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Abstract. We present different numerical methods for solving the shallow shelf equations with basal drag
(SSAB). An alternative approach of splitting the SSAB equation into a Laplacian and diagonal shift
operator is discussed with respect to the underlying eigenvalue problem. First, we solve the equations
using standard methods. Then, the coupled equations are decomposed into operators for membranes
stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that
the operator of the membrane stresses is much stiffer than the operator of the basal shear stress. Here, we
could apply a new splitting method, which alternates between the iteration on the membrane-stress
operator and the basal-shear operator, with a more frequent iteration on the operator of the membrane
stresses. We show that this splitting accelerates and stabilize the computational performance of the
numerical method, although an appropriate choice of the standard method used to solve for all operators
in one step speeds up the scheme as well.
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1. Introduction

The shallow shelf approximation with basal drag (SSAB) finds its application in the simulation of

ice streams, which are regions of fast ice flow in ice sheets like Greenland or Antarctica, but also

former ice bodies like the Laurentide ice sheet or the Fennoscandinavian ice sheet. Due to rather low

but still present basal drag, the speed of such streams is one to two orders of magnitude higher than

that of ordinary ice flow.

In this paper, we will discus different numerical solutions of the SSAB equations. They follow

from the balance of momentum and the flow law of ice after a number of approximations (scaling,

introducing vertically averaged stress, e.g., (Greve and Blatter 2009)). u and v are the x- and y-

components of (average) horizontal velocity, respectively. Following (MacAyeal 1995), we have
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(1.1)

(1.2)

where g, ρ, H and h are the gravitational acceleration, density of ice, ice thickness and ice surface

elevation, respectively. In physical terms, the above equations balance membrane stresses (longitudinal

stresses and lateral shear stress) with driving stress resulting from the Earth's acceleration and the

basal shear stress. For the basal shear stress, we assume the simple expression 

(1.3)

(1.4)

with the basal shear parameter cb and the power parameter p. In practice, different values for p

apply. Pollard and DeConto (2007) use p = 1.25. For p = 0 Eq. (1.4) reduces to a linear relation

between velocity and basal shear stress. 

The effective viscosity reads

with n = 3 and 

where b denotes the elevation of the base of the ice stream.

For our numerical schemes, we assume in our first approach that the average inverse rate factor  is

constant. In general, B can depend on temperature and water content in the ice and is calculated via

separate equations.

The outline of the paper is as follows. The mathematical methods are introduced in Section 2. The

solver schemes are discussed in Section 3. In Section 4, we discuss the algorithm and the assembling

of the splitting schemes. In Section 5, we validate our basic scheme, compute the condition of our split

operators and determine the performance of the different schemes. Finally, we draw our conclusions

and discuss the results including an outlook on future work.

2. Mathematical method

In the following, we present the iterative splitting methods for elliptic and parabolic operators, see

Geiser (2011). To optimize the application of iterative splitting methods, we have taken into account

the eigenvalues and conditions of matrices, which are used to control the iterative steps.
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2.1 Splitting of elliptic operators

In the following, we discuss the standard iterative splitting with respect to one operator

Aui + Bui−1 = 0, i = 1,2,...,m (2.1)

Iterative splitting with respect to alternating operators

Aui + Bui−1 = 0, i = 1,2,..., j (2.2)

Aui−1 + Bui = 0, i = j + 1, j + 2,...,m (2.3)

For Eq. (2.1) and Eqs. (2.2) and (2.3), u0(x) = uinitial is an initial starting solution for u0 = 0 and the

initial conditions and boundary conditions are given by ui(x) = uinit(x), for x ∈ Ωinit and ui(x) =

ubound(x), for x ∈ ∂Ω for all i = 0,1,...,m. Here, Ωinit is the domain of the initial condition and ∂Ω the

boundary of Ω.

2.2 Iterative operator-splitting method as fixed-point scheme

In this section, we examine parabolic equations and assume that the elliptic equations are only a

special parabolic case t →∞, see Barbu (1998). The results can be achieved for the elliptic part

with the assumption that the solutions are embedded into the parabolic part. 

The iterative operator-splitting method is used as a fixed-point scheme to linearize the nonlinear

operators (Geiser 2011, Kanney et al. 2003).

