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Abstract. In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material
and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides,
generated according to a prescribed grading curve and placed randomly into the specimen. In this context,
an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface
model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model
is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution
on the loaddisplacement curve is investigated. 
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1. Introduction

A simulation of concrete on the macroscale allows a characterization of the homogenized response on

lower scales, but the true physical phenomena can only be represented in a phenomenological

approach. This often requires complex material formulations with many parameters, which are often

difficult to be determined. The modeling of concrete on the mesoscale allows for the direct

representation of the heterogenous structure (Häfner et al. 2006), including e.g. the mass fraction

and the grading curve of particles, the shape of the particles (Carpinteri and Chiaia 1995), the

interfacial transition zone (ITZ) at the interface between particles and matrix material and a separate

constitutive formulation for each of the individual constituents (particles, mortar matrix, ITZ). 

For numerical simulations, two approaches to describe the mesostructure can be distinguished. On

the one hand, real specimens can be analyzed and, by using digital image analysis, equivalent

numerical models can be built (Nagai et al. 2000). On the other hand, a functional description of

the grading curve and the particle shape allows the generation of random samples of the

heterogenous microstructure (Wang et al. 1999), which allows the investigation of statistical effects.

The first mesoscale models of concrete are based on the lattice approach (Schlangen 1993,

Vervuurt 1997, Chiaia et al. 1997, Leite et al. 2004). According to the position in the model, a material

(particle, matrix, ITZ) is assigend to each lattice. The properties of the beam elements, which might

include a stochastic component, are derived from macroscopic properties such as Young’s modulus

or Poisson’s ratio. Different approaches to model the failure of a single lattice have been

investigated. One possibility is the so called tension cut-off, where the lattice is removed from the
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model, if the prescribed tensile strength is exceeded. However, this leads to spurious steps in the

load-displacement curve each time a lattice is removed. In another approach, a linear model for the

prepeak region combined with a softening function is used (Grassl and Bažant 2009). The primary

problem of these approaches is the determination of the material parameters, since no direct relation

between the properties of the lattice and the obtained macroscopic properties can be derived. 

A second group are particle methods, which can be used for the simulation of cohesive granular

materials (d’Addetta 2002). Particles are simulated as discontinous spheres, where the interaction

between neighboring particles is solely determined by their relative spatial position. A similar

difficult problem is here the determination of material parameters for the description of the cohesion

between the particles. 

A third group are continuum models (Wriggers and Moftah 2006, Eckardt and Könke 2006),

where the mesostructure is explicitly represented. In this context, it is assumed that simple material

models can be used, since the complexity of the response is additionally included in the complex

heterogenous geometric description of the material. Furthermore, the nonlinear behavior of the ITZ

at the interface between mortar matrix and particle can directly be simulated, e.g. with a cohesive

model. Generally, a discretization with an aligned mesh is used for this purpose. In (Sukumar et al.

2001, Unger and Könke 2006), a procedure using the XFEM approach in combination with

levelsets is used to model the ITZ, which allows the application of a regular quadrilateral mesh. In

(Carol et al. 2002) it is assumed that the nonlinear behavior can solely be described by a nonlinear

model for the interface. For that purpose, a mesoscale model with linear elastic particles is meshed

with triangular elements, and interface elements are placed between each finite element. The

disadvantage of this approach is that the crack path is limited to the element edges and a strong

mesh dependency is obtained. 

Advantageous of all mesoscale models is the fact that the complex macroscopic material behavior

can be described by simple material formulations of each constituent on the mesoscale. An example

is the nonlinear prepeak region in a tensile test, which can be described on the mesoscale without

any hardening variables. Furthermore, the artificial insertion of a weak point to initiate localization

as e.g. in a uniaxial tensile test can be avoided, since, due to the heterogenous structure on the

mesoscale, stress concentrations and, consequently, zones of local damage naturally occur. 

2. Modeling of the geometry

An important aspect of the mesoscale simulation of concrete is the exact representation of the

particle shapes, their size distribution according to a prescribed grading curve and the spatial position and

orientation of the particles within the specimen. Two main concepts to build a numerical mesoscale

model of concrete can be distinguished. The first possibility is based on image processing techniques.

Based on a X-ray computer tomography (Feldkamp et al. 1989) or by sequential sectioning and 2-D

image processing (Takano et al. 2003) a 3-dimensional voxel representation of the microstructure is

obtained, which can be used in a voxel based finite element representation (Hollister and Kikuchi

1994, Nagai et al. 2000, Nagano et al. 2004). A second approach, followed in this thesis, is the

artificial generation of the microstructure. (Zaitsev and Wittmann 1981) used polygonal and spherical

inclusions to simulate concrete on the mesoscale. For 3-dimensional models, either spheres (Bazant

et al. 1990, Schlangen and van Mier 1992) or ellipsoides (Häfner et al. 2003, Leite et al. 2004,

2007) are common shapes to describe the aggregates. (Garboci 2002) used voxel representations of
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real concretes to describe the size and shape of aggregates in concrete by spherical harmonics,

which allows the simulation of random shapes. 

