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Abstract. Tuned vibration control in aeroelasticity of slender wood bridges is treated in present paper.
The approach suggested takes into account multiple functions in aeroelastic analysis and flutter of slender
wood bridges subjected to laminar and turbulent wind flow. Tuned vibration control approach is presented
with application on actual bridge. Some results obtained are discussed. 
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1. Introduction

Advanced slender wood bridges (Fig. 1) are designed in such a way that no traffic or environmental

load can decrease their ultimate reliability. However, the experiments sampled up indicate that

ultimate behaviour of such structures occurring due to the wind can initiate unpredictable ultimate

response influencing their safety. Ultimate flutter behaviour of such bridges occurs by laminar and

turbulent air-flow along the surface of the main girder. Linear theory specifies a critical pressure at

which the bridge motion becomes unstable. The linear theory specifies the flutter boundary but cannot

give information about ultimate flutter response. For large amplitude oscillations the nonlinear effects

restrain the motion to a bounded value with growing amplitudes as dynamic pressure increases.

One measure to control such response is the application of tuned vibration control (TVC) in

special joints adopted on the bridge. The monitoring and identification of actual parameters, the

selection of target reliability and optimal tuning by evaluation of amplification curves are made in

tuning joints either automatically for each forcing situation occurring or are set up stationary for the

assumed range of forcing. TVC controls the length of time interval in which the flutter response

remains stable with limited amplitudes. 

Slender main girders of bridges studied are made of laminated wood. Carbon fiber composites are

adopted for cables. Such bridges, when subjected to laminar or turbulent air flow, can be forced into

ultimate flutter response with large amplitudes and unstable aeroelastic behaviour. The monitoring

submits all data for TVC. The forces in wind cables are automatically varied in order to control the
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response. The TVC-software in tuning joints allows updated identification of all structural and forcing

data, their evaluation, monitoring, optimization and consequently the control of structural response. 

The treatment and modeling of turbulent air flow in artificial boundary layer around the bridge is

a research domain based on advanced scientific technologies. They are imposed by necessity of

studying the turbulent air movement in the proximity of slender structures. The models of turbulent

air flow are used in the assessments being validated by tunnel testing of parameters integrated in

calculation. Aeroelastic response depends on wind speed, wind direction, wind flow (laminar or

turbulent), wind temperature and humidity, snow and ice loads, geometry and configuration of the

wood bridges studied and dynamic properties of all structural elements adopted.

There occur turbulent air flows on edges of the main girder which increase the wind speeds and

pressures. Regarding the variability of configurations of the bridges with artificial boundary layer

there appear the combined laminar and turbulent wind flows. The measurements in aerodynamic

tunnel submit the data required for the analysis of the problem. 

2. Analysis

Slender wood bridges are prone to wind-induced vibrations for various reasons. Some issues

considered in their wind resistant design are mentioned by:

(1) Wind turbulences force the bridge with a considerable power and the movements owing to

turbulences and associated mechanisms are stochastic in nature. 

(2) There is produced a strong vortex wake associated with aerodynamic drag force experienced by

the bridge. Depending on the wind speed and cross-section’s shape, the shedding of vortices is more

or less regular with shedding periods inversely proportional to the wind speed. In resonance

conditions the structure’s oscillation can control the rhythm of the vortex shedding. 

(3) Aside the known vortex trail type excitation the more general types of forcing appear in the

bridge. The vortices generated by the local geometry and movement of the bridge contribute to such

Fig. 1 Slender wood bridge with TVC-equipment
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periodic forcing.

(4) Aeroelastic forces proportional to the movement of the bridge produce the self-induced

divergent vibrations at some wind speeds. 

(5) In the design of the bridge is to be avoided that absolute value of negative aerodynamic

damping exceeds the positive mechanical damping producing across-wind flexural mode instability.

Associated critical wind speed is the flutter velocity while corresponding circular frequency is the

flutter frequency. 

