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Internal resonance and nonlinear response of an
axially moving beam: two numerical techniques
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Abstract. The nonlinear resonant response of an axially moving beam is investigated in this paper via
two different numerical techniques: the pseudo-arclength continuation technique and direct time integration.
In particular, the response is examined for the system in the neighborhood of a three-to-one internal
resonance between the first two modes as well as for the case where it is not. The equation of motion is
reduced into a set of nonlinear ordinary differential equation via the Galerkin technique. This set is solved
using the pseudo-arclength continuation technique and the results are confirmed through use of direct time
integration. Vibration characteristics of the system are presented in the form of frequency-response curves,
time histories, phase-plane diagrams, and fast Fourier transforms (FFTs). 
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1. Introduction

The demand for structural elements such as beams(Ghayesh 2011, Ghayesh et al. 2011, Ghayesh
et al. 2011, Darabi et al. 2012, Ghayesh 2012, Ghayesh et al. 2012, Ghayesh et al. 2012), plates
(Amabili et al. 2006, Amabili 2010, Amabili and Carra 2012) and shells is continuously increasing,
largely due to their growing application in industry. Among these structural elements, axially
moving systems arise in a large class of mechanical, industrial, and automotive applications. Textile
fibers, paper sheets, band saw blades, robot arms, conveyor belts, and magnetic tapes are just a few
examples. These widespread applications motivated a substantial amount of research in this area.

As reviewed by Wickert and Mote (Wickert and Mote 1988) and later by Chen (2005), dynamics
of axially moving systems has been studied extensively in literature. One such example is
(Naguleswaran and Williams 1968, Shih 1971, Simpson 1973, Holmes 1978, Thurman and Mote
1969). However, a thorough literature review on this topic will not be undertaken in this paper
(interested readers are referred to Wickert and Mote (1988) and Chen (2005).

These early studies were pursued and extended by: Chen and co-workers (Tang et al. 2009, Chen
and Chen 2010, Chen and Ding 2010, Huang et al. 2011, Yang et al. 2012), who considered string
and different beam models of the system and employed different analytical and numerical methods;
Marynowski and co-workers (Marynowski and Kapitaniak 2002, Marynowski and Kapitaniak 2007),
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who considered several energy dissipation mechanisms in the model; Pellicano and Vestroni
(Pellicano and Vestroni 2002), who investigated the dynamics of high-speed axially moving systems;
Suweken and Van Horssen (Suweken and Van Horssen 2003), who investigated the vibrations of the
system with weak nonlinearity and found several internal resonances in the system dynamics; Huang
et al. (2011), who employed the method of harmonic balance to investigate the system dynamics;
Pakdemirli and co-workers (Pakdemirli et al. 1994, Pakdemirli and Ulsoy 1997, Pakdemirli and
Özkaya 1998, Öz et al. 2001, Pakdemirli and BoyacI 2003, Burak Özhan and Pakdemirli 2010), who
conducted systematic research in this area by employing some perturbation techniques; Stylianou and
Tabarrok (Stylianou and Tabarrok 1994), who used the finite element method to examine the system
dynamics; and Nguyen and Hong (2011), who developed a novel control algorithm to suppress the
transverse vibrations of an axially moving web.

Recently, further investigations on this topic have been conducted by the first author and co-
workers (Ghayesh and Khadem 2007, Ghayesh 2008, Ghayesh 2009, Ghayesh 2010, Ghayesh and
Balar 2010, Ghayesh et al. 2010, Ghayesh 2011a, Ghayesh 2011b, Ghayesh and Moradian 2011,
Ghayesh 2012a, Ghayesh 2012b, Ghayesh 2012c, Ghayesh and Amabili 2012, Ghayesh et al. 2012,
Ghayesh et al. 2012, Ghayesh et al. 2012, Ghayesh et al. 2012, Kazemirad et al. 2012). These analyses
involved various system models such as strings and Euler-Bernoulli, Rayleigh, and Timoshenko beam
models. The effect of a partial foundation on the system dynamics was investigated in (Ghayesh
2008, Ghayesh 2009). The dynamics of the system made of laminated composite materials were
investigated in (Ghayesh et al. 2010). 

 In the present study, the sub-critical resonant response of an axially moving beam possessing a
three-to-one internal resonance between the first two modes is obtained using the pseudo-arclength
continuation technique and direct time integration; a higher order discretization is conducted so as to
study modal interactions and internal resonances as well as to obtain fairly accurate results. The
analysis also includes the case without internal resonances between the first two modes. The results
are presented in the form of frequency-response curves, time histories, phase-plane portraits, and
fast Fourier transforms (FFTs). It is shown that the results obtained from the above two methods are
in excellent agreement.

2. Equation of motion and methods of solution

As shown in Fig. 1, consider a simply supported axially moving beam of length L, constant
density ρ, cross-sectional area A and Young’s modulus E which is traveling at a constant axial speed
V. There are two forces to be considered, namely P and ; the former being a
pretension and the latter a harmonic transverse force distributed along the entire length of the beam.
Furthermore,  denotes a Lagrangian coordinate.

