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 Technical Note

Utilization of support vector machine for prediction
of fracture parameters of concrete
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Abstract. This article employs Support Vector Machine (SVM) for determination of fracture parameters
critical stress intensity factor ( ) and the critical crack tip opening displacement (CTODc) of concrete.
SVM that is firmly based on the theory of statistical learning theory, uses regression technique by
introducing ε-insensitive loss function has been adopted. The results are compared with a widely used
Artificial Neural Network (ANN) model. Equations have been also developed for prediction of  and
CTODc. A sensitivity analysis has been also performed to investigate the importance of the input
parameters. The results of this study show that the developed SVM is a robust model for determination of

 and CTODc of concrete. 

Keywords: concrete; fracture mechanics; support vector machine; sensitivity analysis; artificial neural
network; two-parameter model. 

1. Introduction 

Engineers use different non-linear fracture mechanics approach for modeling concrete such as

fictitious crack model (Hillerborg et al. 1976), the crack band model (Bazant and Oh 1983) the Two-

Parameter Model (TPM) (Jenq and Shah 1985), the effective crack model (Nallathambi and Karihaloo

1986), the size effect model (Bazant and Kazemi 1990) and the peak load method (Tang et al. 1996).

The determination of fracture parameters of concrete structure is a difficult task (Ince 2004). Several

methods are being used for determination of fracture parameters of concrete structure such as

experimental techniques (Hillerborg et al. 1976, Jenq and Shah 1985, Bazant and Kazemi 1990, Tang

et al. 1996), regression models (Bazant and Oh 1983, John and Shah 1989, Hilsdorf and Brameshuber

1991). However, the above mentioned methods have some limitations (Ince 2004). Recently, Artificial

Neural Network (ANN) has been successfully used for prediction of fracture parameters of concrete

structure. However, ANN model has some limitations. The limitations are listed below:
● Unlike other statistical models, ANN does not provide information about the relative importance

of the various parameters (Park and Rilett 1999).
● The knowledge acquired during the training of the model is stored in an implicit manner and

hence it is very difficult to come up with reasonable interpretation of the overall structure of the

network (Kecman 2001).
● In addition, ANN has some inherent drawbacks such as slow convergence speed, less generalizing
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performance, arriving at local minimum and over-fitting problems. 

This paper adopts Support Vector Machine (SVM) for determination of fracture parameters of

concrete following the TPM approach which is based on the critical stress intensity factor ( ) and

the critical crack tip opening displacement (CTOD
c
) as fracture parameters. It provides a new,

efficient novel approach to improve the generalization performance and can attain a global minimum. In

general, SVM has been used for pattern recognition problems. Recently it has been used to solve

non-linear regression estimation and time series prediction by introducing ε-insensitive loss function

(Mukherjee et al. 1997, Muller et al. 1997, Vapnik 1995, Vapnik et al. 1997). The SVM implements

the structural risk minimization principle (SRMP), which has been shown to be superior to the more

traditional Empirical Risk Minimization Principle (ERMP) employed by many of the other modelling

techniques (Osuna et al. 1997, Gunn 1998). SRMP minimizes an upper bound of the generalization

error whereas, ERMP minimizes the training error. In this way, it produces the better generalization

than traditional techniques. The paper has the following aims:
● To investigate the capability of SVM for prediction of  and CTODc

● To develop equations for determination of  and CTOD
c
 based on the developed SVM model

● To make a comparative study between ANN, experimental method and the developed SVM model
● To do sensitivity analysis for determination of effect of the each input parameter

2. The general information of SVM

Support Vector Machine (SVM) has originated from the concept of statistical learning theory

pioneered by Boser et al. (1992). This study uses the SVM as a regression technique by introducing

a ε-insensitive loss function. In this section, a brief introduction on how to construct SVM for

regression problem is presented. More details can be found in many publications (Boser et al. 1992,

Cortes and Vapnik 1995, Gualtieri et al. 1999, Vapnik 1998, Samui 2008, Samui et al. 2008). There

are three distinct characteristics when SVM is used to estimate the regression function. First of all,

