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Abstract.  We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - 
fracture process zone and softening with embedded strong discontinuities. The simplified version of the 
model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko 
(1985). It is shown that deformation localizes in an area which is governed by the chosen element size and 
therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a 
point, which also agrees with results obtained by stability analysis for static case. Strain increases in the 
softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the 
strain-softening region. The more general case with FPZ leads to more interesting results that also account 
for induced strain heterogeneities. 
 

Keywords:  dynamics; FPZ - fracture process zone; strain-softening; localization; finite element; 

embedded discontinuity 

 
 
1. Introduction 
 

The development of localized deformation is caused by a failure process at the material’s 

microscale. The microscopic behavior is governed by growth, interaction and coalescence of 

microcracks which eventually results in complete fracture and softening at the macroscale. In a 

structural concrete member micro-cracking leads to a local decrease in the effective cross-sectional 

area that transmits tensile forces. This phenomenon is commonly called softening and is 

accompanied by the formation of narrow bands of intense straining (localization of deformation). 

In addition, according to Rudnicki and Rice (1975): “localization can be understood as instability 

in the macroscopic constitutive description of inelastic deformation of the material”. The 

instability allows the constitutive equations of an originally homogeneous material to reach a 

bifurcation point where the non-uniform deformation localizes. Outside this localization zone the 

material continues to unload elastically. Throughout this process the body remains in dynamic 

equilibrium expressed in terms of the d’Alembert principle. 
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The strain softening of a material is the decline of stress at increasing strain and represents the 

process of progressive failure or damage. The dynamic strain-softening problem is highly 

nonlinear leading to instability (Similar problems of instability also occur for geometric 

instabilities (Ibrahimbegovic, Hajdo and Dolarevic (2013), Ngo, Ibrahimbegovic and Hajdo 

(2014)). An analytical solution for a one-dimensional wave propagation problem was derived by 

Bazant and Belytschko (1985) for the simplest case of elastic-softening response. Fig. 1 shows the 

stress-strain curve of such a strain-softening material. The linear elastic area is shown between the 

points O & P. The stiffness is given by Young’s modulus E. The maximum strength 𝑓𝑡
′ is reached 

for the plastic strain 휀𝑝. The curve in the strain-softening area (area between points P and F) is 

given by the function 𝐹(휀). The slope of this curve, 𝐹′(휀), is negative. 𝐹(휀) reaches a zero 

stress value for a finite strain휀 or an asymptotic strain 휀 → ∞. Unloading (휀̇ < 0) and reloading 
(휀̇ ≥ 0) is considered to be elastic and happens with Young’s modulus E of the linear elastic area.  

In order to compare with analytical solution of Bazant and Belytschko (1985), we present a 

discrete bar model with strong discontinuities that are embedded into the finite elements through 

the proper enhancement of the discrete strain field of the element. This developed model is 

one-dimensional truss-barcapable of representing the dynamic fracture.  

This paper aims to support the understanding of localized failure for this and more general case 

where strain-hardening and strain-softening elastoplastic behavior are combined in dynamics. The 

outline of the paper is as follows: In Section 2, we introduce the model theoretical formulation. A 

closed-form reference solution for a dynamic strain-softening problem is provided in Section 3 for 

a simple case with negligible FPZ. The numerical implementation for one-dimensional bar with 

embedded strong discontinuities will be discussed in Section 4. Section 5 presents numerical 

simulations for this and more general case including FPZ. Finally, conclusions are given in Section 

6. 

 

 

2. Theoretical formulation 
 
2.1 Elastoplastic material behavior 
 
For elastoplastic material behavior the strain increase is followed in general by the stress 

increase immediately but there may be a permanent deformation after stress release, Fig. 2. 

 

 

 

Fig. 1 Stress-strain diagram of elastic - strain-softening material 
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Fig. 2 Elastoplastic material behavior 

 

 

 

 
 

Fig. 3 Stress-strain response of strain-hardening material 

 

 

2.2 Model for isotropic hardening plasticity 
 
Real metallic materials exhibit a characteristics known as strain hardening. Strain hardening is 

the strengthening of a metal by accumulated plastic deformation. This strengthening occurs 

because of dislocation movements within the crystal structure of the material. The stress–strain 

curve for strain hardening material is shown in Fig. 3. 