We consider nonlinear differential equations of the form

= A(u(t)) u(t) + B(u(t)) u(t), with u(tn) = un (2.4)

where A(u), B(u) are matrices with nonlinear entries and densely defined, where we assume that the

entries involve the spatial derivatives of u (Zeidler 1990). In the following, we discuss the standard

iterative operator-splitting method as a fixed-point iteration method to linearize the operators.

We split our nonlinear differential Eq. (2.4) by applying

= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t
n) = un (2.5)

= A(ui−1(t))ui(t) + B(ui−1(t))ui+1(t), with ui+1(t
n) = un (2.6)

where the time-step is τ = t n+1 − tn. The iterations are i = 1,3,...,2m + 1. u0(t) = un is the starting

solution, where we assume that the solution un+1 is near un, or u0(t) = 0. Therefore, we have to solve

the local fixed-point problem. un is the known split approximation at time-level t = tn.

The split approximation at time-level t = t n+1 is defined as un+1 = u2m+2(t
n+1). We assume that the

operators A(ui−1(t
n+1)), B(ui−1(t

n+1)) are constant for i = 1,3,...,2m+1. Here the linearization is done

with respect to the iterations, such that A(ui−1), B(ui−1) are at least non-dependent operators in the

iterative equations, and we can apply the linear theory. For the linearization we assume at least in the

du

dt
------

dui t( )
dt

--------------

dui 1+ t( )
dt

--------------------
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first equation A(ui−1(t)) ≈ A(ui(t)), and in the second equation B(ui−1(t)) ≈ B(ui+1(t)), where t = tn + τ,

for small τ.

We have

||A(ui−1(t
n+1))ui(t

n+1) − A(un+1)u(t n+1)|| ≤ ε

for sufficient iterations i ∈ {1,3,...,2m+1}.

The linearization with the fixed-point scheme can be used for smooth or weak nonlinear

operators, otherwise convergence is lost, because we did not converge to the local fixed point

(Kanney et al. 2003).

2.3 Decoupling ideas based on eigenvalue problems

To distinguish the operators in the differential equation as stiff or non-stiff, we can determine the

eigenvalues of each operator and use them as reciprocal time scales.

The operator equations are analyzed with the eigenvalue problem

(A + B)u(t) = (λA + λB)u(t) (2.7)

where the operators A and B result from the spatial discretization and λA and λB are eigenvalues.

2.4 Stiffness and non-stiffness of elliptic operators

Here, we consider the stiffness of operator A compared to operator B. An operator is stiff if its

matrix is huge in the condition, see Hackbusch (1986).

The maximal and minimal eigenvalues are determined by

λmax = ||A||2, λmin = 1/||A−1||2 (2.8)

χA = λmax / λmin (2.9)

where χA is the condition of matrix A. For the matrix B analogous equations with the condition χB

of matrix B apply.

For the condition numbers of the matrices, we have

χA >> 1, χB ≈ 1 (2.10)

where the eigenvalues of A vary strongly and the eigenvalue of B vary weakly, i.e., the respective

operators are regarded as stiff and non-stiff.

3. Applied iterative methods

In the following, we present the used linear iterative methods, which are adapted and programmed

in an own novel library in FORTRAN90 code. Our code, which is written modular, can be imple-
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mented like standard libraries as EISPACK (see LIS11. LIS (2011)), LAPACK (see Smith et al.

(1976)) or LIS (see LAPACK92. LAPACK (1992)). For the computation of eigenvalues of matrices,

we used the free software OCTAVE (http://www.gnu.org/software/octave/).

Here, we restricted us to standard iterative schemes, as Jacobi, Gauss-Seidel and SOR method, see

Thomas (1999), and take into account the control of these iterative scheme via the eigenvalues of

the underlying operators, see Geiser (2008, 2009, 2011).

Competitive methods, as multigrid (Hackbusch 1985, Trottenberg et al. 2001) and multi-level

domain (Smith et al. 1999, Toselli and Widlund 2005), also Krylov methods (Hestenes and Stiefel

1952, Saad 2003) are also very attractive. But the applicability of these schemes in the framework

of operator splitting are planned to be studied in our future work. 