(6) At the onset of the divergence the aerodynamic instability of the bridge is initiated.

In this paper the wind induced structural phenomena are treated by transient dynamics. Laminar

and turbulent wind forcing is studied adopting the wave propagation approach. The goal is to

develop the approach based on transient dynamics combined with wave propagation forcing and

adopted for the analysis of aeroelastic response of slender wood bridges. 

3. Basic principles 

 

The wind flow field is described by the velocity field  which is the function of location vector r

and of time t and is given by

= f(r,t) (1)

The location vector in Cartesian system is 

r = i.x + j.y + k.z (2)

and the velocity vector is

= i.v + j.u + k.w (3)

with parameters

v = f1(x,y,z,t) (4)

u = f2(x,y,z,t) (5)

w = f3(x,y,z,t) (6)

As velocity potential is introduced, the scalar function Φ (x,y,z) is given by

= grad Φ (7)

The scalar terms of Eq. (3) are specified by velocity components 

v = ∂Φ / ∂x (8)

u = ∂Φ / ∂y  (9)

ŵ

ŵ

ŵ

ŵ
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 w = ∂Φ / ∂z (10)

The Bernoulli equation for non-stationary wind flow is then given by

∂Φ / ∂t + w.w/2 + ∫1/ρ dp = F(t) (11)

In order to obtain energetic relations for volume unit of the wind flow, each term of Eq. (11) is to

be multiplied by the density of the wind flow ρ. The term ρ.(∂Φ / ∂t + w.w/2) represents the kinetic

energy available, dp is the energy of the dynamic flow occurring and ρ.F(t) is the energetic balance

of the wind flow studied. The lift force on the bridge is given by 

F = ∫( pd − pu) dp (12)

with pd and pu as values of the pressures on lower and upper surface of the main girder studied.

The pressure is modeled by the translation flow with constant speed and by the flow with circulation

Γ ≠ 0 for each closed profile of the main girder of the bridge. There pays 

F = ∫ ρ.b. .Γ (13)

with b as width of the bridge girder studied. The circulation Γ depends on the air velocity, air

flow angle, geometry and environment of the bridge. 

4. Wind model

Turbulent air flow and wind gusts are given by intensity, spectral distribution and coherence. In

order to generate the wind effects as occuring actually, the wind models are used giving the data and

parameters for 10-minute constant wind velocity steps, as well as the frequency spectrum and the

coherence properties of turbulences appearing. The basic parameter of such wind model (König

1972) is a 10-minute average step vG of a standard 50-year wind velocity in atmospheric boundary

layer studied. The profile of 10-minute wind velocity vw is established in accordance with exponential

law by

vw = vG (z/zG)α (14)

 

with height z, with zG as corresponding gradient height and with α as the exponent for the wind

profile studied (Ruscheweyh 1982, König 1970). The variability of the wind velocity σ is defined as

a standard aberation of the gusts in the wind direction. In accordance with the wind model used σ is

constant along zG and is given by 

σ = zo. vG. √(6.β)/zG (15)

where zo = 10 is the comparative height and β is the roughness parameter due to reference (König

and Zilch (1970).

As further parameter of the wind model appears the atmospheric coherence. It describes the

ŵ
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similarity of the speed variability in various points n along the span and height of the bridge and is

given by

CH(A,B,n) = √{[GAB(n).GAB(n) + QAB(n).QAB(n)]/[SAA(n) + SBB(n)]} (16)

with A and B as two nodes of the bridge model used, SAA(n) and SBB(n) as turbulence spectra

measured in A and B, GAB(n) and QAB(n) as covariance and quadrature spectra of vw(A,t) and vw(B,t),

respectively. Eq. (16) specifies time vs propagation of the wind gusts appearing. 

5. Aerodynamic forces

Studied is the plane panel of the main girder of the wood bridge subjected to a wind flow

initiating aerodynamic forces as shown in Fig. 2. 

