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Abstract.  The dynamic characterization is important in making accurate predictions of the seismic 
response of the hybrid structures dominated by different damping mechanisms. Different damping 
characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; 
reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling 
damping matrices and experimental verification is challenging because damping cannot be determined via 
static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to 
be analyzed consists of two or more parts with significantly different levels of damping. The dynamic 
response of structures is critically determined by the damping mechanisms, and its value is very important 
for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the 
equivalent modal damping ratio from structural components is desirable for improving seismic design. Two 
approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The 
first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of 
subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal 
damping; the second approach employs a detailed numerical step-by step integration procedure. 
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1. Introduction 
 

As demonstrated by many field forced-excitation tests, the damping characteristics of hybrid 

cable-stayed bridges vary from bridge to bridge. This is due to the fact that the energy mechanisms 

predominant in the bridges are different (Kawashima et al. 1993). Therefore an analytical 

approach capable of evaluating the equivalent modal damping ratio of cable-stayed bridge from 

structural components is desirable for improving seismic design; by dividing a cable-stayed bridge 

into several substructures in which the energy dissipation mechanism can be regarded as the same 

(Johnson and Kienhholz 1982, Huang et al. 1995, Abdel Raheem and Hayashikawa 2007, 2008, 

2009). In code-based seismic design of such hybrid structures several practical difficulties are 

encountered, due to inherent differences in the nature of damping of different parts. Such 

structures are irregularly damped and have complex modes of vibration, so that their analysis 

cannot be handled with readily available commercial software. Dynamic characterization is 
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extremely important in formulating predictive models for seismic response of hybrid cable-stayed 

bridge structures subjected to earthquake loadings. Characterization of damping forces in a 

vibrating structure has long been an active area of research in structural dynamics (Prater and 

Singh 1990, Prells and Friswell 2000, Angeles and Ostrovskaya 2002, Du et al. 2002, Adhikari 

2004a, b, Xu et al. 2004, Khanlari and Ghafory-Ashtiany 2005, Abdel Raheem and Hayashikawa 

2007, 2008). There are many situations in which the un-damped and classically damped 

assumptions are invalid, since classical damping means that energy dissipation is almost uniformly 

distributed throughout the system. In general, this condition is not satisfied and thus damped 

hybrid systems cannot be decoupled by modal analysis (Ma and Morzfeld 2011); such as the 

structures made up of materials with different damping characteristics in different parts, structures 

equipped with passive and active control systems, soil structure interaction system and structures 

with layers of damping materials (Qu et al. 2003). 

The process of modeling damping matrices and their experimental verification are challenging 

because damping cannot be determined via static tests as can mass and stiffness (Abdel Raheem 

2014, Jehel et al. 2014). Furthermore, damping is more difficult to determine from dynamic 

measurements than natural frequency. There have been detailed studies on the material damping 

(Bert 1973) and on energy dissipation mechanisms in the joints (Bread 1979). The performance of 

a classical damping matrix, constructed either from the use of initial structural properties or current 

structural properties, in the step-by-step solution of a nonlinear multiple degree of freedom system 

is analytically evaluated (Chang 2013). However, in most real systems the damping is 

non-classical, even when classical damping is assumed for each sub-system in the analysis of 

mixed steel/concrete structure - soil interaction systems. In such problems, a more realistic model 

for the damping force should be used to capture the correct response, which leads to complex 

Eigen properties (Chopra 1995). Moreover, the damping matrix is required for most of standard 

analysis methods for a complete system. The seismic response of non-classical damping system 

can be substituted approximately by the seismic response calculated according to uniform damping 

ratio of concrete tower and steel stiffening girder respectively, which can simplify the calculation 

during preliminary analysis (Ding et al. 2011). The equivalent damping could be approximately 

estimated with different methods, such as the complex modal analysis, neglecting 

off-diagonal-elements in modal damping matrix and composite damping rule. In composite 

damping rule method; the equivalent damping ratio is computed as the sum of the damping ratio of 

each component weighted by the modal strain energy ratio of each component to that of total 

bridge system (Ragget 1975, Johnson and Kienhholz 1982, Lee et al. 2004). Papageorgiou and 

Gantes (2010, 2011) proposed equivalent modal/uniform damping ratios for structures with 

Rayleigh type damping and with simpler damping configurations; the basis of these works is a trial 

and error process of potential uniform damping ratios in substitution of the actual damping 

distribution of the structure. Villaverde (2008) proposed a method for using the complex modes of 

irregularly damped structures in combination with response spectra in order to compute the 

maxima of the structural response. Warburton and Soni (1977) proposed a parameter to assess the 

accuracy of the effective modal damping ratio that is computed by eliminating the off-diagonal 

elements of modal damping matrix. 