The dimensionless form of the equation of motion of this system has been given previously in
(Huang et al. 2011) as follows
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 (2)

where x denotes the dimensionless counterpart of ; w and  represent the dimensionless and
dimensional transverse displacements; τ and t represent the dimensional and dimensionless time; F
denotes the dimensionless forcing amplitude; and Ω is the dimensionless excitation frequency. Eq.
(1) has been derived under the following assumptions: (i) rotatory inertia and shear deformations are
neglected; (ii) only the transverse displacement is considered (Marynowski and Kapitaniak 2002,
Ghayesh 2010, Huang et al. 2011); (iii) the type of nonlinearity is geometric ; (iv) the beam has a
uniform cross-section; (v) the relation between the curvature and the displacement is assumed to be
linear ; (vi) the nonlinearity is due to the stretching effect of the mid-plane of the beam; (vii) the
equation is truncated at third order.

Exciting only the first mode by f1φ1 (x), where φ1 (x) is the first eigenfunction for the transverse
vibrations of a hinged-hinged stationary beam, as well as employing the well-known Galerkin
method for Eq. (1) results in

(3)

, for 

where φi (x) is the ith eigenfunction of a hinged-hinged beam; dot and prime denote the
differentiation with respect to dimensionless time and axial coordinate, respectively. Eq. (3) forms a
set of second order nonlinear ordinary differential equations; however, most numerical techniques
can best handle first order ordinary differential equations. Therefore, Eq. (3) is transformed into a
set of first order nonlinear ordinary differential equations via yi = i for i = 1,2,…,N, yielding 2 N

first order nonlinear ordinary differential equations. In this paper, twelve (N = 6) first order
nonlinear ordinary differential equations with coupled terms are solved using the AUTO code
(Doedel et al. 1998), which uses the pseudo-arclength continuation method. Direct time integration
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Fig. 1 Schematic representation of an axially moving beam subjected to a transverse distributed harmonic
excitation force
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is conducted using a variable step-size Runge-Kutta method to validate the results obtained via the
pseudo-arclength continuation technique. It should also be noted that although there is no damping
in the equation of motion, the numerical simulations include a simple viscous damping with the
dimensionless coefficient of µ.

3. Resonant response of the system possessing a three-to-one internal resonance

between the first two modes 

In this section, the resonant response of the system with a three-to-one internal resonance is
examined. Two cases with different damping coefficients are considered, and it is shown that the
damping of the system may change the system dynamics substantially. The frequency-response
curves of the system are first plotted using the pseudo-arclength continuation technique, and then
several points on those curves are tested via direct time integration. 

The following parameters have been selected in the analysis of the first case: ν = 0.6, νf = 0.173,
ν1 = 33.526, µ = 0.07, f1 = 0.0055. The system with the first two numerical values given above
undergoes a three-to-one internal resonance between the first two modes. Solving the linear part of
Eq. (3) gives the following linear natural frequencies for the first two modes: ω1 = 2.8172 and
ω2 = 8.4984 (ω2≈ 3ω1) confirms that a three-to-one internal resonance occurs. The (maximum)
amplitude of oscillation of this system in the neighborhood of the fundamental natural frequency is
shown in Fig. 2; q1 and q2 are the first and second generalized coordinates. The curves have been
obtained using the pseudo-arclength continuation technique and the symbols (with white filling)
have been obtained by direct time integration. It is clear that the two are in excellent agreement.
Theoretically, as the excitation frequency is increased, the bent section of the curve corresponding to
the first generalized coordinate is to the right, showing hardening-type nonlinearity. As seen in Fig.
2(a), theoretically, as the excitation frequency is increased from Ω = 0.6ω1, the q1 amplitude increases
accordingly until point A (Ω = 1.0648ω1), where stability is lost via a limit point bifurcation. The
amplitude of this unstable solution decreases until point B (Ω = 1.0620ω1), where stability is

Fig. 2 The frequency-response curve of the system with µ = 0.07 possessing a three-to-one internal resonance
between the first two modes, i.e., ω2≈ 3ω1: (a) the amplitude of the first generalized coordinate and (b)
the amplitude of the second generalized coordinate. Bold and dotted lines represent the stable and
unstable solutions, respectively. Symbols with white filling show the results obtained from direct time
integration, and the blue symbols show the bifurcation points
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regained; the energy is transferred from the first generalized coordinate to the second one. Increasing
the excitation frequency causes the q1 amplitude to increase until point C (Ω = 1.4127ω1) is hit,
where the motion becomes unstable once again by means of a limit point bifurcation. As the
excitation frequency is decreased, this now unstable solution regains its stability at point D (Ω =

Fig. 3 Periodic oscillations of the system of Fig. 2 at Ω = 1.2ω1: (a) the time history, (b) phase-plane diagrams,
and (c) FFT of the q1 motion

Fig. 4 The frequency-response curve of the system with µ = 0.045 possessing a three-to-one internal resonance
between the first two modes, i.e., ω2≈ 3ω1: (a) the amplitude of the first generalized coordinate and (b)
the amplitude of the second generalized coordinate. Bold and dotted lines represent the stable and
unstable solutions, respectively. Symbols with white filling show the results obtained from direct time
integration, and the blue symbols show the bifurcation points
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1.0956ω1) and maintains it until Ω = 1.6ω1. Typical features of a periodic motion at Ω = 1.2ω1 are
shown in Fig. 3. It is also seen in Fig. 2 that the only type of bifurcation is limit point; there is no
torus bifurcation. 