In case of simultaneous action of critical velocity of the air flow and of the resonance frequency

of bridge vibration there appears the flutter combination of flexural and torsional oscillations. For

linear analysis of the problem the cross-section studied is an ideal smooth panel and the bridge is

forced by laminar air flow along the whole length studied. The aerodynamic forces in accordance

with the theory of Theodorsen (1935) are given by

L1 = −2.π.ρ.b.vw.C(k).[vw.υT + i.ω.ui + i.b/(2.ω.υT)]  (17)

L2 = 2.π.ρ.ω.b2.ω.ui (18)

L3 = −π.ρ.b2.vw (19)

L4 = π.ω2.ρ.υT.b
4/8 (20)

where ui and υT are flexural and torsional deformations, i is the complex unit and C(k) is the

complex Theodorsen function given by

Fig. 2 Aeroelastic forces on the bridge
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C(k) = H1
(2)(k)/[H1

(2) + i.Ho
(2)(k)] (21)

with Hi
(2) as Hankel cylindrical functions of second order and with the frequency 

k = 2.π.b/λ (22)

where λ is the period of natural vibration of the bridge. 

6. Mechanism of damping 

The wind response of slender wood bridges is influenced by material and structural damping

taking into account the viscoelastic properties of wood, dissipative capacity of environment as well as

aerodynamic damping due to interactions bridge vs environment. The equivalent damping represents

the total energy dissipation and is given by several mechanisms which specify relations between

damping forces and strain velocities. The energy transformations due to material damping are given by

nonstationary thermic variations caused by friction and motion of atomic groups in the wood material

used. The dissipative capacity depends on frequency, stress and thermal effects. The interactions of all

these mechanisms are significant in the assessment of the problem. 

For the analysis of material and structural damping the theory of hysteretic damping is adopted

(Sorokin 1957, Lazan 1968). The stress-strain relation in complex form is given by

σ = Eo (η1 + i η2).ε (23)

with stress and strain σ and ε, respectively, and with Eo as complex modulus of elasticity when

the real part of strain converges to zero. The parameters η1 and η2 are the real functions of the

damping factor η and are given by

η1 = (1 − η2/4)/(1 + η2/4) (24)

η2 = η/(1 + η2/4) (25)

The damping factor η and logarithmic decrement of damping δf are given by

η = δf / π (26)

If the stress σ varies sinusoidally, the strain changes with frequency ω and with phase shift α. If

the stress is 

σ = σo.e
iωt (27)

with the stress amplitude σo , then corresponding strain is given by

ε = εo.e
i (ωt-α) (28)
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For the complex modulus of elasticity there holds

E = E1 + i.E2 = σ/ε (29)

with real and imaginary components given by

E1 = σo.cos α/εo (30)

E2 = σo.sin α/εo (31)

The damping factor η is given by

η = tg α = E2/E1  (32)

and is included into complex moduli of elasticity

E = Eo (1 + i.η) (33)

G = Go (1 + i.ηe) (34) 

where ηe is the shear damping factor. The structural damping is approximated by complex spring

characteristics

kB = ko (1 + i.ηB) (35)

specified by elastic supports or joints. The parameters ko and ηB are defined as the spring constant

and the factor of structural damping. The structural damping appears in the interaction with the

material damping. 

In the hysteretic model the damping forces generated by material friction are proportional to

deformations. The loss factor is equivalent to energy dissipated. There can appear theoretical non-

causalities because hysteretic damping approach holds only for steady state harmonic oscillations.

However, the numerical and laboratory experiments have experienced negligible significance of such

theoretical malfunctioning. 