The classical damping assumption is not appropriate if the system to be analyzed consists of 

two or more parts with significantly different levels of damping, although it may be reasonable for 

each region separately. The well separated different materials cause damping to be unevenly 

distributed for the complete bridge, known as non-classical damping (Qin and Lou 2000). In 

conventional analysis of hybrid structures, it is generally assumed that damping may be defined in 
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terms of modal damping ratios for different types of sub-structures. One such example is mixed 

steel/concrete structure soil system; where the equivalent damping ratio for the hybrid system 

would typically be much different (Japan Road Association 1996, 2002) (1520% for the soil 

region, 510% for footing compared to 25% for the steel super-structure). It is shown that the 

effect of non-classical damping is significant in systems that have nearly tuned modes and 

sufficiently small values of modal mass ratios. This study presents state-of-the-art knowledge on 

dynamic and modal response of 2 coupled SDOF systems as simplified simulation of coupled 

subsystems of different mass ratio; frequency ratio and damping ratio, hence an equivalent 

damping ratio, homogeneous over the composite structure could be used to construct the modal 

damping matrix for dynamic response by the direct integration method. An analytical approach 

capable of evaluating the equivalent modal damping ratio from structural components is desirable 

for improving seismic design. Numerical algorithm is formulated to efficiently evaluate the 

dynamic response of non-classical damped composite structures in earthquake engineering 

applications. Dynamic response of the systems with non-classical damping can be obtained by two 

approaches: direct integration method or modal analysis 

The model analysis should be done through the calculation of the complex eigenvectors of the 

complete system, which are then used to transform the system to an uncoupled set of complex 

modal equations (Veletsos and Ventura 1986, Ibrahimbegovic and Wilson 1989, Ibrahimbegovic et 

al. 1990). However, the calculation of the complex mode shapes for a system with 

non-proportional damping requires approximately eight times the numerical effort as for the 

calculation of the un-damped free vibration mode shapes, as the eigen value problem is twice as 

large. Also, this method is the appropriate numerical method for the dynamic response of systems 

that can be accurately approximated by a small number of modes. This study introduces the 

dynamic characteristics of simplified 2 coupled SDOF systems, where equivalent modal damping 

and coupling index variations with structural parameter of mass ratio and frequency ratio are 

introduced. The equivalent modal damping could be used to defined the damping matrix for the 

direct integration method, the coupling index could be used to define the degree of the coupling of 

modes, hence could decide the range where the dynamic response could approximated using the 

coupled number of un-damped free vibration modes. Also check the effect of skipping the off 

diagonal terms in the modal damping matrix. The direct integration method, which is The most 

general and efficient approach for the solution of the dynamic response of structural systems in 

which a large number of high frequencies is excited, is the direct numerical integration of the 

dynamic equilibrium equations. However, the formation of damping matrix argument should be 

solved. 

 

 

2. Theoretical approach  

 

Classical modal analysis can be rigorously applied only to systems with proportional damping; 

when this is not the case, approximate solutions (Roesset et al. 1973, Kusainov and Clough 1988) 

based on the use of un-damped modal shapes and on the forced diagonalization of the transformed 

damping matrix, are adopted in most practical cases. It has been demonstrated, however, that these 

solutions can sometimes lead to unacceptable errors in response computations (Warburton and 

Soni 1977, Igusa et al. 1984). An alternative strategy consists of direct integration of a reduced set 

of coupled normal coordinates based on the use of classical modes (Clough and Mojtadhedi 1976); 
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however, with this approach, some of the advantages of modal analysis are lost. The decoupling 

approximation, as proposed by Rayleigh (1945), consists in neglecting the off-diagonal elements 

of the modal damping matrix. This approach is motivated by the smallness of the off-diagonal 

elements compared with the diagonal ones. Recently, some paradoxical results have been 

highlighted about this practiced assumption. Indeed, Morzfled et al. (2009) show that the relative 

smallness between off-diagonal and diagonal elements is not sufficient to ensure small decoupling 

errors. The complex modal analysis, originally proposed by Foss (1958), is an extension of the 

classical modal analysis to complex modes in a state space. This method allows decoupling the 

equations of motion in the state space of the system and therefore to perform deterministic or 

stochastic analyses in time or frequency domains without assumption about damping matrix. 

Wagner and Adhikari (2003) also proposed a state-space approach for the analysis of linear 

systems with exponential damping, adopting internal variables. Even if the state-space method can 

provide exact results, significant computations induced by the enlargement of the matrices size are 

required. Nevertheless, engineers and practitioners, especially in civil engineering, have never 

considered this approach as suitable, because of the difficult physical meaning of complex modes. 

