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 Technical Note

Automatic categorization of chloride migration
into concrete modified with CFBC ash
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Abstract. The objective of this investigation was to develop rules for automatic categorization of concrete
quality using selected artificial intelligence methods based on machine learning. The range of tested
materials included concrete containing a new waste material - solid residue from coal combustion in
fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest
Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed
experimental tests on obtained chloride migration provided data for learning and testing of rules
discovered by machine learning techniques. It has been found that machine learning is a tool which can
be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA
using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified
with CFBC fly ash as materials of good and acceptable resistance to chloride penetration. 

Keywords: concrete durability; chloride ions migration; circulated fluidized bed combustion fly ash
(cfbc fly ash); machine learning; classification rules; database.

1. Introduction

Increasing the use of fly ash in cement and concrete industry can considerably enhance the environmental

friendliness of concrete production. Current practice for using fly ash as type II concrete additive

according to EN 206-1 standard, does not cover the use of solid by-products resulting from

advanced coal burning technologies, like Circulating Fluidized Bed Combustion (CFBC). This

‘clean coal technology’ for power production is used in several countries, e.g. Czech Republic,

Estonia, France, Germany, Japan, Poland, USA, (Nowak 2003), China (Fu et al. 2008). The solid

residue from coal combustion in fluidized bed boilers contains noncombustible mineral matter,

sorbent material and unburned carbon (Giergiczny 2006). Mainly because of high sulfur content,

high free lime content, high loss on ignition LOI and the lack of glassy phase CFBC ash does not

meet the requirements defined by European standard EN 450-1 or in ASTM C618-03 in order to be

used for cement or concrete production. The potential for using CFBC fly ash in concrete was

recently investigated and the adequate strength and frost durability was revealed for selected kinds

of CFBC fly ash used to replace 20% of cement mass in the binder (Glinicki and Zielinski 2009).

Moreover, the efficient methods for selection of adequate CFBC fly ash to provide the long term

durability of concrete are still required and possibility of 30-40% replacement is looked for.
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Modern computation methods that belong to the group of artificial intelligence soft methods could

aid in searching for relationships between the composition of concrete modified with CFBC ash, its

microstructure and technical properties, including durability in aggressive environments. Artificial

intelligence methods are successfully used in many civil engineering problems (Melhem and Cheng

2003, Alterman and Kasperkiewicz 2006, Kasperkiewicz and Alterman 2007). Kasperkiewicz and

Alterman concentrate on three basic concept: artificial neural networks, machine learning and

genetic algorithms. In all these approaches the user is not obliged to bother about the model of the

process or phenomenon, because the system itself gains adequate knowledge from the examined

examples. It can generate thereupon answers in the form of unknown values of the attributes, classification

of new examples of the same format or formulation of rules (hypotheses, generalisations) concerning the

process under consideration. More details are given in relation to the applied solutions of Fuzzy

ARTMAP and ML program AQ19. 

The objective of current research was to develop rules for automatic categorization of concrete

quality using machine learning techniques. The undertaken research was focused on the resistance

of concrete with fluidized bed fly ash to chloride ions aggression. Performed experimental tests on

chloride migration provided data for learning and testing of rules discovered by machine learning

techniques.

2. Laboratory tests

2.1 Materials and mixture proportions

The chloride migration coefficient in concrete specimens with different content of fluidized bed

fly ash was measured (Jó wiak-Nied wiedzka 2009). Ordinary Portland cement CEM I 32.5 R fromzó zó

Table 1 Chemical composition and physical properties of Portland cement CEM I, conventional fly ash and
fluidized bed fly ashes from combustion of hard and brown coal (Ma olepszy and Ko odziej 2009)

Chemical compounds PC type I
Conventional 

fly ash 

CFBC fly ash

From hard coal K From lignite T

SiO2 21.4 50.8 47.18 36.47

Fe2O3 3.5 8.6 6.8 4.4

Al2O3 5.7 23.9 25.62 28.4

TiO2 NA 1.11 1.08 3.84

CaO 64.1 4.0 5.84 15.95

MgO 2.1 2.8 0.15 1.65

SO3 2.1 0.8 3.62 3.8

Na2O 0.5 0.8 1.18 1.64

K2O 0.92 2.9 2.36 0.62

Cl− 0.029 0.02 0.1 0.03

CaOfree 0.9 0.6 0.3 1.4

Specific gravity [g/cm3] 3.15 2.16 2.68 2.75

Loss on ignition, 1000oC/1h 1.1 2.9 3.4 2.73

l l
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Ma ogoszcz cement plant, gravel fractions 2÷8 mm and 8÷16 mm, and sand fraction 0÷2 mm, were

used for composition of concrete specimens. Two kinds of fluidized fly ash were tested: from hard

coal combustion in the thermal-electric power station Katowice K and from brown coal - lignite in

the power plant Turów T. Chemical and physical properties of Portland cement type I and both