The TVC of wood bridges is made by computer operated variation of hysteretic, viscous and

viscoelastic parameters in the damping facilities of tuning joints as well as in the energy absorbing

members adopted. In the hysteretic members in tuning joints the damping forces generated by

material friction are proportional to the deformations occurring. The tuning thus depends on stress

vs displacement dependence of the stiffness appearing. The specific work of the total damping is

given by

D = J σn (36)

where J and n are experimentally found parameters (Lazan 1968). The total work of damping is

obtained by integrating specific works of material and structural members adopted. The variability of

stress causes that each material particle has its own hysteresis curve contributing to total damping.
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Within the element volume Vg the maximum stress σmax corresponds to the maximum work od

damping Dmax and the work of tuning is given by

Dg = Dmax Vg β1 (37)

with nondimensional parameter β1 (Lazan 1968). The energy cumulated in analyzed volume is 

Ug = 0.5 Vg σmax
2 β2/E (38)

with nondimensional parameter β2 (Lazan 1968). The factor of damping for analyzed volume is

given by

ηs = Dg/(2π Ug) (39)

and is implemented into complex modulus of elasticity in accordance with the stress available.

For linear damping there holds β1/β2 = 1. The ultimate analysis with nonlinear damping is based on

the assessment of β1 and β2 for given geometry and stress. An iterative scheme is used for specifi-

cation of damping factors in each element of the bridge. In the first iteration the parameters β1
(1)

,

β2
(1) and ηs

(1)
 are specified for the stress level available. Such parameters are the basis for following

iteration steps specifying actual incremental stress and corresponding parameters β1
(i)

, β2
(i) and ηs

(i).

The analysis is continued until satisfaction of convergence criterion

|ηs
(i + 1)/ηs

(i)| − 1 ≤ 0.01 (40)

When analyzing the viscous damping in TVC-joints adopted, the substitution of complex stiffness

by an equivalent viscous damping is to be made. Such a shift from one model of damping into

another one has to be made in order to ensure the same amount of energy dissipation per cycle of

vibration in the hysteretic model

∆Whysteretic = 2 π η K uo
2 (41)

as well as in the viscous damping model

∆Wviscous = 2 π ωo C uo
2 (42)

The terms K and C are stiffness and damping matrices, respectively, and uo is the vector of defor-

mations of the bridge oscillating with frequency ωo. The damping capacity of the viscous member is

defined as the ratio of the energy ∆W dissipated per cycle of vibration vs maximal stored energy per

cycle

ψ = ∆W/W = 2 π ξ.  (43)

The damping capacity is in such a way related to hysteretic loss factor η based on complex modulus

of elasticity and on viscous damping ratio ξ. The damping capacity of the viscoelastic damping

member
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ψ o = ψvol + ψdev (44)

is splitted up into volumetric (ψvol) and deviatoric (ψdev) parts. The volumetric part is considered

to be simply elastic and viscoelastic behaviour is principally related to the deviatoric part. The stress

is splitted up into elastic and dissipative parts. In constitutive equation there holds

σ = σelastic + σdissipative = E ε + λ  (45)

with Young modulus E, with strain ε, strain rate  and with λ as viscosity constant of damping

member studied. There pays

λ = υ E (46)

where υ is the relaxation time. In strain ε = B.u and strain rate = B.ú the parameters u and ú are

nodal vectors of deformations and velocities, respectively. The matrix B consists of the derivatives

of shape functions applied.

Environmental air causes additional interactive damping in the aeroelastic response of wood

bridges. For the assessment of total damping is to be dealt with residual value of dissipative energy

given by

W = ∆W + ∆L (47)

with dissipative components of structural damping ∆W as mentioned above and dissipative part of

environmental damping ∆L. When taking into account the air incompressibility which holds for the

wind velocities v < 50 m/sec (density variability of air for such velocities is less than 1%), for

constant air pressure q there holds

q = ρ v2/2 (48)

where ρ is the air density. Such pressure appears on the motionless bridge forced by constant air

flow with velocity v. The additional damping force is given by

CL = c A ρ v2/2 (49)

with area A of the bridge and with the coefficient c as explained below. The damping force CL is

valid for stationary process, e.g., for the constant velocity of the air flow. However, when dealing

with ultimate response, the non-stationary circumstances are to be considered. The resulting force

acting on the bridge is then given by

CR = cd A ρ v2 + cm AD ρ a  (50)

with wind acceleration a. In Eq. (50) besides constant pressure term there appears one additional

term corresponding to the gyration mass. The coefficients c, cd and cm are given in (Davenport 1961).