The recent research activity in this field has been devoted to exact modal analysis that is to the use 

of the normal modes of the damped system; Adhikari (2002) and Corte ś and Elejabarrieta (2006) 

presented the modal analysis method and numerical method respectively to treat the eigenvalues 

and eigenvectors in the non-viscously damped linear dynamic systems. In an alternative approach, 

Ibrahimbegovic (1989) proposes a simple numerical algorithm considering off-diagonal damping 

forces as pseudo-forces applied to the uncoupled system. To avoid full transfer matrix inversion, 

Denoel and Degee (2009) propose an asymptotic expansion of the transfer matrix assuming the 

relative smallness of off-diagonal elements with regards to diagonal ones. Dynamic response of 

the systems with non-classical damping can be obtained by direct integration or by the calculation 

of the complex eigenvectors of the complete system, which are then used to transform the system 

to an uncoupled set of complex modal equations (Veletsos and Ventura 1986, Ibrahimbegovic and 

Wilson 1989, Ibrahimbegovic et al. 1990). For systems in which dynamic response can be 

accurately approximated by a small number of modes the mode superposition method is the 

appropriate numerical method. However, the calculation of the complex mode shapes for a system 

with non-proportional damping requires approximately eight times the numerical effort as for the 

calculation of the un-damped free vibration mode shapes, as the eigen value problem is twice as 

large. The most general and efficient approach for the solution of the dynamic response of 

structural systems in which a large number of high frequencies is excited, is the direct numerical 

integration of the dynamic equilibrium equations. 

 

2.1 Dynamic equilibrium equation of motion 
 

The dynamic equilibrium equation of motion for a structural system with n-degree of freedom 

(DOF) subject to ground motion excitation, whether classically or non-classically damped, can be 

expressed as follow 

Mü +  Cu̇ +  Ku = −M𝑟�̈�𝑔                           (1) 

In which M and K are nn mass and stiffness positive definite matrices, respectively. C is nn 

damping semi-positive definite matrix, r is the dynamic load effect vector with all n elements 

being 1. The classical damping occur when the damping matrix is a linear combination of the mass 

and stiffness matrices. A commonly accepted for of the damping matrix Cp of classically damped 
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system is Rayleigh‟s scheme, thus  

Cp = M + K                                (2) 

where  and  are real parameters, in formulating the Eigen value problem of the system, both 

sides of governing equation are pre-multiplied by M
-1

, which is also done with Eq. (2), to yield 

M
-1

Cp = I +  M
-1

K                           (3) 

Thereby making apparent the foregoing damping leads to a linear combination of what is 

known as identity matrix I and the dynamic matrix M
-1

K. Therefore, matrices M
-1

 Cp and M
-1

K 

share the same set of eigenvectors, which explain why under form (2); the mathematical model can 

be decoupled. Indeed, adding a linear combination of powers of the dynamic matrix at the right 

hand side of Eq. (3) yields a new matrix that still shares the same eigenvectors with the dynamic 

matrix. Such generalization of the Cp matrix according to generalized damping scheme. For both 

classically and non-classically damped structures; a coordinate transformation from physical 

coordinate's u to modal coordinate's q is adopted 

 u =  q                               (4) 

where q is m×1 generalized coordinates vector (with m n), and  is the n×m modal matrix, 

normalized with respect to mass matrix and given by the solution of the un-damped Eigen problem 

K  = M  
2
                                (5) 

where  is a diagonal matrix listing the first m few natural circular frequencies. By using Eq. (4), 

the differential equations of motion (1) in the modal sub-space can be written as follows 

gu  pqq  q 2                            (6) 

where p is the vector of participation coefficients and  is the generalized damping matrix, given 

respectively by 

p = - 
T
 M r ,     = 

T
 C                          (7) 

For non-classically damped systems, the matrix  is not diagonal. The relative maximum 

magnitude of the off-diagonal elements of  with respect to the diagonal elements can be 

expressed by the following coupling index (Claret and Venancio-Filho 1991, Falsone and 

Muscolino 2004), which measures the degree of non proportionality of the damping. 

                          (8) 

 

2.2 State-space approach  
 

The dynamic analysis of non-classically damped systems has been one of the most important 

topics in the field of structural dynamics (Perotti 1994). In the dynamic analysis of structures, the 

Eigen value problem of the system should be solved a priori in order to avoid resonance or to 

define the natural vibration characteristics. By introducing the state vector
 
U (Veletsos and Ventura 
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1986), the equation of motion can be converted to a 2n-dimensional system of the first order 

differential equation given by 

A 𝑈 ̇ +  B𝑈 = −𝐹�̈�𝑔                            (9) 

A = [
C     M
M     0

]  , B = [
K           0
0      − M

]   , F = [
M 𝑟

0
]   , 𝑈 = *𝑢𝑇      �̇�𝑇+𝑇              (10) 

The characteristic equation can be written as 

(𝜆𝑗
2𝑀 + 𝜆𝑗𝐶 + 𝐾 )𝜑𝑗 = 0                        (11)   

Eq. (6) can be rearranged into state space form as  

[
0                        I

−M−1K     − M−1C       
] {

𝜑𝑗

𝜆𝑗𝜑𝑗
} = 𝜆𝑗 [

I      0
0     I

] {
𝜑𝑗

𝜆𝑗𝜑𝑗
}                 (12)  

where 𝜆𝑗 and 𝜑𝑗 are the j eigenvalue and the eigenvector of the structure system, respectively. 