 

2.2.1 Assumptions, Observations, Definitions 
(i) The total strain 휀splits into an elastic part 휀 and a plastic part 휀𝑝 

휀  휀  휀𝑝                               (1) 

(ii) The stress   is given by the linear elastic relationship 

   휀   (휀  휀𝑝)                           (2) 

(iii) The set of admissible stresses is denoted by 

   { ∈ ℝФ( , 𝜉)  | |  ( 𝑦  𝐾𝜉) ≤ 0}                 (3) 

where  𝑦 is called the flow stress or yield stress 

 Ф( , 𝜉) denotes the yield function 

 K refers to isotropic hardening modulus 

 𝝃 is the internal variable in which 𝜉̇  |휀̇𝑝| is the simplest evolution equation for 𝝃 
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The center of    remains at the origin. The hardening is linear in the amount of plastic flow 

(linear in |휀̇𝑝|). 
(iv) If Ф( , 𝜉) < 0 no change in 휀𝑝  takes place, 휀�̇�  0. The instantaneous response is 

governed by elastic regime. The elastic range is defined as the open set  

   (  )  { ∈ ℝФ( , 𝜉)  | |  ( 𝑦  𝐾𝜉) < 0}                (4) 

where the interior of   , denoted by    (  ), is refered to as the elastic domain 

(v) A change in 휀𝑝 can take place only if Ф( , 𝜉)  0. If this condition is met the material 

experiences slip in the direction of the applied stress with constant slip rate  ̇ ≥ 0 

휀̇𝑝  {
  ̇,       𝑓    𝑦  0

  ̇,       𝑓    𝑦 < 0
                         (5) 

These cases can be recast into the following single equation 

휀̇𝑝   ̇    ( )   𝑓Ф( , 𝜉)  0,                        (6) 

which goes by the name of flow rule. The sign-function is defined by 

    ( )  {
  ,      𝑓  0
  ,      𝑓 < 0

                         (7) 

The boundary of the elastic range   , denoted by    , is refered to as the yield surface in 

stress space 

    { ∈ ℝФ( , 𝜉)  | |  ( 𝑦  𝐾𝜉)  0}                 (8) 

(vi) The evolution of 휀𝑝  can be completely described with the evolution equation 휀̇𝑝  
 ̇    ( ) provided that  ̇ and   are restricted by certain unilateral constraints: 

a)   must be admissible, that is  ∈   , and  ̇ must be nonnegative 

 ̇ ≥ 0   and   Ф( , 𝜉) ≤ 0                       (9) 

b)  ̇  0 if Ф( , 𝜉) < 0 and  ̇  0 only if Ф( , 𝜉)  0. It follows 

 ̇Ф( , 𝜉)  0                            (10) 

c) Consistency condition:  ̇  0 ⟹ Ф̇  0 and Ф̇ < 0 ⟹  ̇  0, which can be recast into the        

single condition 

 ̇Ф̇( , 𝜉)  0                           (11) 

Condition (a) and (b) go by the name Kuhn-Tucker complementary conditions 

 
2.2.2 Model summary 
 

One-dimensional rate-independent plasticity with isotropic hardening 

  Constitutive relation 

   (휀  휀𝑝)                             (12)                                  

  Plastic flow rule 

118



 

 

 

 

 

 

Combined hardening and localized failure with softening plasticity in dynamics 

 

휀̇𝑝   ̇    ( )                           (13) 

  Isotropic hardening evolution law 

𝜉̇  |휀̇𝑝|   ̇                                                                 (14) 

  Yield function 

Ф( , 𝜉)  | |  ( 𝑦  𝐾𝜉) ≤ 0                   (15)  

  Kuhn-Tucker complementary conditions (loading-unloading conditions) 

 ̇  0Ф( , 𝜉) ≤ 0 ̇Ф( , 𝜉)  0                      (16) 

  Consistency condition 

 ̇Ф̇( , 𝜉)  0                                                                    (17) 

 

2.2.3 Stress-strain rate form 
The complementary condition  ̇ Ф < 0 implies that when Ф < 0 we will have  ̇  0 and 

when  ̇  0 we will have Ф  0. 