The gyration forces depend on additional virtual mass of the air pressed in front of the bridge. For

small amplitudes the air damping is proportional to velocity of the bridge. For large amplitudes the

ε′

ε′

ε′
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air damping depends on the resistance force given by constant pressure of wind flow on the bridge.

Aeroelastic interaction bridge vs air flow causes further additional damping of the dynamic motion.

There appear aerodynamic dissipative forces and damping is given by phase shifts of motions and

forces appearing. The amplitudes of aerodynamic forces increase linearly with the wind velocity.

7. Turbulences 

All turbulences in the wind forcing are considered as a special family of motions from one space

region into another one (Tesar 1988). Their updated configuration is specified by location of the air

displacements in space and time. The variations of configurations are continuous and during defor-

mation there appear no new boundary conditions. Each new configuration is related to a reference

position stated. 

When taking into account the Cartesian coordinates x, y, z and corresponding displacements u, v,

w, the Green strain tensor is given by

Exx = ∂ux/∂x + [(∂ux/∂x)2 + (∂uy/∂x)2 + (∂uz/∂x)2]/2 (51)

  Exy = [(∂uy/∂x) + (∂ux/∂y) + (∂ux/∂x)(∂ux/∂y) + (∂uy/∂x)(∂uy/∂y) + (∂uz/∂x)(∂uz/∂y)]/2, ...., etc.    (52)

In order to set up the constitutive equations, the stress tensor with the same reference is needed.

The second Piola-Kirchhoff stress tensor Sij has the properties required and the generalized equation

of the air flow is then given by

Sij = g(Eij) (53)

with g as function of the Green strain tensor Eij. 

When analysing the air flow with volume, surface area and density, B, S and ρo, respectively, the

volume forces of the mass unit are given by Fo,i and the strains by Ti . The system in equilibrium is

submitted to a virtual displacement δui being kinematically consistent with initial conditions assumed.

The equilibrium of the virtual work is given by 

∫ Sij δEij dB − ∫ Ti δui dS − ∫ Pi δui dB = 0 (54)

with substitution 

Pi = ρo Fo,i (55)

Eq. (54) specifies the stationary value of the potential energy in all deformations ui. The

incremental equivalent of corresponding variation principle is given by 

∫ Sij
(1) δEij

(1) dB − ∫ Ti
(1) dui

(1) dS − ∫ Pi
(1) δui

(1) dB = 0 (56)

∫ Sij
(2) δEij

(2) dB − ∫ Ti
(2) dui

(2) dS − ∫ Pi
(2) δui

(2) dB = 0, (57)
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with superscripts (1) and (2) for neighbouring configurations studied. The strains and volume

forces have the same reference configuration and there holds

∆Ti = Ti
(2) − Ti

(1) (58)

∆Pi = Pi
(2) − Pi

(1) (59)

The variations of both deformation fields are the same 

δui = δui
(1) = δui

(2) (60)

The incremental virtual work equation is given by Eqs. (56) and (57) 

∫ (Sij
(2) δEij

(2) − Sij
(1) δEij

(1)) dB − ∫ ∆Ti δui dS − ∫ ∆Pi δui dB = 0 (61)

when taking into account the virtual variations of both configurations studied. Eq. (61) specifies the

configuration (2) from the known configuration (1) and known load increments. When the work made

by mass and damping forces on virtual displacements δui is added, the principle of virtual work for the

problem studied is given by 

∫ Sij δEij dB + ∫ ρ ui δui dB + ∫ Ci ui δui dB − ∫ Ti δui dS − ∫ Pi δui dB = 0  (62)

where ρ and C are mass and damping terms. 