SVM estimates the regression using a set of linear functions that are defined in a high dimensional

space. Secondly, SVM carries out the regression estimation by risk minimization where the risk is

measured using Vapnik’s ε-insensitive loss function. Thirdly, SVM uses a risk function consisting of

the empirical error and a regularization term which is derived from the structural risk minimization

(SRM) principle. Considering a set of training data, . Where x is

the input, y is the output, RN is the N-dimensional vector space and r is the one-dimensional vector

space. The four input variables used for the SVM model in this study are water-cement ratio (w/c),

maximum aggregate size (d
max

), and compressive strength of concrete (fc). The output of the SVM

model is  or CTOD
c
. So, in this study,  and .

The ε-insensitive loss function can be described in the following way

  for    otherwise (1)

This defines an ε tube (Fig. 1) so that if the predicted value is within the tube the loss is zero,

while if the predicted point is outside the tube, the loss is equal to the absolute value of the

deviation minus ε. The main aim in SVM is to find a function f(x) that gives a deviation of ε from

the actual output and at the same time is as flat as possible. Let us assume a linear function

(2)
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Where, w = an adjustable weight vector and b = the scalar threshold.

Flatness in the case of (3) means that one seeks a small w. One way of obtaining this is by

minimizing the Euclidean norm . This is equivalent to the following convex optimization problem

Minimize: 

Subjected to : , i = 1, 2, ..., l

, i = 1, 2, ..., l  (3)

The above convex optimization problem is feasible. Sometimes, however, this may not be the

case, or I also may want to allow for some errors. Analogously to the “soft margin” loss function

(Bennett and Mangasarian 1992) which was used in SVM by Cortes and Vapnik (1995). As shown

in the Fig. 1, the parameters  are slack variables that determine the degree to which samples

with error more than ε be penalized. In other words, any error smaller than ε does not require

 and hence does not enter the objective function because these data points have a value of

zero for the loss function. The slack variables ( ) has been introduced to avoid infeasible
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Fig. 1 Prespecified Accuracy ε and Slack Variable ξ in support vector regression (Scholkopf 1997)
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constraints of the optimization problem (3). 

Minimize: 

Subjected to: , i = 1, 2, ..., l

, i = 1, 2, ..., l

 and , i = 1, 2, ..., l (4)

The constant 0 < C < ∞ determines the trade-off between the flatness of f and the amount up to

which deviations larger than ε are tolerated (Smola and Scholkopf 2004). This optimization problem

(4) is solved by Lagrangian Multipliers (Vapnik 1998), and its solution is given by

 (5)

Where , αi,  are the Lagrangian Multipliers and N is the number of data. An
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important aspect is that some Lagrange multipliers ( ) will be zero, implying that these training

objects are considered to be irrelevant for the final solution (sparseness). The training objects with

nonzero Lagrange multipliers are called support vectors.

When linear regression is not appropriate, then input data has to be mapped into a high

dimensional feature space through some nonlinear mapping (Boser et al. 1992) (see Fig. 2). The

two steps that are involved are first to make a fixed nonlinear mapping of the data onto the feature

space and then carry out a linear regression in the high dimensional space. The input data is

mapped onto the feature space by a map Φ(see Fig. 2). The dot product given by  is

computed as a linear combination of the training points. The concept of kernel function

[ ] has been introduced to reduce the computational demand (Cristianini and

Shwae-Taylor 2000, Cortes and Vapnik 1995). So, Eq. (5) becomes written as 

 (6)

Some common kernels have been used such as polynomial (homogeneous), polynomial (nonhomo-

geneous), radial basis function, Gaussian function, sigmoid etc for non-linear cases. Fig. 3 shows a

typical architecture of SVM for  and CTODc.

3. Support vector machine-based analysis of fracture parameters of concrete

This study employs above methodology for prediction of  and CTOD of concrete. This study

uses the database collected by Ince (2004). The data has been further divided into two sub-sets; a
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training dataset, to construct the model, and a testing dataset to estimate the model performance.