In the first case  ̇  0 the material shows instantaneous elastic response. Thus 휀�̇�  0 and 

we obtain the rate form  ̇   휀̇. 
In the second case  ̇  0 and consequently Ф  0. Because Ф  0 remains constant as long 

as  ̇  0 also the rate of Ф vanishes, Ф̇  0, and we obtain 

Ф̇  
 Ф

  
 ̇  

 Ф

 𝜉
𝜉̇ 

     ( ) (휀̇  휀̇𝑝)  𝐾𝜉̇ 

     ( ) 휀̇  휀̇𝑝    ( )  𝐾 ̇ ⟹  ̇  
𝐸

𝐸+𝐾
휀̇    ( )                           (18) 

     ( ) 휀̇   ̇    ( )    ( )  𝐾 ̇ 

     ( ) 휀̇   ̇(  𝐾)  0 

휀̇𝑝   ̇    ( )  
𝐸

𝐸+𝐾
휀̇                        (19) 

 

 

 

 
 

Fig. 4 Stress-time function 
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Fig. 5 Stress-strain curve of the isotropic hardening model  

 

 

Hence, we obtain the following form for stress rate equation 

 ̇  2
 휀̇ ;  ̇  0

𝐸𝐾

𝐸+𝐾
휀̇ ;  ̇  0    

                           (20) 

The stress response of a body subjected to the strain-time function shown in Fig. 4 is given in 

Fig. 5. 

 

 

3. Reference solution in a bar – analytical solution of dynamic strain-softening 
 

Consider a bar of length 2L, with a unit cross-sectional area and a density  per unit length. Let 

the bar be loaded by forcing both ends to move simultaneously outward, with constant opposite 

velocities of magnitude v. The longitudinal coordinate x is measured from the bar’s center (Fig. 6). 

The boundary conditions are 

,
                
               

   (for  ≥ 0)                    (21) 

 

 

 

 
 

Fig. 6 Geometry and loading of strain-softening bar 
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Two step waves are generated in the bar. One wave travels from the right boundary in the 

negative x-direction. The other wave travels from the left boundary in the positive x-direction. The 

two step waves of constant strain travel to the center of the bar and meet x = 0 for the time 

   /𝑐 . When the two waves meet strain doubles instantaneously at the center of the bar if 

휀 ≤ 휀𝑝/2and the midsection enters immediately the strain-softening regime with an increase to 

infinite strain if 휀𝑝/2 < 휀 ≤ 휀𝑝. 

Before the onset of strain-softening the problem is governed by the differential equation of 

motion with the elastic wave speed 𝑐  √
𝐸

 
. This standard equation is the wave equation, which is 

hyperbolic for real wave speeds. 

𝑐 
2   𝑢

    
  𝑢

 𝑡                                 (22) 

The longitudinal displacement function in the linear elastic domain is derived from appropriate 

initial and boundary conditions. 

 ( ,  )    〈  
 + 

  
〉   〈  

   

  
〉                      (23) 

in which the symbol 〈 〉 is defined as 〈 〉    if   0 and 〈 〉  0 if   ≤ 0 

The corresponding strain function needs to be positive. Accordingly, the Heaviside step function 

H is used. 

휀  
 𝑢

  
 

𝑣

  
*𝐻 (  

 + 

  
)  𝐻 (  

   

  
)+                      (24) 

The stress caused by the deformation is described with Hooke’s law for linear elasticity. 

   휀                                 (25) 

Obviously, if 휀 ≤ 휀𝑝/2, the assumption of elastic behavior holds for ≤ 2 /𝑐 , i.e., until the 

time each wave-front runs the entire length of the bar. If, however, 휀𝑝/2 < 휀 ≤ 휀𝑝, the solution for 

the displacement u(x,t)in Eq. (23) holds only for  ≤  /𝑐 . 

The slope of the stress-strain diagram in the strain-softening domain is 𝐹′(휀) that is less than 

zero. Because𝐹′(휀) < 0,the differential equation of motion in the strain-softening domain is elliptic, 

which means that interaction over finite distances is immediate. 

𝑐 
2   𝑢

    
  𝑢

 𝑡  0 with 𝑐 
2  

 ′( )

 
                                                 (26) 

Strain-softening is limited to an area around x = 0. The displacements develop a discontinuity at x 

= 0, with a jump of magnitude   〈   /𝑐 〉. Strain starts to increase infinitely and stress drops to 

zero in the strain-softening zone. The rest of the bar starts to unload elastically. 