The complex frequency has the form as  

𝜆𝑗 =  −𝛼𝑗 ± 𝑖𝛽𝑗           (𝑗 = 1, 2, … . . 𝑚)  m: number of vibration modes         (13) 

The equivalent modal frequency 𝑤𝑚𝑗 and equivalent modal damping ratio 𝜁𝑚𝑗of the complex 

frequencies are give as 

𝑤𝑚𝑗 =  √𝛼𝑗
2 + 𝛽𝑗

2  , 𝜁𝑚𝑗 =  𝛼𝑗/𝑤𝑗   (𝑗 = 1, 2, … . . 𝑚)  m: number of vibration modes    (14) 

The free vibration or natural modes of a non-classically damped system are to be distinguished 

from those of a corresponding system with classical damping by the fact that the components of 

the former modes differ in phase as well as amplitude. The effect of this variable phase on the 

motion of the system is that the motion is no longer characterized by the presence of fixed nodes 

as is the case for un-damped or classically damped systems. The nodes are no longer stationary but 

rather wander along the modal shape. 

 

 

3. Numerical results and discussion 
 

The structural behavior during an earthquake can be explained with the aid of modes of 

vibration of a structure. The major response in a system is primarily due to vibrations of its 

subsystems. The hybrid tower structure is composed of different substructures representing steel 

tower superstructure, reinforcement concrete footing/pier and supporting soil. Different damping 

characteristics arise from the construction of the tower with different materials; steel for the upper 

part; reinforced concrete for the lower main part and supporting soil. Two approaches are 

considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed 

bridges: The first approach method makes use of a simplified approximation of 2 coupled lumped 

masses to investigate the structure irregularity effects including damping of different material, 

mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach 

employs a detailed numerical step-by step integration procedure in which the damping matrices of 

the upper and the lower substructures are modeled with the Rayleigh damping formulation. 
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Fig. 1 2-DOF simplified tower model 

 
 

3.1 Simplified 2-DOF model 
 
An elementary analysis based on a simplified 2-DOF model "SDOF-SDOF coupled 

sub-systems", Fig. 1, as representative of non-classically damped tower foundation soil interaction 

system is used to demonstrate the dynamic characteristics. Tower structure system of substructures 

with different damping characteristics is represented by simple model to study the effect of system 

structural parameters on modal properties including natural frequency, modal damping 

characteristics, damping matrix, vibration mode shapes and modal participation factor. The 

governing equation of motion for damped Free System with 2 coupled DOFs could be given by 

Mü +  Cu̇ +  Ku = 0                              (15) 

M, C and K are the mass, damping and stiffness matrices; respectively. ü, u̇ and u represent the 

acceleration, velocity, and displacement vectors, respectively. Details of the matrices and vectors 

elements can be defined as 

M = [
m1     0

0       m2
],  C = [

c1 + c2     − c2

−c2          + c2
],   K = [

k1 + k2     − k2

−k2          + k2
],  u = {

u1

u2
}       (16) 

The sub-systems modal parameters including natural frequency and damping ratio for each 

sub-system are given as follows 

𝑤𝑗 = √𝑘𝑗/𝑚𝑗      ,    𝑐𝑗 = 2𝜁𝑗𝑤𝑗𝑚𝑗      (𝑗 = 1, 2)               (17) 

The frequency domain approach is used to find dynamic response characteristics. For systems 

with classical damping distributions, in each mode the phase angles between DOF‟s are always 

zero degrees (in-phase) or 180 degrees (completely out-of-phase). The result is that, as time 

progresses, the shape (not the amplitude) of the free vibration response in a given mode shape 

remains constant. For systems with non-classical damping distributions, the phase angles generally 

lie between zero and 180 degrees and thus the DOF‟s are either in-phase or completely 

out-of-phase. The result is that the shape of the free vibration response in a given mode shape 

changes with time. From the frequency response function plot as shown in Fig. 2, mass ratio (m2 

/m1) and frequency ratio (w2 /w1) equal to unity for different level of damping, it can be noticed 

 Sub-system1: Sub-structure 

 Sub-system2: Super-structure 
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that the amplitude of the peak decreases significantly, verifying the damping effects. The lower 

plot shows the phase relation between the base and the mass for different frequencies. At low 

frequencies, the phase is zero degrees means that the mass is in phase with base. The phase 

becomes 90 degree at resonance. At high frequencies, the phase is -180 degree; the mass is out of 

phase with the base and move in opposite directions. The damping ratios affect the slope of the 

phase. Damping ratios affect both the slope of the phase diagram and the sharpness of the 

magnitude peaks vs. frequency diagram. 