Due to their advantages as scale-independent solvers, while respecting different grids, we also have

in mind the problems in their implementations to our underlying FORTRAN90 code (done with finite

difference schemes):

· Arranging different hierarchical grids

· Time-consuming assembling of sub-routines for grids

while improvement are also done, e.g., for adaptive finite elements, see Storti et al. (2001). Such

discussions, we would like to shift into a next paper when we will investigate multigrid and Krylov

schemes.

Moreover, we have taken into account the special characteristics of the SSAB equations, see

MacAyeal (1995), and adapted the standard successive over-relaxation (SOR) as one possible

submethod in our splitting approach. We have included the following characteristics of the SSAB

equation to optimize the splitting method:

· Decoupling into linearized and nonlinearized parts (Laplacian and diagonal shifted part).

· Perturbed part (nonlinearized part) is non-stiff, the non-perturbed part (linearized part) is stiff and

solved as main operator in the splitting schemes.

· Eigenvalues are used to quantify the stiffness of the operator. 

In the next section, we apply our theoretical results to the shallow shelf approximation and propose a

decomposition of the underlying operators.

4. Algorithm and assembling of the splitting method with respect to the eigenval-

ues of the operators

In the following, we discuss the adapted algorithms and their implementation in our modular

FORTRAN90 programming code with respect to our SSAB equation, see MacAyeal (1995).

We start with introducing the operators relevant to the SSAB equations.

Linearized Part (membrane stresses)
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The operator containing the driving stress

(4.2)

The nonlinear part

(4.3)

with

(4.4)

which is related to the basal shear stress as

(4.5)

4.1 One-side iterative schemes

The operators are split into the following schemes, where both operators M and B are solved

together in one iterative step

M(ν i−1) (ui, vi)
t + S(h) + B(µi−1) (ui, v i)

t = 0 (4.6)

or with explicitly expressed operators

(4.7)

(4.8)

where ν i−1 is given with µ i−1 for the previous solution.

Here, Eqs. (4.7) and (4.8) are discretized using centred differences in the Arakawa C grid

(Arakawa 1972) and, following the standard procedure, are rewritten by collecting the coefficients

of the discrete velocities

S h( )
ρgH

∂
∂x
-----h

ρgH
∂
∂y
-----h⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

B µ( ) µ u v,( )–
1

0
 
0

1⎝ ⎠
⎛ ⎞=

µ u v,( )
cb

u
2

v
2

+( )
p 2 p 1+( )( )⁄

------------------------------------------=

B µ( ) u v,( )t
τ
x b( )

τ
y b( )⎝ ⎠

⎜ ⎟
⎛ ⎞

=

∂
∂x
----- 2νi 1– H 2

∂ui

∂x
-------

∂vi

∂y
-------+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞ ∂

∂y
----- νi 1– H

∂ui

∂y
-------

∂vi

∂x
-------+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞+

ρgH
∂h

∂x
------ µi 1–– ui– 0=

∂
∂y
----- 2νi 1– H 2

∂ui

∂y
-------

∂ui

∂x
-------+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞ ∂

∂x
----- νi 1– H

∂ui

∂y
-------

∂ui

∂x
-------+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞+

ρgH
∂h

∂y
------ µi 1–– vi– 0=



Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag

(4.9)

(4.10)

where the integers l, m refer to the two horizontal coordinates. 

The discretized effective viscosity together with the velocities which appear therein are taken from

the previous solution at step i − 1. It reads

(4.11)

As in Bueler and Brown (2009) we introduce a regularization as εν = 3·10−14s−1.

Using these Eqs. (4.9) and (4.10) as a basis, we will construct the matrix corresponding to the

operator A: = M + B in Eq. (4.6) of the linear system A = f . The right-hand side column vector f is

the discretized representation of the two-column vector −S in Eq. (4.6).

We order the velocities and the right-hand side column vector f as 

= (v1,1.5, u1.5,1, v1,2.5, ..., vlmax − 1, mmax − 0.5, ulmax − 0.5, mmax − 1)
t (4.12)
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The coefficients of the velocities are given as
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(4.23)

and
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(4.34)

The first method we use to solve the system is the weighted Jacobi method as described in

Thomas (1999). Applied to our problem, we obtain the component-wise iteration steps for u and v

(4.35)

(4.36)

with m = 1,...,mmax − 1, l = 1,...,lmax − 1.

An appropriate value for the weight ω is found via testing (section 5.1). 