Strain near x = 0, i.e., at the center of the bar can be expressed by the Dirac Delta function 

휀    〈   /𝑐 〉 ( )                         (27) 

The solution for the strain field outside the strain – softening zone,    /𝑐  and x < 0, is 

휀  
𝑣

  
*𝐻 (  

 + 

  
)  𝐻 (  

   

  
)    〈   /𝑐 〉 ( )+              (28) 

For the right half of the bar, x> 0, a symmetric solution applies. 
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4. Numerical implementation: finite element with embedded strong discontinuities 
 

4.1 Standard finite element interpolation   
 
The displacement interpolation for one-dimensional truss bar with 2 nodes can be written as 

 ( )  ∑ 𝑁𝑎( ) 𝑎  𝐍𝐮2
a=1                          (29) 

where u represents nodal displacement vectors. 

For this case of element, we use standard linear interpolation functions for continuum 

displacement approximation 

𝐍  ,𝑁1( )    
 

𝑙 
, 𝑁2( )  

 

𝑙 
-                      (30) 

The strain interpolation can be obtained from the displacement field resulting in 

휀( )  
𝑑𝑢( )

𝑑 
 𝐁𝐮                           (31) 

where B is the strain-displacement matrix 

𝐁  
𝑑𝐍

𝑑 
 

1

𝑙 
[     ]                           (32) 

 

4.2 Strong discontinuity kinematics 
 

Once the localized failure occurs, the crack opening (further denoted as , see Fig. 8)  

contributes to a “jump” or irregular part in the displacement field. Thus, the total displacement 

field is the sum of regular (smooth) part and irregular part. 

 ( ,  )   ̂( ,  )  𝛼{𝐻 𝑐
( )  𝜑( )}                 (33) 

 ( ,  )   ̂( ,  )  𝛼𝜑( )  𝛼𝐻 𝑐
( )                                      (34) 

where 𝐻 𝑐
( )is the Heaviside function introducing the displacement jump. 

𝐻 𝑐
( )  {

 ;     

0;  <   
                        (35) 

 

 

 
 

Fig. 7 Shape function 
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M(x) 

and 𝜑( )is a (smooth) function, introduced to limit the influence of the displacement jump within 

the “failure” domain. Usual choice for 𝜑( ) in the finite element implementation pertains to the 

shape function of selected interpolation. For a 1D truss-bar with 2 nodes, we can choose 

𝜑( )  𝑁2( )  
 

𝑙 
                             (36) 

The corresponding illustrations for 𝐻 𝑐
( ) and 𝜑( ) for a two-node truss-bar element are 

given in Fig. 9. 

Denoting with  ̅( ,  )   ̂( ,  )  𝛼𝜑( ) the continuous part of the displacement field, and 

with  the “jump” in displacement, we can further write additive decomposition of displacement 

field: 

 ( ,  )   ̅( ,  )  𝛼𝐻 𝑐
( )                                                     (37) 

 ( ,  )   ̅( ,  )  𝛼𝜑( )  𝛼 {𝐻 𝑐
( )  𝜑( )}⏟                          (38) 

 

 ( ,  )   ̅( ,  )  𝛼𝑁2( )  𝛼{𝐻 𝑐
( )  𝑁2( )}                                (39) 

In Eq. (38) above, M(x) is the additional interpolation function (see Fig. 9), and can be used 

alongside standard interpolation function to describe the heterogeneous displacement field with 

activated jump inside the finite element. The M(x) is defined as follows 

𝑀( )  {
 

 

𝑙 
;  ∈ [0,   

  
 

𝑙 
;  ∈   , 𝑙

 ]
                        (40) 

The finite element displacement interpolation can thus be stated as 

 ( )  ∑ 𝑁𝑎( ) 𝑎  𝛼𝑀( )2
𝑎=1                      (41) 

The corresponding strain field can then be obtained by exploiting the kinematic relation 