The second case to be considered is similar to the first, having almost all of the same parameters,
except a lower damping coefficient (i.e., µ = 0.045). The frequency response of this case is shown
in Fig. 4. As seen in this figure, hardening nonlinearity is present, and both the numerical results are
in agreement. As seen in Fig. 4(a), theoretically, increasing the excitation frequency causes the q1

amplitude, which is stable, to increase accordingly until the first limit point at point A (Ω = 1.0667ω1)
is reached. By slightly decreasing the excitation frequency, the response becomes unstable and lasts
until the second limit point at B (Ω = 1.0595ω1), where the stability is regained. As the excitation

Fig. 5 Quasiperiodic oscillations of the system of Fig. 4 at Ω = 1.115031ω1: (a) the time history, (b) phase-
plane diagram and (c) FFT of the q1 motion; (d-f) the same characteristics of (a-c) of the q2 motion
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frequency is increased further, the stability of the periodic response is lost at point C (Ω = 1.1058ω1),
via a torus bifurcation. The stability is regained at point D (Ω = 1.1170ω1) via the second torus
bifurcation. In the frequency range between points C and D, the periodic solution is unstable,
implying that there might be another type of motion present, such as quasiperiodic or chaotic. Figs.
5(a)-(c) shows (a) the time history of the q1 motion, (b) the phase-plane portrait for the q1 motion,
(c) the FFT of the q1 motion at Ω = 1.115031ω1 - Figs. 5(d)-(f) shows the same characteristics of
Figs. 5(a)-(c) for the q2 motion. As seen in this figure, the amplitudes are modulated and the
response is quasiperiodic. As the excitation frequency is increased further (Fig. 4(a)), the stability is
lost once again at point E (Ω = 1.4238ω1) via a limit point bifurcation. There is another limit point
bifurcation at point F (Ω = 1.3802ω1). In the vicinity of point G (Ω ≈ 1.4082ω1) the stability is initially
regained but lost very soon afterward. This unstable solution lasts until point H (Ω = 1.0961ω1) is
reached, where the motion becomes stable via a limit point bifurcation. It is important to note that,
as opposed to the previous case (Fig. 2), torus bifurcations and quasiperiodic oscillations are observed
in the dynamical behavior of the system with µ = 0.045 (see Figs. 4 and 5; compare Figs. 2 and 4). 

4. Resonant response of the system with no internal resonances between the first

two modes

The frequency-response curve of the system for the first generalized coordinate, with the
following dimensionless parameters ν = 0.2, νf = 0.173, ν1 = 33.526, µ = 0.06, f1 = 0.0055 is shown
in Fig. 6. With these parameters, the first linear natural frequency is determined as: ω1 = 3.4932. As
shown in this figure, the nonlinearity type is hardening.; it was found that, theoretically, as the
excitation frequency is increased from Ω = 0.6ω1, the q1 amplitude increases accordingly until the first
limit point at point A (Ω = 1.3673ω1)is hit, where it loses stability. The stability is regained via the

Fig. 6 The frequency-response curve of the system without any internal resonances between the first two
modes. Bold and dotted lines represent the stable and unstable solutions, respectively. Symbols with
white filling show the results obtained from direct time integration, and the blue symbols show the
bifurcation points
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second limit point bifurcation at point B, where Ω = 1.0711ω1. This now stable solution lasts until
Ω = 1.6ω1. Since the system is away from internal resonances between the first two modes, there is no
energy transferred from the first mode to the second. Limit point bifurcation is the only type of
bifurcation that is observed in the dynamical behavior of the system. Typical vibration characteristic
of the system for Ω = 1.1ω1 are shown in Fig. 7. 

5. Conclusions

The transverse, nonlinear resonant response of an axially moving beam possessing a three-to-one
internal resonance between the first two modes as well as the case without any internal resonance
between the first two modes have been investigated numerically. The pseudo-arclength continuation
technique was used to plot the frequency-response curves. The stable solution branches were validated
using direct time integration. The vibration characteristics of the system in the range, beyond the first
torus bifurcation and before the second one were examined and it was shown that the system displays
a quasiperiodic motion. The typical characteristics of this quasiperiodic motion were investigated via
time histories, phase-plane plots, and FFTs. It was shown that the results obtained from both
numerical techniques are in excellent agreement. This study contributed to the current knowledge on
this topic by detecting new phenomena such as the occurrence of torus bifurcations in the system
dynamics, which are hard to detect analytically.

 

Fig. 7 Periodic oscillations of the system of Fig. 6 at Ω = 1.1ω1: (a) the time history, (b) phase-plane diagram,
and (c) FFT of the q1 motion
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