For the second method, we apply the SOR algorithm Thomas (1999) to solve the system and

construct the following algorithm

(4.37)

(4.38)

with m = 1,...,mmax − 1, l = 1,...,lmax − 1.

For both of the methods, the stop criterion is given as

(4.39)

for all l, m, where err is a given bound. Later, we will provide a concrete value for err.

We will use both methods, Jacobi and SOR, with appropriate modifications in our splitting scheme

described in the next section.

4.2 Two-side iterative schemes

Two-side iterative schemes have the benefit of computationally balancing the different operators

f l m,
 ′  ρgHl m 1 2⁄+,

hl m 1+, hl m,–

y∆ l m 1 2⁄+,

-----------------------------⎝ ⎠
⎛ ⎞=
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such that we obtain a predictor-corrector scheme to improve a previous solution.

We start with i = 1 and u0 = v0 = 0.

The steps are given for i > 1:

First step (respecting M)

M(vi−1) (ui, vi)
t + S(h) + B(µ i−1) (ui−1, vi−1)

t = 0 (4.40)

where ν i−1 is given with µ i−1 for the previous solution.

Second step (respecting B)

M(ν i) (ui, vi)
t + S(h) + B(µi) (ui+1, vi+1)

t = 0 (4.41)

where ν i is given with µi in the last step (i-th iterative step). And we obtain the next solution ui+1,

vi+1 which is used to iterate the solution of ui+2, vi+2
In terms of computational time, it makes sense that we have one dominant equation, here Eq.

(4.40), such that the main part of the iterative steps are taken for this equation. Alternation between

each iterative scheme is expensive and we should reduce it to a minimum, e.g., 10 iterative steps

with Eq. (4.40), while only one iterative step with Eq. (4.41). This is because the spectrum of the

operators is not the same in our case (see Section 5.2). Therefore, it makes sense to employ more

iteration steps over the larger spectrum (means stiffer part), see Hackbusch (1985). 

As before, we substitute the expressions for the operators into their equations (here Eqs. (4.40)

and (4.41)) and develop the algorithm.

We start with the splitting step in M. As for the one-side scheme (Eq. (4.6)), one can iterate Eq.

(4.40) using the weighted Jacobi scheme or, alternatively, utilizing the SOR scheme; but the term

B(µ i−1) (ui−1, vi−1)
t remains explicit in this splitting step.

Redefinition of Eqs. (4.15) and (4.24) yield

(4.42)

(4.43)

Additionally, we introduce the new coefficients

(4.44)

For the splitting step in M, we use the SOR algorithm, which is proved to be faster than the

Jacobi procedure.

βl m,
0 4ν̂l 1 m,+

x∆ l 1 2 m,⁄+ x∆ l 1 m,+

-----------------------------------------–
4ν̂l m,

x∆ l 1 2 m,⁄+ xl m,∆
-----------------------------------–=

ν̂l 1 2 m 1 2⁄+,⁄+

y∆ l 1 2 m,⁄+ y∆ l 1 2 m 1 2⁄+,⁄+

--------------------------------------------------------
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--------------------------------------------------------––

βl m,
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-----------------------------------–=
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--------------------------------------------------------–

βl m,

9
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′9, µl m 1 2⁄+,–= =
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(4.45)

(4.46)

with m = 1,...,mmax − 1, l = 1,...,lmax − 1.

Together with the coefficients  and , the central velocities ul+1/2,m and vl,m+1/2 are additional

terms in Eqs. (4.45) and (4.46) compared to Eqs. (4.37) and (4.38) and by the definition of the

splitting step in M they are taken from the previous iteration step i − 1.

The splitting step in B can be expressed straightforwardly by solving Eq. (4.41)

(4.47)

(4.48)

Eqs. (4.47) and (4.48) describe an application of the ordinary Jacobi scheme, which is the

weighted Jacobi scheme with ω = 1. In principle, weighting of the velocities at the iteration step i

and at the iteration step i+1 by Eqs. (4.47) and (4.48) in discretized form would lead to a solution

with the weighted Jacobi scheme. Here, we will express the weighted Jacobi algorithm applied to

the splitting in B in the framework of the coefficients of the velocities, because Eqs. (4.9) and (4.10)

are already discretized. 