휀( ,  )  ∑ 𝐵𝑎( ) 𝑎
2
𝑎=1  𝛼𝐺( )                   (42) 

where  

𝐺( )  𝐺  𝛿 𝑐
  

1

𝑙 
 𝛿 𝑐

,  ∈ [0, 𝑙 ]                 (43) 

and          

𝛿 𝑐
 ,

∞;     

0;   he w se – Dirac’s Delta function                (44) 

 

 

 

 

 

 

Fig. 8 Displacement discontinuity at localized failure for the mechanical load 
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Fig. 9 Displacement discontinuity for 2-node bar element: Heaviside function, smooth function and additional 

interpolation function 

 
 

4.2 Computational procedure 
 

The solution will be computed at discrete pseudo-time values 0, t1, t2, …, t by means of 

incremental iterative scheme. The local phase will be treated separately from global phase: 

The local (element) computation should provide the values of internal variables at the end of time 

step guaranteeing the plastic admissibility of the stress field. Implicit backward Euler scheme will be 

taken for time integration of evolution equations.  

Given: 𝑑𝑛+1, 휀�̅�
𝑝
,  ̅𝑛

𝑝
, 𝜉�̅�, 𝛼𝑛, 𝜉�̿�, ∆   𝑛+1   𝑛 

Find: 휀�̅�+1
𝑝

,  ̅𝑛+1
𝑝

, 𝜉�̅�+1, 𝛼𝑛+1, 𝜉�̿�+1 

In the global phase, we compute the current iterative values of nodal displacements at tn+1 while 

keeping other variables fixed. 

Given: 𝑑𝑛+1, 𝛼𝑛+1  

Find:𝑑𝑛+1  𝑑𝑛  ∆𝑑𝑛+1 

The subscript n denotes the values of variables at the discrete pseudo time tn. First, we need to 

solve the elastoplastic part of the task, and once passed the ultimate stress, deal with localized 

failure and the softening phase. 

The local computation for the elastoplastic phase can be summarized in the following Return 

Mapping Algorithm: 
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 �̅�𝑛 

 

Initial data: 휀�̅�
𝑝
, 𝜉�̅�

 

Strain: 휀𝑛+1  ∑ 𝑩𝑎𝑑𝑎,𝑛+1
2
𝑎=1  

Compute elastic trial stress and test for plastic loading 

 𝑛+1
 rial   (휀𝑛+1  휀�̅�

𝑝
)  (45) 

Ф̅𝑛+1
 rial

 | 𝑛+1
 rial|  ( 𝑦  𝐾𝜉�̅�⏟)  (46) 

If Ф̅n+1
 rial

≤ 0then 

Elastic step:  𝑛+1   𝑛+1
 rial; 𝐶      (47) 

Exit 

Else 

 ̅𝑛+1  
Ф̅𝑛+1

trial

𝐸+𝐾
   (48) 

휀�̅�+1
𝑝

 휀�̅�
𝑝

  ̅𝑛+1    ( 𝑛+1
 rial)  (49) 

𝜉�̅�+1  𝜉�̅�   ̅𝑛+1   (50) 

 𝑛+1   (휀𝑛+1  휀�̅�+1
𝑝

)  (51) 

𝐶  
𝐸𝐾

𝐸+𝐾
  (52) 

End 
 
 
 
 

 
 

Fig. 10 Return mapping algorithm 

 

125



 

 

 

 

 

 

Xuan Nam Do, Adnan Ibrahimbegovic and Delphine Brancherie 

 

 

 �̿�𝑛 

Once the ultimate stress  𝑢is reached, we carry on with solving the softening part of the task. 

Similar to hardening part, the local computation for this phase is summarized in the Return 

Mapping Algorithm as follows: 
 

Initial data: 휀�̅�, 𝛼𝑛
 

Compute elastic trial traction force and test for plastic loading 

 𝑛+1
 rial   (휀𝑛+1  휀�̅�  �̅�𝛼𝑛)  (53) 

Ф̿𝑛+1
 rial

 | 𝑛+1
 rial|  ( 𝑢  𝐾𝑠𝜉�̿�⏟)  (54) 

If Ф̿𝑛+1
 rial

≤ 0then 

Elastic step:  𝑛+1   𝑛+1
 rial  (55)Exit 

Else 

 ̿𝑛+1  
Ф̿𝑛+1

trial

𝐸

𝑙 
+𝐾𝑠

  (56) 