CFBC fly ashes are shown in Table 1. Solid residues from coal combustion in circulated fluidized

bed boilers are characterized by different mineral and phase compositions than conventional fly ash,

by angular shape of grains Fig. 1 and by lack of glassy phase.

Three chemical admixtures: a plasticizer (magnesium lignosulfonates), a high range water reducer

l

Fig. 1 The shape of ash particles from fluidized bed combustion of lignite (a) - 5000x and hard coal (b) 5000x,
and from conventional combustion of hard coal, 500x

Table 2 Composition of concrete mixes and compressive strength tested after 28 and 90 days

Concrete mix
Cement

Addition
Aggregate Water Plasticizer HRWR AEA f

c28 f
c90

T K

Content [kg/m3] [MPa]

Series B

B0 360 - - 1859 162 3.2 4.3 - 55.0 70.0

B15K 306 - 54 1854 162 3.2 3.2 - 56.2 64.3

B30K 252 - 108 1847 162 3.2 3.2 - 51.6 61.0

B15T 306 54 - 1850 162 3.2 4.7 - 60.3 70.4

B30T 252 108 - 1841 162 3.2 5.6 - 58.7 72.0

Series C

C0 380 - - 1822 171 3.4 2.7 0.4 46.3 49.8

C15K 323 - 57 1813 171 3.4 2.5 0.6 47.2 48.4

C30K 266 - 114 1803 171 3.4 3.4 0.6 46.8 56.4

C15T 323 57 - 1810 171 3.4 3.8 0.6 45.3 50.1

C30T 266 114 - 1800 171 3.4 4.8 0.6 46.3 47.7

Series D

D0 406 - - 1586 175 - 0.0 3.2 22.7 26.3

D20T 290 73 - 1431 151 - 2.0 2.9 21.0 23.3

D40T 217 145 - 1423 150 - 4.0 5.8 26.1 25.3

D20K 323 - 81 1593 167 - 2.2 3.2 38.3 41.8

D40K 244 - 162 1606 157 - 4.5 6.5 43.0 43.4

HRWR- high range water reducer, AEA- air-entraining admixture
0-no addition, T - fluidized fly ash from lignite, K - fluidized fly ash from hard coal 
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(polycarboxylane ether) and an air-entraining admixture (synthetic surfactants) were used to achieve

approximately the same workability and porosity of fresh mix. Three concrete mixes were designed:

series B with water to binder ratio w/b = 0.45, air-entrained series C with w/b = 0.45 and series D

with w/b = 0.42. In Table 2 the mixture proportions of tested concretes and the compressive strength

of hardened concrete are shown.

The composition of concrete mixes was based on the experimental method with replacement of

cement mass by fluidized fly ash: 15% and 30% in series B and C, 20% and 40% in series D. The

specimens were cast in cubical moulds 150 mm and in cylinder moulds ø100 mm × 200 mm. Fresh

mixes were consolidated by vibration. After 48 hours the specimens were demoulded and cured in

high humidity conditions RH > 90%, at temperature 18÷20oC until the age of 28 days.

2.2 Testing procedure

The chloride penetration test for this study was based on the standard of Nordtest Build 492 -

Non-Steady State Migration Test (NT Build 492 1999). The principle of the test is to subject the

concrete to external electrical potential applied across a specimen and to force chloride ions to

migrate into it (Antoni et al. 2005). After the specified period of time, depending of the initial

current intensity, the specimen is split open and sprayed with silver nitrate solution, which reacts to

give white insoluble silver chloride on contact with chloride ions. This provides a simple physical

measurement of the depth Fig. 2 to which the sample has been penetrated. 

