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Abstract. This paper presents analytical approximate solutions for the initial post-buckling deformation
of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be
reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin
series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting bound-
ary condition problem are established by combining the Newton’s method with the method of harmonic
balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set
of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method
of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate
formulae for load along axis, and periodic solution are established for derivative of the helix angle at the
end of the pipe. Illustrative examples are selected and compared to “reference” solution obtained by the
shooting method to substantiate the accuracy and correctness of the approximate analytical approach.
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1. Introduction

Many aspects of petroleum engineering (such as the functions of pipes, safety and surveying

accuracy of down-hole instruments, and so on) are related with buckling of drill-strings. Because of

the high frequency of drill-string failure, drill-string lock up, and casing wear, the stability of drill-

strings has been a serious problem in oil/gas field operations for many years (Gulyayev et al. 2009

and Tan et al. 2009). On the other hand, with the development of drilling technology, oil/gas wells

become very long currently, even more than ten kilometers. Furthermore, some wells have a very

complex geometrical configuration, such that parts of wells may be inclined, vertical, horizontal, just

plane curved, and even 3-D curved. Therefore, it is important and meaningful to investigate the

buckling behavior of pipes for the science and technologies in petroleum engineering and related

fields. 

In despite of the complexity of the problem, many results are still reported. Paslay and Bogy first

studied the problem of sinusoidal buckling of the tube (Paslay and Bogy 1964). Based on the

principle of minimum potential energy, the problem of helical buckling of a vertical tube was first
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analyzed by Lubinski et al. (1962) Since then, Cheatham and Pattillo (1984), He and Kyllingstad

(1993), Miska and Cunha (1995) and so on, have studied helical buckling of tubes in vertical,

horizontal or inclined wellbores, based on the energy method. Experimental study of helical

buckling of a horizontal rod in a tube was performed by McCann and Suryanarayana (1994). Wicks

et al. (2008) reviewed available analytical and experimental results on the structural behavior of

constrained horizontal cylinders subjected to axial compression, torsion, and gravity.

The view about the effect of torsional loads on the buckling loads of drill-strings has no

conclusion. When neglecting friction, the influence of torsion on axial compression force was

relatively small, it is a good approximation by neglecting the torsion effect (Wu 1997, and Qiu et

al. 1998). However, some researches present that torsional loads have a significant effect on

buckling loads (Timoshenko and Gere 1961, Benecke and van Vuuren 2005, Tan et al. 2006). Thus

the effect of torsional loads on buckling loads of drill-strings deserves further study.

In this paper, having not considered the effect of torsion, we present an alternative approach to

solve initial post-buckling deformation of the pipe. The solution is based on the governing equations

presented in Ref. Gao et al. (2002). The proposed approach is an extension of recent work of

finding analytical approximate solutions to non-linear oscillations (Wu et al. 2006) and constructing

analytical approximations to large post-buckling deformation of elastic rings (Wu et al. 2007) and

large hygrothermal buckling deformation of a beam (Yu et al. 2008).By coupling of the well-known

Maclaurin series expansion and orthogonal Chebyshev polynomials, and then combining the Newton

linearization of the governing equation with the method of harmonic balance, we establish analytical

approximate solutions to initial post-buckling deformation of the pipe in terms of derivative of the

helix angle at the end of the pipe. Illustrative examples are selected and compared to those analytical

formulae and “reference” solutions obtained by the shooting method to substantiate the accuracy and

correctness of the approximate analytical approach.

2. Formulation 

For the title problem, the weightless pipe within a curved wellbore is assumed to be slender, and

the friction in system and the effect of torsion are negligible. The buckled pipe which is keeping

Fig. 1 Schematic view of buckled pipe
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contact with the wellbore is displayed in Fig. 1, where θ is the helix angle of the pipe, and r is the

radial clearance between the pipe and the wellbore. 

The buckling governing equation of a pipe with a curved wellbore in dimensionless mode can be

expressed as in the form (Gao et al. 2002) 

(1)

and 

(2)

where 

, F is the axial load, EI is the bending stiffness, and N is the contact force, R is the

radius of curvature of the wellbore, and r is the distance between the center of the wellbore and the

that of the pipe. τ = ωs is dimensionless length and . At the simple support ends of the

beam, we have the boundary conditions 

(3)

Once θ (τ) and Q are achieved from differential and integration formulations in Eqs. (1) and (3),

the normalized contact force P can then be calculated from the following relations Eq.(2).

For details of the content in this section, we refer readers to Gao et al. (2002).