𝛼𝑛+1  𝛼𝑛   ̿𝑛+1    ( 𝑛+1
 rial)  (57) 

𝜉�̿�+1  𝜉�̿�   ̿𝑛+1   (58) 

 𝑛+1   𝑛+1
 rial  

𝐸

𝑙 
 ̿𝑛+1    ( 𝑛+1

 rial)   (59) 

End 
 
 

After the local computation is finished and the values of internal variables obtained, we turn to 

the global phase in order to provide new iterative values of nodal displacements. In this phase, we 

consider the numerical simulations by implicit Newmark scheme and Newton-Raphson method. 

The system of linearized equations can be written as 

0
𝔸  = 1

𝑛 𝑙 �̂�( ) 𝔸  = 1
𝑛 𝑙 𝐅( )

𝐅( ),𝑇 𝐇( )
1
𝑛+1

𝑖

.
∆𝐝𝑛+1

(𝒆),(𝒊)

∆𝛂𝑛+1
(𝒆),(𝒊)/  .

𝔸  = 1
𝑛 𝑙 𝐫𝑛+1

(𝒆),(𝒊)

𝐡𝑛+1
(𝒆),(𝒊) /               (60) 

in which the parts of element stiffness matrix are as follows 

�̂�
( )

 𝐊
( )

 
1

𝛽(∆𝑡) 
𝐌( )                         (61) 

𝐊
( )

 ∫ 𝐁𝑇𝐶𝐁𝑑 
𝑙 

0
                           (62) 

𝐅
( )

 ∫ 𝐁𝑇𝐶𝐆𝑑 
𝑙 

0
                           (63) 

𝐇
( )

 ∫ 𝐆𝑇𝐶𝐆𝑑  𝐾𝑠
𝑙 

0
                        (64) 

and r(e) and h(e) are residuals 
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𝐫
( )

 𝐟  𝑡
( )

 𝐟𝑖𝑛𝑡
( )

 𝐌(𝐞)𝐚                      (65) 

𝐡
(𝒆)

 ∫ 𝐆𝑇σ𝑑   
𝑙 

0
                                                      (66) 

with t is the traction force acting at discontinuity. 

In Eq. (61) above, M(e) is the element mass matrix. 

𝐌( )  ∫  𝐍𝑇𝐍𝑑


                         (67) 

and 𝐟  𝑡
( )

 and 𝐟𝑖𝑛𝑡 
( )

in Eq. (65) are external and internal force, respectively. 

𝐟  𝑡
( )

 ∫ 𝐍𝐛𝐍𝑻𝑑


 [𝐍𝑻 ̅]𝝈
                    (68) 

𝐟𝑖𝑛𝑡
( )

 ∫ 𝐁𝑇σ𝑑


                         (69) 

 
4.3 Static condensation 
 

One of the main features of finite element framework with embedded strong discontinuities is 

the ability to statically condense out the local element parameters on the element level, leaving the 

focus again on the solution of the global problem in terms of the global displacement field d. Then, 

the final statically condensed system is: 

𝔸  = 1
𝑛 𝑙 (𝐊 𝑓𝑓,𝑛+1

( ),(𝑖)
∆𝐝𝑛+1

(𝒆),(𝒊)
)  𝔸  = 1

𝑛 𝑙 𝐫 𝑓𝑓,𝑛+1
(𝒆),(𝒊)

                (70) 

The effective stiffness matrix and effective residual of element are respectively defined by 

𝐊 𝑓𝑓
( )

 �̂�
( )

 𝐅( )(𝐇( ))
 1

𝐅( ),𝑇                   (71) 

𝐫 𝑓𝑓
( )

 𝐫
( )

 𝐅( )(𝐇( ))
 1

𝐡( )                     (72) 

 

 

Fig. 11 Newton-Raphson method 
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5. Numerical simulations 
 
5.1 Quasi-brittle case 
 
We first carry out numerical analysis of a bar of a unit cross-sectional area subjected to constant 

velocity v = 15m/s applied at both ends in the outward direction. The geometric and material properties of 

the bar are L = 2m, E = 10000MPa,      / 3,  𝑦   000   ,  𝑢   000   . The numerical 

results are compared for   
0   

  
 0 0 sand for   

1   

  
 0 0 swith analytical results of the elastic 

solution. 