The conformity criteria for concretes according to Non-Steady State Migration Test (NT Build

492 1999) are based on the voltage magnitude, temperature of anolite measured on the beginning

and end of test and the depth of chloride ions penetration, are shown in Table 3 (Tang 1996). The

non-steady-state migration coefficient, Dnssm, is calculated from equation derived from the second

Fick’s law:

(1)

here:

Dnssm − non-steady-state migration coefficient, ×10−12 [m2/s],

U − absolute value of the applied voltage [V],

T − average value of the initial and final temperature in the anolyte solution [oC],

L − thickness of the specimen [mm],

x − average value of the penetration depths [mm],

t − test duration [h]. 

Dnssm

0.0239 273 T+( )L
U 2–( )t

------------------------------------------ x 0.0238
273 T+( )Lx

U 2–
----------------------------–⎝ ⎠

⎛ ⎞=

Table 3 Estimation of the chloride resistance to chloride ions penetration

Non-steady-state migration coefficient Resistance to chloride penetration

< 2 × 10−12 m2/s Very good

2 – 8 × 10−12 m2/s Good

8 – 16 × 10−12 m2/s Acceptable

> 16 × 10−12 m2/s Unacceptable



Automatic categorization of chloride migration into concrete modified with CFBC ash 379

2.3 Test results of chloride migration coefficient

Tables 4 and 5 present the values of chloride migration coefficient determined after 28 and 90

days of maturity period for concretes series B, C and D. 

The results show the same general trend in almost all concrete mixtures that values of Dnssm

Table 4 Results of tests of chloride ions penetration after 28 days, series B, C and D (mean values from 3 specimens)

Series
Depth of chloride penetration

[mm]
D

nssm

[× 10−12 m2/s]
Resistance to chloride

 penetration

B0 27.2 15.25 Acceptable

B15K 20.3 8.68 Acceptable

B30K 15.2 4.98 Good

B15T 17.9 6.40 Good

B30T 12.2 3.02 Good

C0 26.3 13.83 Acceptable

C15K 19.0 7.53 Good

C30K 18.7 6.57 Good

C15T 23.1 9.35 Acceptable

C30T 28.2 10.08 Acceptable

D0 23.3 10.60 Acceptable

D20T 22.5 7.83 Good

D40T 21.7 5.69 Good

D20K 19.4 6.19 Good

D40K 14.1 1.58 Very good

Table 5 Results of tests of chloride ions penetration after 90 days, series B, C and D (mean values from 3 specimens)

Series
Depth of chloride penetration 

[mm]
D

nssm

[× 10−12 m2/s]
Resistance to chloride

penetration

B0 20.5 9.29 Acceptable

B15K 18.0 6.29 Good

B30K 12.1 2.93 Good

B15T 14.0 4.81 Good

B30T 11.7 2.66 Good

C0 22.1 10.31 Acceptable

C15K 15.2 4.75 Good

C30K 15.1 4.19 Good

C15T 12.9 4.36 Good

C30T 18.7 4.67 Good

D0 26.6 10.3 Acceptable

D20T 22.7 5.68 Good

D40T 20.6 2.33 Good

D20K 18.9 4.58 Good

D40K 17.9 0.99 Very good
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decreased with increased FBCFA content because of the changes in concrete microstructure. The

concretes without FBCFA were the ones that showed the highest values of Dnssm only acceptable

resistance to chloride penetration according to criteria shown in Table 3. In all series of concrete

specimens the chloride migration coefficient tested after 90 days showed relative stabilization.

The example of depth of chloride ions penetration in series B (B0 and B30T) tested after 28 days

is showed in Fig. 2.

The comparable tests results based on eight concrete mixtures was obtained. The ordinary

Portland cement replacement by ground fly ash varied from 0% to 70% in steps of 10%. For high

volume fly ash concrete better chloride resistance than in ordinary concrete has been achieved

(Sengul et al. 2005). 

3. Machine learning methods

Data mining can be defined as the process of discovering patterns in a dataset. By a dataset we

mean a database i.e., collection of logically related records. Each record can be called an example

or instance and each one is characterized by the values of a set of predetermined attributes. A few

different styles of learning appear in data mining applications but the most common is a

classification. The aim of the classification process is to learn a way of classifying unseen examples

based on the knowledge extracted from the provided set of classified examples. In order to extract

the knowledge from the provided dataset the attribute set characterizing the example has to be

divided into two groups: the class attribute or attributes and the non-class attributes. It is obvious

that for an unseen examples only non-class attributes are known, therefore the aim of data mining

algorithms is to build such a knowledge model that allows predicting the example class membership

based only on non-class attributes. The knowledge model is dependent on the way how

the classifier is constructed and it can be represented by decision trees (e.g. algorithm C4.5) or

classification rules (the AQ algorithms family). Regardless of the representation both types of

algorithms create hypotheses.