Again we redefine the coefficients  and  in Eqs. (4.15) and (4.24)

(4.49)

and we redefine the coefficients  and  from Eqs. (4.44) and find

(4.50)
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(4.51)

One may recognize that the redefinitions expressed by Eqs. (4.49) to (4.51) are complementary to

the redefinitions and new-definitions in Eqs. (4.42) to (4.44).

Reformulation of the Eqs. (4.35) and (4.36) leads to a weighted Jacobi algorithm with the

additional terms in  and 

with m = 1,...,mmax − 1, l = 1,...,lmax − 1.

Again, we apply the stop criterion according to Eq. (4.39), but now after the two splitting steps

have been evaluated.

5. Numerical experiments

In the following, we introduce our numerical experiments. The computations were performed on

the IBM iDataPlex Cluster (IPLEX).

5.1 Validation of the schemes with the MacAyeal schematic setup

In most of literature regarding ice streams (e.g., Joughin et al. 2001, MacAyeal 1995), the SSAB

equations are used for inverse modeling of a basal friction parameter from the measured ice surface

velocity. Without knowledge of the basal friction, a validation of our model via measured velocities

would be difficult. Here, we will not perform a strong model validation in the sense that we assess

the modeling errors numerically. We rather make use of the schematic setup for the ice topography

and basal friction (Fig. 1) by MacAyeal (1993), a tutorial on control methods. As a byproduct,

MacAyeal (1993) computes the velocity fields and we use the plots of these velocities for a com-

parison with our modeled velocities. At this stage of development, it is not our intention to perform

a complete model validation and/or verification as described in Bueler et al. (2005). Such an

approach would imply the knowledge of an exact solution of the two dimensional SSAB equations,

which is not available yet.

Instead of the non-linear relation for the basal shear stress in Eq. (1.4) (formally p = 0 therein) the
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linear relation 

τ x(b) = cb(x,y)u, τ y(b) = cb(x, y)v, cb(x, y) = µ(x, y) > 0 (5.1)

is applied by MacAyeal (1993) and we follow that publication here.

Dirichlet conditions apply for the boundary, with u = 0, v = 0 at the lateral boundaries of the

stream, u = 0 at the influx and outflux line of the stream. The velocity v at the influx and outflux

line is defined by a linear combination of sinusoidal functions, which higher velocities at outflux

compared to that at influx line, see MacAyeal (1993) for more details. For the average inverse rate

factor  applies.B 1.8 10
8
Pas× 1 3⁄

=

Fig. 2 Simulated velocity. (a) transverse velocity u and (b) longitudinal velocity v in m/a

Fig. 1 MacAyeal’s schematic model setup. (a) shading plot of basal friction parameter cb(x,y) in Pa a m−1,
isolines of (b) ice surface elevation in m and (c) ice thickness in m
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Fig. 2 shows the velocity fields computed with our weighted Jacobi method. As in reality, the ice-

stream velocity is dominated by its longitudinal component. Its magnitude increase towards the

middle of the ice stream and downstream. The different signs of the transverse velocity component

component reflect the undulations in the surface elevation, which affect the velocity via the driving

stress due to the gradient of the surface elevation. When using the same scale and orientation, the

isolines of our simulated surface velocity match well to results printed in an earlier publication

MacAyeal (1993). The respective fields yielded with the SOR or the splitting method are not

displayed explicitly here, because they are almost identical to those found with the weighted Jacobi

method.

We also found the right ω for Jacobi (as promised above) and SOR in several numerical

experiments. For Jacobi a value of ω = 0.6 is safe, while higher values lead to instability. For SOR

we choose ω = 1.4, although we are aware that there is still room for fine tuning to reach better

performance. Further simulations (not presented explicitly here) showed a strong dependence of the

convergence on the spatial resolution and we are motivated to inspect the eigenvalues of operator M

more closely (Section 5.2), which is stiff.

5.2 Eigenvalues of the SSAB equations

We will later demonstrate that the splitting leads to faster convergence and reduced run times

compared to the one-side iterative schemes. But first, we show that Eqs. (4.40) and (4.41) are

indeed a reasonable splitting due to the far larger condition of matrix M compared to matrix B. 