The effect of mass ratio (m2 /m1) and frequency ratio (w2 /w1) on the acceleration frequency 

response function is investigated for equal damping ratio case (1 = 2 = 0.02) and different 

damping ratio of sub-systems (1 = 0.20, 2 = 0.02), as shown in Fig. 3. As the mass ratio 

decreases, the vibration modes get closer, the soft substructure dominant frequency increase, while 

the stiff substructure dominant frequency decreases. The lower mass ratio leads to significant 

modal coupling especially for equal dominant frequency of substructures. Also it is noted the 

horizontal shift in the position of the natural frequencies as the mass ratio increases. In a complex 

valued eigenvector, each element describes the relative magnitude and phase of the motion of the 

DOF associated with that element when the system is excited at that mode only. The relative 

position of each DOF can be out of phase by the amount indicated by the complex part of the 

mode shape element; all DOFs vibrate with the same phase angle if the mode shape is real-valued. 

For frequency domain analysis, high damping lowers the resonant peak of a frequency response 

function. A further complication of large damping arises when natural frequencies are close, which 

is a common situation for high frequency modes in complex systems. In such situations, the modal 

bandwidth of adjacent resonant peaks might exceed the natural frequency difference, leading to a 

merger of the resonant peaks into one broader peak, which is known as mode coupling. This can 

make it difficult to distinguish the individual modes. 

 

(a)     

(b)  (c)    

Fig. 2 Frequency response function: (a) damping effect on vibration modes; (b) Classical (real normal) mode 

schematic and (c) Non-classical (complex) mode schematic 
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(a) 1 = 0.02, 2 = 0.02 

 

(b) 1 = 0.20, 2 = 0.02 

Fig. 3 Frequency response function 

 

 

 

 

- 40

0

40

M
a

g
n

it
u

d
e

 (
d

B
)

10
0

10
1

10
2

-180

-90

0

P
h

a
s

e
 (

d
e

g
)

 

 

Frequency  (rad/s)

m2/m1=1.0   w2/w1=1.0

m2/m1=1.0   w2/w1=0.1

m2/m1=0.1   w2/w1=1.0

m2/m1=0.1   w2/w1=0.1

- 40

0

40

M
a

g
n

it
u

d
e

 (
d

B
)

 

 

10
0

10
1

10
2

-180

-90

0

P
h

a
s

e
 (

d
e

g
)

 

 

Bode Diagram

Frequency  (rad/s)

m2/m1=1.0  w2/w1=1.0

m2/m1=1.0  w2/w1=0.1

m2/m1=0.1  w2/w1=1.0

m2/m1=0.1  w2/w1=0.1

179



 

 

 

 

 

 

Shehata E. Abdel Raheem 

It is shown that the effect of non-classical damping is significant in systems that have nearly 

tuned modes and sufficiently small values of modal mass ratios. The type of modes of vibration 

would depend on relative stiffness and mass of different subsystems of tower structure, to cover a 

range of parameter variations including tower superstructure to footing structure frequency ratio; 

mass ratio, and different damping ratio for sub-systems. One of the major effects of non-classical 

damping on tower structures is to cause the damped modal vectors to be coupled with respect to 

the damping matrix, which is reflected mathematically by the non-zero off-diagonal elements in 

the transferred damping matrix and measured by coupling index given by Eq. (8). Fig. 4 shows the 

variation of coupling index with mass ratio (m2 /m1) and frequency ratio (w2 /w1) for uniform and 

different damping substructures. For sub-systems with uniform damping (almost classical damping 

scheme), the coupling index increases with structure irregularity as frequency ratio increases and 

the trend of increase become slight as the system approach regular mass distribution (mass ratio = 

1.0), Fig. 4(a). 

For a structure system with substructures of different material damping, the damping behavior 

has two distinct trend: the first trend as could be shown in Figs. 4(b) and 4(d), where the 

substructure 2 has higher damping relative to that of substructure 1, the contour area for the case of 

uniform damping is stretched to lower value of frequency ratio, and the coupling index is 

characterized with bell shape with high rate of change with mass ratio at low frequency ratio, the 

peak values increase as frequency ratio increases; the second  as could be shown in Figs. 4(c) and 

4(e), where the substructure 1 has higher damping relative to that of substructure 2. The effect of 

mass ratio on coupling index has bell shape with its peak locus shift to lower mass ration with the 

increase of frequency ratio increase, moreover the peak value get high value. For sub-systems with 

different damping (non-classical damping scheme, super structure with damping 2%, and 

sub-structure with higher damping 5% and 20%), new trend behavior of the coupling index 

behavior with the variation of stiffness and mass irregularity of structure appears. For sub-structure 

with 5% damping, the coupling index have two different regions, Fig. 4(c), the first trend is the 

same as that showed in Fig. 4(a), but this region get smaller. The second trend is that the coupling 

index increases with structure irregularities of mass and stiffness, the peak locus make slight angle 

to the right with the vertical axis. As frequency ratio increases, the coupling index decrease and 

expand over a wide range of mass ratio variation. The second region expands while the first region 

and trend disappear as shown in Fig. 4(e). 