The same training data (see Table 1), and testing data (see Table 2) has been used in this study as

used by Ince (2004). The data is normalized between 0 and 1. Radial basis function, polynomial and

spline have been used as kernel function. In training process, a simple trial-and-error approach has

been used to select the design value of C, ε and width (σ) of radial basis function. 

In this study, a sensitivity analysis has been done to extract the cause and effect relationship

between the inputs and outputs of the SVM model. The basic idea is that each input of the model is

offset slightly and the corresponding change in the output is reported. The procedure has been taken

from the work of Liong et al. (2000). According to Liong et al. (2000), the sensitivity(S) of each

input parameter has been calculated by the following formula

 (7)

Where N is the number of data points. In this study, N = 22. The analysis has been carried out on

the trained model by varying each of input parameter, one at a time, at a constant rate of 20%. In

the present study, training, testing and sensitivity analysis of SVM has been carried out by using

MATLAB.

S %( ) 1

N
----

% change  in ouput

% change  in  input
-----------------------------------------------⎝ ⎠
⎛ ⎞

j

100×
j 1=

N

∑=

Table 1 Training dataset

w/c dmax(mm)  (MPa)  (MPa ) CTODc(mm)

0.65 19 25.2 0.976 0.017

0.65 4.8 27.2 0.707 0.0093

0.45 4.8 39.4 0.958 0.0097

0.45 0 27.7 0.618 0.0069

0.4 3 33.8 0.883 0.0075

0.22 8 110 2.13 0.0338

0.44 6 60.7 1.141 0.0145

0.52 12.7 45.5 1.475 0.022

0.52 12.7 43.4 1.53 0.0169

0.52 12.7 30.7 1.036 0.0115

0.53 25.4 15.4 0.857 0.0169

0.64 20 39 1.269 0.026

0.5 20 49.4 1.381 0.026

0.36 20 65.7 1.509 0.024

0.2 20 78.2 1.847 0.026

0.4 9 34.5 0.72 0.0076

0.4 9 39.3 0.826 0.0132

0.4 9 55.3 1.483 0.0143

0.29 9 45 0.978 0.0091

0.29 9 57.3 1.168 0.0107

0.29 9 87.2 1.491 0.0116

0.5 8 38.8 0.867 0.0055
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4. Results and discussion 

This study employs coefficient of correlation(R) to assess the performance of SVM model. Table

3 shows the performance of the different kernels. It is observed from Table 3 that the performance

of radial basis function is best. For this reason, we have presented only the result of radial basis

function. For prediction of , the design value of C, ε and σ is 50, 0.01 and 0.7 respectively. Fig.

4 depicts the performance of SVM model for training dataset. The value of R (R = 0.956) is close to

one. For good model, the value of R should be close to one. So, the developed SVM model has

successfully captured input and output relationship for training dataset. The developed SVM model has

been also used to determine the performance of testing dataset. Fig. 5 illustrates the performance of

testing dataset. It also shows that the value of R(R = 0.935) is close to one. The value of R is close

to one for both training as well as testing dataset. Therefore, the developed SVM model has the

K Ic

s

Table 2 Testing dataset

w/c dmax(mm)  (MPa)  (MPa ) CTODc(mm)

0.25 4.8 54.8 1.059 0.01

0.77 20 26.8 0.923 0.0242

0.4 9 51.8 1.208 0.0122

0.29 9 58.7 1.175 0.0123

0.29 9 66.3 1.346 0.0094

0.53 3.15 59.1 0.779 0.0018

0.54 32 31 1.018 –

0.54 2 35 0.645 –

0.5 19 54.4 0.755 0.0102

0.5 19 55.8 0.56 0.0067

0.5 19 53.1 1.124 0.0222

0.57 25 41.3 0.65 –

0.62 25 35.9 0.88 –

0.27 25 52.3 0.97 –

0.47 20 51 0.76 0.0054

0.48 12.5 55 1 0.0062

0.5 9 30.5 0.793 0.0078

0.5 9 30 0.838 0.0133

fc′ KIc
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m

Table 3 Performance of the different kernels

Kernel function

CTODc

Training 
performance (R)

Testing 
performance (R)

Training 
performance (R)

Testing 
performance (R)

Radial basis function 0.956 0.935 0.940 0.938

Polynomial 0.874 0.789 0.769 0.721

Spline 0.628 0.601 0.714 0.702

KIc

s
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ability to predict . The following equation (by putting 

, 

N = 22, σ = 0.7 and b = 0 in Eq. (6)) has been developed for the prediction of  based on the

developed SVM model. 