In order to evaluate the classifier i.e., to judge the hypotheses generated from the provided

training set we have to verify the classifier performance on the independent dataset which is called

testing set. Of course both sets of training data and test data should be representative samples of the

considered problem. The classifier predicts the class of each instance from the test set; if it is

Fig. 2 Example of the depth of chloride ions penetration in concrete series B, without FBCFA and with 30%
of FBCFA from lignite
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correct, that is counted as a success; if not it is an error. In order to measure the overall

performance of the classifier some quantitative analysis should be done.

The example of such a quantitative measure are a success rate usually called a classification

accuracy. This is the number of correct classifications of the instances from the test set divided by

the total number of these instances, its measure is expressed as a percentage.

In order to get a deeper understanding which types of errors are the most frequent the result

obtained from a test set is often displayed as a two-dimensional confusion matrix with a row and a

column for each class. Each matrix element shows the number of test examples for which the actual

class is the row and the predicted class is the column. Good results correspond to large numbers

down the main diagonal and small, ideally zero, off-diagonal elements. The sum of the numbers

down the main diagonal divided by the the total number of test examples determine classification

accuracy.

Lets consider what can be done when the number of data for training and testing is limited. The

simplest way is to reserve a certain number for testing and to use the remainder for training. Of

course, the selection should be done randomly. In practical terms, it is common to hold out one-

third of the data for testing and use the remaining two-thirds for training (Witten and Frank 2005).

The main disadvantage of this simple method is that this random selection may be not

representative. A more general way to mitigate any bias caused by the particular sample chosen for

holdout is to repeat the whole process, training and testing, several times with different random

samples. This process is called the k-fold cross-validation. In this technique a fixed number of folds

– k is arbitrary described. Then the data set U is split into k approximately equal portions

 (Krawiec and Stefanowski 2003). In each iteration i the set Ei is used for testing

and the remainder U \ Ei

 is used for training.

Overall classification accuracy is calculated as an average from the classification accuracy for

each iteration , i.e., is defined as

(2)

In order to generate rules describing the concrete resistance to chloride penetration several numerical

experiments were performed using program AQ21 and algorithm J48 from the WEKA workbench.

Algorithm AQ21, invented in the Machine Learning and Inference Laboratory of George Mason

University (Wojtusiak 2004) is based on covering approach alike most of the rule-based data mining

algorithms. Therefore, the AQ21 algorithm generates subsequent rules until all the examples

(sometimes not all) are covered. The idea of adding a new rule or a new term to existing rule is to

include as many instances of the desired class (positive examples) as possible and to exclude as

many instances of other classes (negative examples) as possible.

The second considered algorithm, J48, is available as a part of WEKA workbench, which was

developed at the University of Waikato in New Zealand (Witten and Frank 2005). Algorithm J48 is

an implementation of the last publicly available version of an algorithm C4.5 devised by J. Ross

Quinlan. Construction of decision trees is based on a simple divide and conquer approach, which is

well known in computer science. The main problem is connected with a selection of tests (splits of

attributes) which should be placed in the nodes. The test is good if it allows to shorten the way

from the root to the leaves representing classes. Decision trees can be converted to classification

rules with ease. 
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4. Seeking for the rules describing chloride ions penetration

4.1 Chloride ions penetration after 28 days

4.1.1 Results obtained from AQ21 

As the results of the experiments carried on the specimens with different contents of fluidized fly

ash, as shown in tables 2 and 4, the following database consisted of 15 records was introduced. This

database was used to determine the rules describing the concrete resistance to chloride penetration

after 28 days. The database with one nominal and 6 numerical attributes is presented in Table 6

(Marks et al. 2009).

where:

C1 – cement content, [kg/m3],

pfT – fluidized fly ash from brown coal content (power plant Turów), [kg/m3],

pfK – fluidized fly ash from hard coal content (power station Katowice), [kg/m3],

W – water content, [kg/m3],

A_fr – air content in fresh mix, [%], 

fc28 – compressive strength tested after 28 days, [MPa], 

Resistance – concrete resistance to chloride ions penetration (Acceptable, Good).