Figs. 5 and 6 show the variation of 1st and 2nd mode modal damping with mass/frequency ratio, 

for sub-systems with equal damping, the first mode modal damping decreases and the second 

mode modal damping increases with the increase of frequency ratio at constant level of mass ratio. 

At certain level of frequency ratio, the first model modal damping decreases and the second model 

modal damping increases, this behavior gets their peaks around uniform mass structure then keep 

constant horizontal trend "no effects". For sub-systems with different damping (non-classical 

damping scheme, super structure with damping 2%, and sub-structure with higher damping 5% 

and 20%), new trend behavior of the coupling index behavior with the variation of stiffness and 

mass irregularity of structure appears. For sub-structure with 5%damping, modal have two 

different regions, Figs. 5(c) and 6(c), the first trend is the same as that showed in Figs. 5(a) and 

6(a), but this region get smaller. The second trend; the modal damping has bell shape with the 

variation of mass/frequency ratio. As frequency ratio increases, the modal damping expands over a 

wide range of mass ratio variation. The second region expands while the first region and trend 

disappear as seen in Figs. 5(e) and 6(e). Fig. 7 presents the natural frequency variation of 1
st
 and 

2
nd

 vibration modes. 
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(a) 1 = 2 = 0.02 

  

(b) 1 == 0.02, 2 = 0.05 (c) 1 == 0.05, 2 = 0.02 

  

(d) 1 == 0.02, 2 = 0.20 (e) 1 == 0.20, 2 = 0.02 

Fig. 4 Coupling index variation with mass/frequency ratio 
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(a) 1 = 2 = 0.02 

  

(b) 1 == 0.02, 2 = 0.05 (c) 1 == 0.05, 2 = 0.02 

  

(d) 1 == 0.02, 2 = 0.20 (e) 1 == 0.20, 2 = 0.02 

Fig. 5 1
st
 mode modal damping variation with mass/frequency ratio 
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(a) 1 = 2 = 0.02 

  

(b) 1 == 0.02, 2 = 0.05 (c) 1 == 0.05, 2 = 0.02 

  

(d) 1 == 0.02, 2 = 0.20 (e) 1 == 0.20, 2 = 0.02 

Fig. 6 2
nd

 mode modal damping variation with mass/frequency ratio 
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(a) 1
st
 mode of vibration (b) 2

nd
 mode of vibration 

Fig. 7 Natural frequency variation with mass/frequency ratio (1 = 0.02/0.20, 2 = 0.02) 

 

 

3.2 Finite element model of hybrid tower structure 
 
A cable-stayed bridge located in Hokkaido, Japan is considered. Since the cable-stayed bridges 

are not structurally homogeneous, the tower, deck and cable stays affect the structural response in 

a wide range of vibration modes. The tower is taken out of the cable-stayed bridge and modeled as 

three-dimensional frame structure as shown in Figs. 8 and 9. The dimensions units are based on SI 

system, meter; m. The finite element of soil foundation superstructure interaction model is 

formulated based on the design drawings (Abdel Raheem et al. 2003, Park and Hashash 2004, 

Hayashikawa et al. 2004, Abdel Raheem and Hayashikawa 2013a, b). Damping, which dissipates 

energy, as the velocities of motion and strain are varied, is important to dynamic structural 

analyses. The damping matrix for the complete system is constructed by directly assembling the 

damping matrices for the individual subsystems, assumed to be classically damped. Soil damping 

is captured primarily through the hysteretic energy dissipating response. Viscous damping, using 

the Rayleigh damping formulation, is often added to represent damping at very small strains where 

many soil models are primarily linear (Park and Hashash 2004). For concrete structures, the elastic 

damping ratio is taken as 5% related to critical damping, a value that is supported by recent 

experiments (Petrini et al. 2008).  

For cable stayed bridges without special dampers it can be assumed that the steel structural 

parts exhibit a uniformly distributed 2% viscous damping, and that the concrete parts exhibit a 

uniformly distributed 5% damping. Moreover, the soil damping is captured primarily through the 

hysteretic energy using nonlinear soil springs for large strain of soil plus viscous damping using 

dashpot for small strain range of soil. Consequently, a pair of Rayleigh damping coefficients 0s 

and 1s can be used to describe the element damping matrices of all steel structural components, 

and another pair of Rayleigh damping coefficients 0f and 1f can be used to describe the element 

damping matrices of all concrete structural components. The damping matrices could be 

constructed by Rayleigh‟s damping procedures, thus the damping matrices for the structure and the 

foundation soil; 5% for footing and 2% for the steel super-structure is used. 