 (8)

Fig. 6 shows the values of  for .

For CTODc, the design value of C, ε and σ is 60, 0.009 and 0.8 respectively. The performance of

training dataset has been determined by using the design value of C, ε and σ and it has been shown

in Fig. 7. Fig. 7 also shows that the value of R is close to one. The performance of testing dataset

has been also determined same way as for training dataset. Fig. 8 illustrates the performance of

testing dataset. Form these results, it is confirmed that the developed SVM has the ability to predict

CTODc. The developed SVM model gives the following equation (by putting
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 , 

N = 22, σ = 0.8 and b = 0 in Eq. (6)) for prediction of CTODc. 

 (9)

Fig. 9 shows the values of  for CTODc.

The developed SVM uses 20 and 19 training data as support vector for prediction of  and

CTODc respectively. These support vectors have only used for final prediction. So, there is real

advantage gained in terms of sparsity. Sparseness is desirable in SVM for several reasons, namely

(Figueiredo 2003):
● Sparseness leads to a structural simplification of the estimated function.
● Obtaining a sparse estimate corresponds to performing feature/variable selection.
● The generalization ability improves with the degree of sparseness. 
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Fig. 7 Performance of training dataset for CTODc

prediction

Fig. 8 Performance of testing dataset for CTODc
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Fig. 10 Comparison between different methods for
prediction of  in terms of RMSEKIc

s
Fig. 11 Comparison between different methods for prediction

of  in terms of MAEKIc

s

Fig. 12 Comparison between different methods for
prediction of CTODc in terms of RMSE

Fig. 13 Comparison between different methods for
prediction of CTODc in terms of RMAE

Fig. 14 Sensitivity analysis of input parameters
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Sparseness means that a significant number of the weights are zero (or effectively zero), which

has the consequence of producing compact, computationally efficient models, which in addition are

simple and therefore produce smooth functions. 

Figs. 10, 11, 12 and 13 present a comparative study between the developed SVM and other

methods (Ince 2004, John and Shah 1989) for determination of  and CTODc. The comparisons

have been carried out in terms of Root-Mean-Square-Error (RMSE) and Mean-Absolute-Error

(MAE). Figs. 10, 11, 12 and 13 confirm that the developed SVM is better than the available

methods for prediction of  and CTODc. SVM employs only three parameters (C, ε and σ).

Whereas, ANN uses number of hidden layers, number of hidden nodes, learning rate, momentum

term, number of training epochs, transfer functions and weight initialization methods. 

Fig. 14 presents the results of sensitivity analysis. For , 
 
has the most significant effect on

the predicted  followed by w/c and dmax. Sensitivity analysis also shows that  has the most

significant effect on the predicted CTODc followed by dmax and w/c.

5. Conclusions

This study has successfully applied SVM for prediction of  and CTODc of concrete. The

performance of the developed SVM is better than the available methods. SVM training consists of

solving a – uniquely solvable – quadratic optimization problem and always finds a global minimum.

User can use the developed equations for determination of  and CTOD
c
 of concrete. The

sensitivity analysis indicates that 
 
is

 
the most important factor affecting facture parameters of

concrete. The proposed SVM is not a substitute but may be a viable alternative for prediction of the

facture parameters of concrete.
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CC

Nomenclature

SVM = Support Vector Machine 

dmax = Maximum aggregate size (mm)

= Compressive strength of concrete (MPa)

CTODc = Critical crack tip opening displacement (mm)

= Critical stress intensity factor based on two-parameter model (MPa )

ε = Error insensitive zone 

σ = width of the radial basis function 

R = Coefficient of correlation

Rn = N-dimensional vector space 

r = one dimensional vector space

= slack variable 

= Lagrange multipliers 

C = Capacity factor 

S = Sensitivity 

w/c = water-cement ratio 
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