In the computations of the condition numbers, the average inverse rate factor has the same value as

before. But for the basal shear stress (Eq. (1.4), we use the non-linear relation Pollard and DeConto

(2007) now and set p = 1.25 and cb = 5.4 × 106 kgm−13/9s−14/9. Our cb is somewhat smaller that that of

Pollard and DeConto (2007), but still within the range of measurements (Jenson 1994). 

As before, we use Dirichlet boundary conditions, but here we reduce the boundary values by a

factor of 0.5 compared to MacAyeal (1993), because such a setting is consistent with the stronger

basal drag leading to smaller velocities as MacAyeal (1993), which compares better with observations.

The spatial resolution of the simulation shown in Fig. 3 is ∆x = 5000 m corresponding to 10 × 40

grid cells and we run the model until the stop criterion Eq. (4.39) with err = 10−3 m/a is fulfilled.

Then the condition numbers are computed 100 times for equally spaced iterations steps from the

Fig. 3 Conditions of M and B of the SSAB equation with a spatial resolution of ∆x = 5000 m. Please, note the
different scales of the y-axes (left and right side)
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beginning to the end of the entire computation.

We determine the conditions of the matrices via their maximal and minimal eigenvalues (Eqs.

(2.8) and (2.9) with the free software OCTAVE (Section 3), which reads and evalutes the output of

the simulations with the FORTRAN90 code. 

The condition of the respective matrices show a strong dependence on the iteration steps (Fig. 3).

But the condition of matrix M is for nearly all iteration steps two orders of magnitude higher that

the condition of matrix B; for the very first iteration steps, the condition of the matrix M is still

about a factor of 20 higher compared to that of matrix B. 

We also investigated the dependence of the condition numbers on the spatial resolution at the end of

the iteration. In addition the the run with ∆x = 5000 m, we performed simulations with ∆x = 2500 m

and ∆x = 1250 m corresponding to 20 × 80 and 40 × 160 grid cells, respectively. For these finer

resolutions, we computed the condition number at the end of the simulations (see Table 1). 

We found increasing condition numbers with decreasing grid spacing. But still with a value of

about 30 for ∆x = 1250 m, the condition of the matrix B remains small. Furthermore, the relative

conditions (condition number of matrix M divided by condition number of matrix B) also increase

with decreasing grid spacing. Because a reasonable resolution of an ice stream is rather finer than

∆x = 5000 m, the higher (relative) condition numbers will appear in practice.

These very clear results motivate a stronger iteration on matrix M than that on matrix B with fixed

iteration steps for the splittings; i.e., for now we assume that the dominance of the condition of

matrix M will never change.

5.3 Performance studies for weighted Jacobi, SOR and the M-B splitting

Here, we investigate the performance and dependence on spatial resolution of our applied schemes

using the same model parameters and boundary conditions as in section 5.2. Again, our stop

criterion with err = 10−3 m/a applies. Also, for the SOR scheme we use the same weights as in its

non-splitting application. To determine the iteration steps nM of the split in M and the weights ωB of

the split in B for different spatial resolutions, we performed simulations for ∆x = 1250, 2500,

5000 m with varying nM and ωB. For a preliminary fixing of the optimal parameter values, we

started with the rather coarse steppings nM = 10, 20, 40 and ωB = 0.005, 0.01, 0.05. Then we applied

refined steppings for each individual resolution. Because we determined ωB only with an accuracy

of one significant digit, we still left room for further improvement. As already mentioned, we use

SOR as sub-method to solve for the split in M. Here, we assumed that the weight ωM = 1.4 is as

optimal as for SOR in its non-split application. For fixed spatial resolution, we chose those weights

ωB and iteration steps nM as optimal, for which the run time is smallest and the scheme stays still

stable. To avoid interference with different nodes of the machine all nodes which share the same

memory except for one are switched off. We checked the accuracy of the run time with the same

numerical method for different nodes on the IPLEX and found that the run times compared, at least

Table 1 Condition numbers and relative condition numbers for different grid spacings at the end of iteration

∆x χM χB χM / χB

5000 1300 10 130

2500 10000 18 570

1250 45000 30 1500
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for the accuracy of the significant digits listed for our run times. 