The last attribute – resistance - is a nominal one which takes on two possible values: Acceptable,

Good. In the considered database to the class [Resistance=Acceptable] belongs 6 examples and to

the class [Resistance=Good] belongs 9 examples.

The aim of an experiment is to generate the rules, which allow us to determine concrete resistance

to chloride ions penetration. As an training set all the instances from the database were considered.

The rules generated by an AQ21 algorithm are presented below

Table 6 The database

C1 pfT pfK W A_fr fc28 Resistance

360 0 0 162 2.1 55.0 Acceptable

306 0 54 162 1.8 56.2 Acceptable

252 0 108 162 1.3 51.6 Good

306 54 0 162 1.6 60.3 Good

252 108 0 162 1.6 58.7 Good

380 0 0 171 6.2 46.3 Acceptable

323 0 57 171 6.8 47.2 Good

266 0 114 171 5.8 46.8 Good

323 57 0 171 6.6 45.3 Acceptable

266 114 0 171 6.2 46.3 Acceptable

406 0 0 175 4.9 22.7 Acceptable

290 73 0 151 6.9 21.0 Good

217 145 0 150 7.8 26.1 Good

323 0 81 167 4.6 38.3 Good

244 0 162 157 4.6 43.0 Good
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[Resistance=Good] 

# Rule 1

<-- [pfK>=55] : p=5, n=0, q=0.556

# Rule 2

<-- [C1<=258] : p=4, n=0, q=0.444 

# Rule 3

<-- [pfT>=27 ] [W<=166] : p=4, n=0, q=0.444 (3)

[Resistance=Acceptable] 

# Rule 1

<-- [pfK<=55] [A_fr=1.7..6.75 ] : p=6, n=0, q=1

# Rule 2

<-- [pfK<=55] [fc28=44.15..57.45] : p=5, n=0, q=0.833 

where p denotes the number of positive examples covered by the rule, n denotes the number of

negative examples covered by the rule (i.e., the number of records from the other classes satisfying

the rule) and q denotes the quality of the rule.

The rules showed in Eq. (3) can be interpreted as follows but it should be underlined that the

presented rules concern concretes with the overall mass of cement and additions equal 360, 380 or

406 [kg/m3] (Table 2).

[Resistance is Good]

IF

[pfK >= 55]

OR

[C1 <= 258]

OR

[pfT >= 27] and [W <=166]

[Resistance is Acceptable]

IF

[pfK <= 55] and [A_fr = 1.7..6.75]

OR

[pfK <= 55] and [fc28 = 44.15..57.45]

In order to evaluate the classifier, i.e., to judge the hypotheses (classification rules, decision trees)

generated from the provided training set, we have to verify the classifier performance on the

independent testing set. When we have only one database consisting of a very small number of

records, the estimation of classification accuracy (measure of the overall performance of the

classifier) can be done using the n-fold cross validation, where n is the number of examples in the

database (Witten and Frank 2005). In this method each example in turn is left out, and the learning

method is trained on all the remaining examples. It is judged by its correctness on the remaining

example – one or zero for success or failure, respectively. The results from n judgments, one for

each member of the database, are averaged, and that average represents the classification accuracy

(Witten and Frank 2005). This method, named leave-one-out cross validation, is useful to the
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database of a very small number of records. It seems to offer a chance of squeezing the maximum

out of a small dataset and obtaining as accurate an estimate as possible. 

The results from n judgments may be displayed as a two-dimensional confusion matrix with a

row and a column for each class. Each confusion matrix element shows the number of test

examples for which the actual class is the row and the predicted class is the column. The numbers

of examples down main diagonal are predicted correctly. The classification accuracy is the sum of

numbers down the main diagonal divided by the total number of data set examples.

Applying the n-fold cross validation for n = 15 (number of examples in Table 6) we obtain a

confusion matrix in the following form:

The value of classification accuracy is equal to 53.3%.

4.1.2 Results obtained from J48 

In order to generate the rules, which allow us to determine the concrete resistance against chloride

ion penetration the J48 algorithm was also used. As the training set all the instances from the

database (Table 6) were considered. The decision tree generated by the J48 algorithm is presented in

Fig. 3.

where the first number in brackets denotes the number of examples from the training set covered by

a selected leaf, and the second number – just after the sign “/” – indicates the number of incorrectly

classified instances (negative examples). When there is only one number in brackets, then it

indicates the number of examples correctly classified (positive examples).