For   
0   

  
 0 0 s, the waves from the left and right have both travelled 1/2 of the bar, i.e., 

at this time the two waves have not yet crossed and, therefore, all areas of the bar are elastic in 

which the bar area of   /2 ≤  ≤  /2 has approximate values of zero of displacement and 

strain. Propagation of waves from the both ends to the bar’s center presented in Fig. 12 is well 

compatible with these predictions. Meanwhile, a comparison in Fig. 13 shows a good agreement 

between numerical and analytical solutions. 

 
 

 

 
 

 
 

Fig. 12 Wave propagation from the right and left end to the center of the bar at different instants in time 
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Fig. 13 Comparison between analytical and numerical solution for t = 0.01s 

 
 
 

 
 

 
 

Fig. 14 Wave propagation from the right and left end to the center of the bar at different instants in time 
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Fig. 15 Comparison between analytical and numerical solution for t = 0.03s andε ≤
εp

2
 

 
 

At   
1   

  
 0 0 s, two step waves from the left and right crossed in the area of   /2 ≤

 ≤  /2 and strain doubles instantaneously in this area. Nevertheless, the linear elastic regime 

still continues happening throughout the complete length of the bar as the stress remains small 

enough in comparison with the ultimate stress. Wave propagation of the two waves in Fig. 

14followswell these predictions. 

Similar to   
0   

  
 0 0 s the difference in results between numerical and analytical solution 

in case of   
1   

  
 0 0 s is negligible and is obviously showed in Fig. 15. 

Next keeping v = 15m/s, L = 2m, E = 10000MPa,𝐾𝑠  = -2500MPa,     / 3fixed and 

changing values of yield stress and ultimate stress,  𝑦   00   ,  𝑢    0   , respectively. 

All numerical results will be compared with the analytical results of the strain-softening solution 

for   
1   

  
 0 0 s. At this time, the bar area of –

 

2
≤  ≤

 

2
is governed by the strain-softening 

solution. The rest of the bar,   ≤  <
 

2
 and 

 

2
<  ≤   still maintains the elastic regime.  

The Fig. 16(a) illustrates the longitudinal displacement along the bar for different choice of 

finite element discretization at   
1   

  
. A strong sensitivity of results due to mesh discretization is 

visible in the strain-softening region. Meanwhile, for the remaining elastic domain mesh 

sensitivity is not present although an improvement in accuracy of results can be seen with finer 

mesh spacing. The numerical results approach the exact solution with increasing refinement of the 

mesh size.  

The results in Fig. 16(a) agree quite well with the predicted strain-softening behavior for 

longitudinal displacement. The exact solution predicts that displacement develops a discontinuity 

at infinitely small area near x = 0 with a “jump”. Outside of this area the bar unloads and all 

displacements accumulate at x = 0. The numerical results reflect this strain-softening behavior well. 

The strain-softening area narrows with increasing the number of element and all displacements 

accumulate in one element. 

Results for longitudinal strain along the bar are exhibited in Fig. 16(b). For the strain-softening 
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zonea strong sensitivity of results can be observed, where as mesh sensitivity is not visible in the 

remaining elastic domain. However, the accuracy of results rises with finer mesh spacing. The strain 

measured in the strain-softening elements increases with increasing element number. 

The results illustrated in Fig. 16(b) conform to the predicted strain-softening behavior well. 

Analytically, strain is supposed to be infinite in the strain-softening discontinuity at x = 0. Outside 

the discontinuity the bar unloads and strain gradually reduces to zero. This strain-softening 

behavior is well represented in the numerical results. The strain-softening element in the middle of 

the bar undergoes intense deformation. Strain increases with increasing mesh refinement. Strain in 

elements outside the strain-softening element gradually decreases to zero. 

The process in which the two step waves from the right and left boundary travel to the center of 

the bar in Fig. 17 indicates strain-softening behavior as expected with a displacement jump around 

an area of x = 0. Fig. 18 exhibits typical stress-strain curve for quasi-brittle case. It can be seen that 

after reaching ultimate stress the stress-strain response “turns down” and material strain softens. 