Cs = 0s Ms + 1s Ks   ,   Cf  = 0f Mf + 1f Kf                (18) 

The natural frequency and the corresponding effective modal mass and modal damping ratio 
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are plotted for different three level of modeling of Composite "steel/concrete/underneath soil" 

cable-stayed tower:  

Model I:  steel superstructure with fixed base (classical damping system);  

Model II: steel superstructure & concrete substructure massive pier with fixed base 

(non-classical damping composite system);  

Model III: steel superstructure & concrete massive substructure pier with soil interaction 

(non-classical damping composite system). 
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Fig. 8 Tower structure of cable-stayed bridge (m) 
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Fig. 9 Hybrid tower model 
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3.2.1 Vibration analysis hybrid tower model 
Because response of cable-stayed bridges significantly depends on damping ratio, it is of great 

importance to correctly evaluate the damping ratio for seismic design (Kawashima et al. 1993, 

Atkins and Wilson 2000). Therefore an analytical approach capable of evaluating the system-level 

damping based upon the damping information of components is desirable, by dividing a 

cable-stayed bridge into several substructures. In this study, the damping characteristics soil 

foundation superstructure interaction model of cable-stayed bridges tower is studied. The 

formulation, analysis methods, and results are first compared for classically and non-classically 

damped structural systems. The effect of non-classical damping on the properties of natural 

frequency; vibration modes; effective modal mass and modal damping eigenvectors of soil 

foundation super-structure interaction model is presented and compared with that of fixed base 

model. From the un-damped natural vibration analysis, the dynamic characteristics including 

natural frequency and effective modal mass are investigated. Fig. 10 shows natural frequencies for 

the first 50 Eigen modes of the different tower models, the first seven modes up to 2.6 Hz almost 

coincide for the different models, while significant differences grow for higher modes due to 

footing and soil effects. The vibration modes of higher effective modal mass are significantly 

changed, which could be seen from Fig. 11. The type of modes of vibration would depend on 

relative stiffness and mass of different subsystems of tower structure. It is shown that tower 

superstructure fixed base model of classical damping, the modal damping increase linearly with 

natural frequency, while for tower footing soil interaction model give higher modal damping and 

increase with high rate, nonlinearly change as shown in Fig. 12. 

 

 

 

Fig. 10 Natural frequencies for the first 50 Eigen modes of the different tower models 

 

 

Fig. 11 Modal effective mass ratio for the first 50 Eigen modes of the different tower models. 
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Fig. 12 Modal damping ratio for different tower models 

 

 

It is shown that in classically damped structures increasing the damping decreases the natural 

frequencies of the system; with non-classical damping some of the natural frequencies of the 

damped system may be greater than the corresponding natural frequencies of the un-damped 

system. Also the coupling index is calculated of the tower structure system, it is equal to 0.174 for 

the tower footing fixed base model, and equal to 0.439 for the tower superstructure footing soil 

interaction model, the modal coupling could attribute different damping characteristics, dynamic 

(frequency ratio) and structural (mass and stiffness ratio) of the substructures of tower structure. 

So in the dynamic analysis of such structure, where the damping matrix is required for the 

complete system, more attention should be considered in the formulation of damping matrix. 

Neglecting the non-classical damping effect would result in un-conservative results. The 

Rayleigh‟s damping can cause significant error in the calculation of the damping matrix if the 

combined structures have significant different substructure damping ratios. 

 

3.2.2 Nonlinear dynamic analysis hybrid tower model 
A nonlinear dynamic analysis, including soil-structure interaction, is developed to estimate the 

seismic response characteristics and to predict the earthquake response of cable-stayed bridges 

towers with spread foundation. An incremental iterative finite element technique is adopted for a 

more realistic dynamic analysis of nonlinear soil-foundation-superstructure interaction system 

under great earthquake ground motion. In the dynamic response analysis, the seismic motion by an 

inland direct strike type earthquake that was recorded during the 1995 Hyogoken-Nanbu 

earthquake of high intensity but short duration is used as an input ground motion to assure the 

seismic safety of bridges. The horizontal and the vertical accelerations recorded at the station of 

JR-Takatori observatory are used for the dynamic response analysis of the cable-stayed bridge 

tower. The kinematic interaction can be modeled by a transfer function, which can be used to 

modify a free-field ground motion so that an effective input motion for a soil-structure system can 

be obtained. A simple model based on analytical modeling of rigid foundation is adopted, in which 

the effective seismic motion is obtained starting from the free-field motion by an approximate 

analytical solution (Harada et al. 1981, Ganev et al. 1995). 

