pE Zﬂ ,
., OUYT0A -0 Mesides, to observe influencedoictility on failure processf materia)
fixed val ues oF=1900aMPa) ans softenird) mbdulgs (=(-2500MPa)together
with various values of isotropic hardening modargere used. All numerical results of different mesh

discretisationsire compared fod £ 18t Owith exact solutiort this time the waves from the

left and right have both travelled 3/@f the bar.Accordingly, the bar area of- ® - is

governed bystrainsofteningregime, whereashe rest of the baobeysthe elasticsolution In
addition to elastic and stragoftening regimenaterial undergoes a phasestfainhardening before
failure (see Fig2l).

10

B —

= analytical

°
‘\‘Q‘;:
\

w— 5 elements

——11elements

w21 elements

71 elements

Ml

=  —— -

;2 - 4 -2 -1 o 5 8 2

0
Bar length Bar length

Normalised displacement
& & [=}
8
Normalised strain
-
gy
3

(a) Longitudinal displacement (b) Longitudinal strain

Fig. 16 Comparison between analytical and numerical solution att = 0.03sand R
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