3. Solution methodology

In this section we will establish the analytical approximate solution to Eqs. (1) and (3) in terms of

. Along with the Maclaurin series expansion and the Chebyshev polynomials (Denman

1969, Jonckheere 1971, Li et al. 2008, Beléndez et al. 2009), we arrive at a new nonlinear equation

with no circular functions. Introducing a variable u = θ /a (Denman 1969, Jonckheere 1971, Li et al.

2008, Beléndez et al. 2009) to Eqs. (1) and (3), and applying the Maclaurin series representation for

the functions sin(au)/a by taking the first five terms yield a series of equations. Expressing the

powers of u in the resulting equations in the form of Chebyshev polynomials as Tk(k = 1,2,...), and

then neglecting all terms associated with those Chebyshev polynomials for Ti (i > 3) yield

(4)

(5)
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A reasonable and simple initial approximation satisfying conditions in Eq. (5) can be taken as

u0(τ) = sinτ, (6)

Here, u0(τ) is a periodic function of τ, of period 2π.

Substituting Eq. (6) into Eq. (4) and setting the resulting coefficient of term sinτ equal zero, give

(7)

From Eq. (7), the first analytical approximation for Q is solved and expressed as a function of a, as

(8)

and the corresponding analytical approximate solution is given by Eq. (6). Applying Eq. (2), we

can obtain the first analytical approximations for P as

(9)

 

And the first analytical approximate periodic solution can be expressed as

, (10)

Next, we express the solution (u(τ), Q) of Eqs. (4) and (5) as

, (11)

Here, (u0(τ), Q0) is the principal part and (∆u0(τ), ∆Q0) is the correction part. Substituting Eq. (11)

into Eqs. (4) and (5) and linearizing with respect to (∆u0(τ), ∆Q0) lead to

(12)

(13)

Where ∆u0(τ), a periodic function of period 2π, ∆Q0 is a unknown quantity. The second approximate

solution can be obtained by solving via the method of harmonic balance the resulting linear Eqs. (12)

and (13) in ∆u0(τ), and ∆Q0.

∆u0(τ) satisfying Eq. (13) is taken of the form

(14)
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(15a)

(15b)

Solving Eqs. (15 (a) and (b)) gives z0, and ∆Q0:

(16a)

(16b)

Where

Then we get the second analytical approximation to the post-buckling deformation as

(17a)

(17b)

and get the second analytical approximate periodic solution θ (τ) as

(18a)

(18b)

It should be clear how the procedure works for constructing further analytical approximate solutions.

It will be shown in the next section that Eqs. (18 (a) and (b)) provide excellent analytical

approximations with respect to the “reference” solution obtained by the shooting method for a.

4. Results and discussion

In this section, the accuracy of the proposed analytical approximations will be illustrated by
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with a is shown in Fig. 2.
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4 and 5 demonstrates that Eq. (18(b)) provides the best approximations with respect to the “reference”

solution for both small and large a despite significant increases in nonlinear effects.

Fig. 2 Variations of the “reference” and approximate values of the normalized axial load Q with a

Fig. 3 Variations of the “reference” and approximaorce P with a

Fig. 4 Comparison of “reference” and approximate solution for a = 0.1 
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5. Conclusions

In this paper, having not considered the effect of torsion, we present an alternative, accurate

approach to solve initial post-buckling behavior of a pipe in wellbore. Using Maclaurin series

expansion and Chebyshev polynomials, the post-buckling deformation equation of the pipe can be

transformed to a simple nonlinear system. The new approach combines linearization of governing

equation and the method of harmonic balance to establish excellent analytical approximate solutions

to initial post-buckling deformation of the pipe in terms of the positive derivative of helix angle at the

end of the pipe. The advantage of the approximating procedure is its capability of predicting accurate

periodic solutions spontaneously by solving the linear non-homogeneous differential equation in each

approximating step. We are hence able to establish analytical approximate solutions. At the same

time, it is an alternative approach for solving the initial post-buckling response problem of a pipe

without using the Bessel functions. Furthermore, the present analysis demonstrates excellent results

as compared to the “reference” solutions.
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Notations

The following symbols are used in the paper:

F : the axial load
I : Moment of inertia
θ : The helix angle of the pipe
u : θ/a
N : the contact force
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E : Young’s modulus
τ : dimensionless length of the pipe
R : the radius of curvature of the wellbore
r : the distance between the center of the wellbore and the that of the pipe
Q : F/(EIRrω4)
P : N/EIrω4

a : derivative of θ at the end τ = 0 of the pipe
ui, Qi : The (i + 1)th analytical approximation to u, Q, respectively
∆ui, ∆Qi : correction to ui, Qi, respectively
zi : coefficient to be determined in the method of harmonic balance
ur, Qr : “reference” value of u, Q, respectively