From the Fourier spectra study of tower acceleration response at different levels of tower for 

soil foundation superstructure nonlinear interaction model, it is shown that there is amplification of 

different modes over a wide frequency range as seen in Figs. 13 and 14. The in-plane 

superstructure base response spectrum is larger than that at footing base at spectral frequency less 

than 2.0 Hz because of amplification induced by flexible superstructure and massive rigid 

substructure interaction, while at high frequency above 2.0 Hz, the response spectra is slightly 
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attenuated due to inertial interaction. The tower top response spectra is significantly amplified at 

low frequency range and is almost totally attenuated at high frequency range due to tower 

superstructure flexibility. The massive foundation has the effect of amplifying the response over a 

wide frequency band. The vertical acceleration response at the footing base level shows relative 

high frequency amplification as the response spectra within the frequency range 2  3 Hz is 

slightly amplified at superstructure base level, and it is dramatically amplified at tower top. On the 

other hand, the response spectrum at high frequency range is attenuated by superstructure 

flexibility filter of the tower response. The nonlinear seismic response of bridge piers is distinctly 

different from that of the linear response. There is a great difference whether it is in vibration 

amplitude or in frequency property. The nonlinear properties of foundations make the stiffness of 

the structure low, the response of rotational angle increase and the response of bending moment 

decrease. 

 

 

 

 

Fig. 13 In-plane acceleration time history and response spectra 
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Fig. 14 Vertical acceleration time history and response spectra 

 

 

 

4. Conclusions 
 

In code-based seismic design of hybrid structures, several practical difficulties are encountered, 

due to inherent differences in the nature of dynamic response of each part. The specific issue 

addressed here is the analysis complications due to the different damping ratios of the different 

parts. Such structures are irregularly damped and have complex modes of vibration. In the 

dynamic analysis of a non-classically damped and coupled system, such steel/concrete hyrid with 

soil structure interaction systems, a major step is to define and compute the damping matrix for the 

combined system either in the time domain or the modal domain. The task of computing the 

damping matrix for the coupled system is a nontrivial process especially when the components 

within the system have large dissimilar damping characteristics, and are dominated by different 

energy dissipation mechanisms. This study presents state-of-the-art knowledge on dynamic and 

modal response of 2 coupled SDOF systems as simplified simulation of coupled subsystems of 

different mass ratio; frequency ratio and damping ratio, hence an equivalent damping ratio, 

homogeneous over the composite structure could be used to construct the modal damping matrix 

for dynamic response by the direct integration method. An analytical approach capable of 

evaluating the equivalent modal damping ratio from structural components is desirable for 
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improving seismic design. Numerical algorithm is formulated to efficiently evaluate the dynamic 

response of non-classical damped composite structures in earthquake engineering applications. 

Dynamic response of the systems with non-classical damping can be obtained by two approaches: 

direct integration method or modal analysis. The formulation, analysis methods and results have 

been compared in this paper for classically and non-classically damped structural systems. The 

following conclusions can be drawn from this study: 

One of the major effects of non-classical damping on MDOF structures is to cause the 

un-damped modal vectors to be coupled with respect to the damping matrix. However, the degree 

of modal coupling in tower footing soil structure model is much higher than that in fixed-base 

structure model. It is also illustrated that proportional modal damping can result in incorrect 

responses in non-classically damped systems. In classically damped systems, increasing the 

damping decreases the natural frequencies of the system: with non-classical damping some of the 

natural frequencies of the damped system may be greater than the corresponding natural 

frequencies of the un-damped system. The coupling of the various modes along with their specific 

damping characteristics should be taken into account in the model of the structure. Damping is 

extremely important in formulating predictive models of structures, especially combined structures 

such as tower superstructure footing soil system. The choice of a proper damping ratio is critical to 

the design/analysis of tower structure response. If the dynamic interaction of the tower 

superstructure and the supporting footing structure is deemed significant; then the damping of the 

combined system can exhibit non-classical damping. Non-classical damping gives rise to 

complex-valued mode shapes. If the tower superstructure is tuned with a dominant mode of the 

supporting structure and has damping values much lower than those of the supporting structure, 

neglecting the non-classical damping effect would result in un-conservative results. The 

Rayleigh‟s damping can cause significant error in the calculation of the damping matrix if the 

combined structures have significant different substructure damping ratios. It is shown that the 

effect of non-classical damping is significant in systems that have nearly tuned modes and 

sufficiently small values of modal mass ratios. The inclusion of massive foundation and 

nonlinearity of soil effects leads to amplification of higher modes of vibration and activates the 

high frequency translational motion of the input ground motion and generates foundation-rocking 

responses. 
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