Table 2 shows the run times yielded with the weights which we found. For the non-splitting

schemes, we have a gain in performance by a factor of about 3.3 to 3.8 (depending on resolution) if

we compare SOR with Jacobi. Here, we used fixed weights for all resolutions. In the splitting

scheme, we had to apply smaller weights in the B split with decreasing grid spacing in order to

have stability. The splitting scheme is faster by a factor of 2.9 to 3.0 than the non-splitting SOR

scheme. This gain in performance is comparable with that which we reached without splitting by

the choice of the standard method and its parameters. 

Fig. 4 shows the iteration steps, which are needed to obtain  convergent results. The gain in per-

formance of the different schemes is clearly seen. The best results are obtained with the proposed

iterative splitting scheme. All curves are very smooth indicating stable schemes. Further on, all

curves do asymptotically approach the same limit. This is also true for the entire two dimensional

velocity fields, which we have inspected for all simulations. 

Table 2 Performance of the different numerical methods with applied weights of the operators. ω is the
weight/relaxation parameter for the the Jacobi/SOR algorithm in the one-side schemes. For the M split
of the M-B splitting, nM and ωM denote the iteration steps and the relaxation parameter, respectively.
For the B split, ωB describes the weight and the iterations step is always nB = 1 here

Method ω nM ωM ωB Run time (s) 

Grid spacing 5000 m:

Jacobi 0.6 - - - 6.4

SOR 1.4 - - - 1.7

Splitting - 15 1.4 0.09 0.6

Grid spacing 2500 m:

Jacobi 0.6 - - - 91

SOR 1.4 - - - 25

Splitting - 30 1.4 0.05 8.5

Grid spacing 1250 m:

Jacobi 0.6 - - - 1120

SOR 1.4 - - - 335

Splitting - 50 1.4 0.02 115

Fig. 4 Average of absolute value of the velocity with respect to the iterative steps for different schemes. For
depicted curves a medium spatial resolution of ∆x = 2500 m applied in the simulations. The splitting
scheme (red) converges the fastest
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6. Conclusions

We presented an iterative operator-splitting method to solve the SSAB equations with respect to

their underlying spatial scales. In the our splitting, one operator for membrane stresses and another

operator for basal shear stress are solved for in an alternating method. 

The scheme was validated by comparison with resulting velocity fields from previous research

using an artificial ice-stream topography. Our simulated velocity fields compared with excellent

agreement to those by MacAyeal (1993).

The computation of the eigenvalues of the two split operators shows a much higher condition

number for the operator belonging to the membrane stresses compared to the operator associated

with the basal shear stress for a broad range of spatial resolutions. An embedded (expensive)

computation of the eigenvalues in the algorithm is most probably not necessary. But in our

computations we used standard values for the physical parameter like the average inverse rate factor

and the basal shear  parameter. In practice, these parameters can vary strongly. Therefore, it is  planned

to investigate the validity of our split for the full range of  physical parameters in the future.

The splitting performed here was shown to be successful; compared to the SOR scheme in its

non-splitting application, the gain in performance amounts to a factor of three. We reached such

gain in performance despite the rather small weights we had to apply in the Jacobi scheme, which is

our solving scheme of the B split, in order to guarantee stability. Therefore, the underlying splitting

has the potential to considerably speed up the SSAB solving, but it needs improvements in the sub-

methods, in particular in the method solving for the B split. But still one should keep in mind, that the

splitting is relatively easy to implement: only a simple rearrangement of expressions from implicit to

explicit treatment is necessary. Therefore, the actual gain in performance is easy to achieve.

We also see the benefits in accelerating our iterative schemes with respect to Krylov-subspace

iterations (see Hestenes and Stiefel 1952, Saad 2003) and multigrid methods (see (Hackbusch 1985,

Trottenberg et al. 2001)) which allows to reduce the iteration count to O(h−1) (O(h−d−1}) time in

serial instead of our iterative counts with O(h−2) (O(h−d−2) time in serial. In future we consider such

acceleration techniques.

Moreover, we will pay more attention to the solving of the non-linear part of the equations by

introducing other methods in addition to the splitting, e.g., Newton’s method, in order to gain

efficient solver methods for highly spatially resolved ice stream equations. In future, we develop a

novel method, that taken into account the benefit of split approximations (decouple to simpler

problems) with the shifted Laplacian idea (improved matrix conditions) to establish a stable and fast

SSAB solver, see van Gijzen et al. (2007).
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