 

5.2 Quasi-ductile case 
 
Similarly, numerical analysis of a bar of unit cross-sectional area subjected to constant velocity v = 15 

m/s applied at both ends in the outward direction was performed.The bar has the geometric and material 

parameters as follows: L = 2 m, E = 10000MPa, K = 10000MPa, 𝐾𝑠 = -2500MPa,       / 3, 

 𝑦    0   ,  𝑢    0   . Besides, to observe influence of ductility on failure process of material, 

fixed values of Young’s modulus (E = 10000MPa) and softening modulus (𝐾𝑠 = -2500MPa) together 

with various values of isotropic hardening modulus Kwere used. All numerical results of different mesh 

discretisations are compared for   
1   

  
 0 0 s with exact solution.At this time the waves from the 

left and right have both travelled 3/2 of the bar. Accordingly, the bar area of –
 

2
≤  ≤

 

2
 is 

governed by strain-softening regime, whereas the rest of the bar obeys the elastic solution. In 

addition to elastic and strain-softening regime material undergoes a phase of strain-hardening before 

failure (see Fig. 21). 

 

 

 
 

 
 

(a) Longitudinal displacement (b) Longitudinal strain 

Fig. 16 Comparison between analytical and numerical solution at t = 0.03s and 
εp

2
< ε ≤ ε  
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Fig. 17 Wave propagation from the right and left end to the center of the bar at different instants in time 

 

 
 

Fig. 18 Typical stress-strain curve for quasi-brittle case 
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(a) Longitudinal displacement (b) Longitudinal strain 

Fig. 19 Comparison between analytical and numerical solution at t = 0.03s and 
εp

2
< ε ≤ ε  

 
 

 

 
 

 
 

Fig. 20 Wave propagation from the right and left end to the center of the bar at different instants in time 
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Fig. 21 Typical stress-strain curve for quasi-ductile case 

 
 
Figs. 19(a) and 19(b) show results for longitudinal displacement and strain, respectively, along 

the bar. Obviously, there is a strong sensitivity of results on the mesh discretization for the 

strain-softening zone. Meanwhile, in the remaining elastic domain mesh sensitivity is not present 

although an improvement in result accuracy can be seen with increasing mesh refinement. The 

numerical results well coincide with the predicted strain-softening behavior where in a 

displacement jump occurs and strain is supposed to be infinite in the strain-softening discontinuity 

at x = 0.The bar unloads elastically outside the strain-softening region with accumulation in one element of all 

displacements and gradual decrease to zero of strain. The numerical results approach the exact solution 

with increasing the number of element. The strain-softening behavior is clearly exhibited in Fig. 20 

via wave propagation according to time.  

From the typical stress-strain response presented in Fig. 21 it can be seen that the higher 

ductility (the smaller isotropic hardening modulus K)the larger plastic deformation material will 

undergo before failure and, therefore, this also implies the larger area under the stress-strain 

diagram, i.e., the larger strain energy density at rupture (modulus of toughness). Hence, the 

material has higher resistance to cracks and crack propagation and is more resistant to fracture. 

These above characteristics hold for ductile failure regime of material. 

 
 

6. Conclusions 
 
The aim of this work was to gain a better understanding of strain-softening behavior in discrete 

models with embedded strong discontinuities. In addition, brittle/ductile failure mode transitions 

can be captured well with these elements. 

A one-dimensional dynamic strain-softening problem by Bazant and Belytschko (1985) was 

used for the analytical and numerical investigations of simple case without FPZ – fracture process 

zone. The analytical strain-softening problem is limited to an area with zero width. The strain is 

infinite in the strain-softening domain. The implementation of the dynamic strain-softening 
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problem was done with a discrete bar model with strong discontinuities in FEAP. Theses 

discontinuities are embedded into the finite element through the proper enhancement of the 

discrete strain field of the element. It was shown that strain-softening leads to a sensitivity of 

results on the mesh discretization. Strain localizes in a single element which is the smallest 

possible area in the finite element simulations. The numerical results depend strongly on the 

chosen mesh discretization and well approach the analytical strain-softening solution with 

increasing refinement of the mesh size. 

The explorations are also performed for the more general case with the fracture process zone 

with hardening behavior, which proceeds the strain-softening. This kind of behavior introduces 

increased ductility in dynamic failure phenomena. 
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