The turbulence in the air flow is described by instantaneous wind speed as a function of space and

time with mean and fluctuation components given by

u(x, y, z, t) = U(x, y, z) + u´(x, y, z) (63)

v(x, y, z, t) = V(x, y, z) + v´(x, y, z) (64)

w(x, y, z, t) = W(x, y, z) + w´(x, y, z) (65)

The mean values of U, V, W are the result of averaging in a certain interval of time the wind

speed and the fluctuating components.

The turbulence scales of the instantaneous wind speed are the measure of representative dimensions

of the vortices induced by the turbulences inside the air flow. Their importance lies in the fact that

they describe the turbulences which „wrap“ the bridge periphery in a certain time. 

The assessment of a turbulence motion starts with the specification of the correlation functions of

fluctuating components which may run in longitudinal, transversal and vertical directions. In general,

the characteristics of the air flow are well defined if the correlation functions are specified for the

mean streamwise components longitudinally and transversally. The correlation in time is specified by

formulae 

ρu(i)u(j)(τ) = Ru(i)u(j)(τ)/[(√(u´)2(t)).(√(u´)2(t + τ))] (66)
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Ru(i)u(j)(τ) = ui(t).uj(t + τ) = limT→∞ 1/T ∫ [ui(t).uj(t + τ)]dt  (67)

Eq. (67) represents the covariance function of the process u(t) being determined by measuring in

two different points in space at the difference of time τ (Teleman 2008). 

According to Taylor’s hypothesis (Hautoy 1990) the inter-correlation between any of the fluctuating

parts, discarding the wind instantaneous speed measured in two points being separated by distance

∆x in the direction of the wind flow, is equal with the auto-covariance determined for the period

studied. The inter-correlation functions give information concerning the dimensions of turbulences

in direction of the wind action. The existence of the mean values of the wind speed inside of

turbulent flow is given by fact that in a certain point i the turbulence has a certain periodicity in

time. After a certain period the phenomenon repeats itself in space. These two idioms specify the

turbulence scales in time and space. The turbulence scales define the frequency of the gusts in the

wind action. The integral length scales correspond to spatial nature of the wind action specifying the

longitudinal, lateral and vertical scales given by

Lx = ∫ρu´(i)u´(j)(∆x,0,0) d(∆x) (68)

Ly = ∫ρu´(i)u´(j)(0,∆y,0) d(∆y) (69)

Lz = ∫ρu´(i)u´(j)(0,0,∆z) d(∆z) (70)

with integration from 0 until ∞. The most important of these three is the longitudinal scale, the

other two being practically its derivatives. The integral time scale of the turbulence is defined by

ΛT = ∫ρu´(i)u´(j)(τ) dτ (71)

According to above Taylor’s hypothesis, the longitudinal scale of a turbulence may be specified

by integral time scale and by mean wind speed V in the streamwise direction given by

Lx = V.ΛT (72)

The studies for determination of the turbulence scale, both at natural scale and in laboratory, have

produced the empirical Davenport’s formula

ΛT = 0.084 L/V  (73)

given in sec, where L is the longitudinal scale of the wind speed and V is the mean wind speed. 

The incorporation of above forcing into behaviour of the bridge is specified by the wave

propagation with corresponding interactions and reflexions of laminar and turbulent air flows. The

waves initiated are specified by the spectral evolution describing the occurrence of wind

turbulences. 

The spectral evolution is based on following definitions

1. Each stationary function x(t) is given in integral form

x(t) = ∫ eiωt dA(ω) (74)
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with symbol A(ω) for orthogonal complex process studied. 

2. Linear transformation y(t) of the function x(t) in Eq. (74) is given by 

y(t) = ∫ H(iω) eiωt dA(ω) (75)

with H(ω) as corresponding admittance function.