The obtained decision tree (Fig. 3) can be easily transformed into the following rules:

[Resistance=Good]

Rule1 [C1 <= 323] and [pfK <= 54] and [W <= 162]

Rule2 [C1 <= 323] and [pfK > 54] (4)

Acceptable Good Other

Acceptable 4 2 0

Good 4 4 1

Fig. 3 The decision tree generated by the J48 algorithm for chloride penetration after 28 days
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[Resistance=Acceptable]

Rule1 [C1 <= 323] and [pfK <= 54] and [W > 162]

Rule2 [C1 > 323]

Using the n-fold cross validation for J48 algorithm we obtain the confusion matrix in the following form:

and the classification accuracy equal 60%.

4.2 Chloride ions penetration after 90 days

4.2.1 Results obtained from AQ21 

In order to generate rules describing the concrete resistance to chloride penetration after 90 days a

database was used, that was very similar to the database shown in Table 6. The first five numerical

attributes are identical as in Table 6. The last numerical attribute fc90 determines compressive

strength tested after 90 days, [MPa]. In the considered database three examples belong to the class

[Resistance=Acceptable] and 12 examples belong to the class [Resistance=Good] (Table 7). 

As a training set all the instances from the database were considered. The rules generated by an

AQ21 algorithm are presented below:

[Resistance=Good] 

# Rule 1

<-- [C1<=341] : p=12, n=0, q=1

Acceptable Good

Acceptable 2 4

Good 2 7

Table 7 The database

C1 pfT pfK W A_fr fc90 Resistance

360 0 0 162 2.1 70.0 Acceptable

306 0 54 162 1.8 64.3 Good

252 0 108 162 1.3 61.0 Good

306 54 0 162 1.6 70.4 Good

252 108 0 162 1.6 66.3 Good

380 0 0 171 6.2 49.8 Acceptable

323 0 57 171 6.8 48.4 Good

266 0 114 171 5.8 56.4 Good

323 57 0 171 6.6 50.1 Good

266 114 0 171 6.2 47.7 Good

406 0 0 175 4.9 26.3 Acceptable

290 73 0 151 6.9 23.3 Good

217 145 0 150 7.8 25.3 Good

323 0 81 167 4.6 41.8 Good

244 0 162 157 4.6 43.4 Good
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# Rule 2

<-- [C1<=351] [fc90<=68.15] : p=11, n=0, q=0.987

[Resistance=Acceptable] 

# Rule 1

<-- [C1>=342] : p=3, n=0, q=1

In order to estimate the classification accuracy the n-fold cross validation was used for n =15. The

results of this method are described by the following confusion matrix: 

Here one example from Acceptable class is classified incorrectly to Good class, the remaining

examples are classified correctly and the classification accuracy is equal 93.3%. 

4.2.2 Results obtained from J48

In order to generate the rules, which allow us to determine concrete resistance against chloride ions

penetration the J48 algorithm was used also. As the training set all the instances from the database

(Table 7) were considered. The decision tree generated by an J48 algorithm is presented in Fig. 4.

When n-fold cross validation was used we obtain the following confusion matrix:

and the classification accuracy was equal 100%. 

5. Conclusions

The rules generated by computer programs AQ21 and WEKA using J48 algorithm have provided

means for automatic categorization of plain concretes and concretes modified with CFBC fly ash as

materials of good or acceptable resistance to chloride penetration. Due to a small number of tested

specimens the rules are applicable only to concrete mix compositions with similar binder content

and similar values of water to cement ratio.

The rules describing the concrete resistance to chloride penetration after 90 days, which were

determined by AQ21 algorithm as well by J48 algorithm, are similar. According to generated rules,

Acceptable Good

Acceptable 3 0

Good 1 11

Acceptable Good

Acceptable 3 0

Good 0 12

Fig. 4. The decision tree generated by the J48 algorithm for chloride penetration after 90 days
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resistance was qualified as acceptable for tested concrete without fluidized fly ash, whereas

resistance was good for the same concrete with replacement of cement mass from 15% to 40% by

fluidized fly ash from hard coal or brown coal. Therefore, application of CFBC fly ash improved

the resistance of concrete in respect to chloride penetration.

Application of AQ21 and WEKA programs provided similar estimation of the concrete resistance

to chloride ion penetration. Further tests are needed in order to enlarge the experimental data basis

and to cover larger variety of concrete compositions.
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