3. Spectral densities of functions x(t) and y(t) are connected by

Sy(ω)/Sx(ω) = |H(iω)|2 (76)

Turbulent air flow is defined by a wave number ri(ω), with longitudinal (d) and shear (s) waves.

Stationary waves are emitted with complex amplitude F(ω,zo), e.g., z = zo. The wave superposition is

given by

wi(t,z) = ∫ e−iωt eir (ωz) dF(ω,zo) (77)

For wave interactions in turbulences the forcing spectrum is given by

S(ω,0) = S(ω,zo) |H(ω,0)|2 e−2 Im[r(ω)] (78)

with response H(ω,0).

Recent approaches are given in Refs. (Lu 2012, Belver 2012, Cheggaga 2012, McWilliam 2011).

8. Tuned vibration control

 

The system identification for each forcing situation appearing, together with structural response,

optimization and monitoring, are principal operations made in the TVC-joints. The system identifi-

cation is a part of modeling with data basis available from updated structural and forcing situations

measured. The analysis of structural response considers all linear and nonlinear interaction effects

appearing. The optimization and monitoring take into account the target functions adopted in order

to control the bridge response. The tuning joints contain the facilities for variability of forces in

wind cables in TVC, taking account of:

· updated frequency spectrum of the bridge studied; is initiated by variability of forces in the wind

cables,

· updated damping parameters of the bridge studied; are influenced by damping facilities and

energy absorbers in structural system and in the TVC-joints adopted,

· updated monitoring of time response of the bridge. 

Above items change the frequency spectrum as well as structural damping parameters ofm the

bridge for each forcing situation occurring. 

Other examples of TVC-systems are based on utilization of cables located interior of the bridge

girder studied (see Fig. 3 - alternatives 2 and 3). The principal scheme of such TVC facility is in

Fig. 4. The TVC is performed either by the variability of forces in the wind cables or by the

variability of distances of structural elastic supports in contact points girder vs wind cables interior

of the girder. The TVC is activated by adoption of simple locking mechanisms in contact points.
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The TVC in scope of the alternative 3 consists of the wind cables placed interior of the bridge

girder. Axial forces in the wind cables are varied in order to control the torsional/flexural response

of the bridge. 

 

9. Application

Studied is the ultimate flutter response of the slender wood bridge as shown in Fig. 5. The span of

the bridge is 100 m. The main girder of the bridge is made of laminated wood. The carbon fiber

composites are adopted for the cables. The structural parameters of the bridge are: girder width

Fig. 3 TVC-alternatives

Fig. 4 TVC-joint
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7.9 m, girder height 4.1 m and its mass per m2 is 1830 kg. The bridge was forced by standard laminar

and turbulent air flows measured in southern territory of Slovakia (Tesar 2011). The ultimate flutter

time response during simultaneous action of flutter eigenvalues given by resonance frequency of the

bridge 0.66 Hz and by critical wind velocity 23.6 m/sec was studied. 

The assessment has shown the dominant influence of flutter rotation modes on resulting ultimate

response of the bridge. Starting with simultaneous occurrence of both eigenvalues and assuming the

discretization of the bridge span into n-nodes, the structural time response until the bridge collapse

was studied. In scope of the TVC the wind cables of the bridge were submitted to variable axial

tensile forces. The bridge response in time points 300 sec (for axial tension force 0.1 MN), 660 sec

(for axial tension force 0.25 MN) and 720 sec (for axial tension 0.5 MN) after initiation of

simultaneous action of both eigenvalues, is plotted in Fig. 6. 

10. Conclusions

The efficiency of the present system for tuned vibration control of slender wood bridges, adopting

the variability of forces in the wind cables, is illustrated. The TVC appears as efficient tool for the

Fig. 5 Geometry of the wood bridge studied

Fig. 6 Ultimate bridge response
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aided reliability of slender wood bridges subjected to laminar and turbulent wind forcing.
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