In order to obtain realistic models, certain statistical characteristics of the real model, e.g. the size

distribution of particles has to be represented in the numerical model. The size distribution of

particles is commonly characterized by a grading curve. Grading curves for standardized concrete

are defined in the design codes. A grading curve is defined by aperture sizes of a set of sieves and

the corresponding mass fraction that passes through these sieves. An alternative approach is the

description of the size distribution using an explicit function such as e.g. Fuller’s curve. Using many

different sieves, the second approach (Fuller) can almost exactly be reproduced by the first approach. 

In the current implementation, an algorithm similar to (Eckardt and Könke 2008) is used. It can

be divided into the generation of the correct set of particles and, afterwards, the placing of these

particles into the specimen, which is commonly refered to as the set and place method. 

2.1 Sampling of particles according to a size distribution

Particles are simplified by ellipsoids and the generation of the geometry is fully performed in 3-D.

A 2-dimensional model can be obtained by cutting a slice out of the 3-dimensional model. In the

local coordinate system aligned with the principal axis, the surface of an ellipsoid is defined by 

(1)

where ri are the principal radii. Without loss of generality, it is assumed that r1 ≥ r2 ≥ r3. It is further

assumed that a particle passes through a sieve, if its medium diameter 2r2 is smaller than the

aperture of the sieve. 

The radii r1 and r3 are determined from r2 according to 

(2)

(3)

where u1 and u2 are realizations of random variables U1, U3 which are uniformly distributed in the

interval [0, 1] and m is a constant that characterizes the flatness of the ellipsoids. For m = 1, all radii

are identical and the ellipsoids reduce to spheres, whereas for higher values the flatness increases.

The assumptions of a linear distribution of r1 and r3 in the intervals  and 

has been made for simplicity, but any other distribution can be used. The expected volume E(V) of

a particle is then given by 

(4)
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(5)

(6)

In the grading curve, different mineralsize classes i can be dinstinguished, each having a minimum

diameter  and a maximum diameter . From the total mass of particles mtot and the grading

curve, the mass of each mineralsize class can be determined

(7)

where Fm(d) is the ratio of mass passing through a sieve of aperture size d and the total mass.

Consequenstly, each class can be simulated separately and the index i is omitted. The function Fm(d)

can be interpreted as the cumulated probability density function of the mass distribution as a function of

the diameter d2 = 2r2. Assuming a linear function in the logarithmic scale between Fm(dmin) = 0 and

Fm(dmax) = 1, it follows

(8)

This can be interpreted as the accumulated probability density function of the mass as a function

of the diameter d2. The corresponding probability density function is obtained by differentiation of

Eq. (8)

(9)

Eq. (9) describes the mass distribution within the mineral size class. From the mass distribution,

the distribution for the number of particles is derived. The mass of particles M of size d2 is given by

(10)

where n(d2) is the number of particles with diameter d2, ρ is the density of the particles assumed to

be identical for all mineral size classes and E(V(d2)) is the expected value of the volume of a

particle with diameter d2 given in Eq. (6) with 2r2 = d2. Consequently, the distribution of the number

of particles as a function of the radius d2 is given by 

(11)

where the denominator corresponds to the total number of particles in the interval [dmin, dmax]. Substitution

of Eq. (6) and simplification finally gives

(12)

which describes the density function for the number of ellipsoides. Integration of the density function

gives the cumulated density function of the ellipsoides 
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(13)

In order to simulate particles according to the prescribed cumulative distribution function, the

inversion method is used, which means sampling a uniform random variable U2 in the range [0, 1]

and then using the inverse function of the cumulated distribution function to obtain the corresponding

diameter d2

(14)

The procedure is illustrated for the mineral size class [2, 8] in Fig. 1. Note that Fm is a linear

function in the logarithmic scale, whereas Fn is nonlinear. In a similar way, it is observed that the

density function φm is much smaller than φn for small diameters d2. This is due to the fact that, for a

smaller diameter d2, in order to have the same mass proportion a much higher number of samples is

required. 

The take process can be summarized as follows. Starting with the largest mineralsize class, particles are

generated by sampling random numbers u1, u2 and u3 in the interval [0, 1]. From these samples, the

principal diameters/radii of the particle using Eqs. (14), (2) and (3) are calculated. The procedure is

repeated until the mass mi is exceeded. The difference between the simulated mass  and the target mass

mi is subtracted from the next mineral size class in order to ensure that the total simulated mass is

almost identical to its target value. 

2.2 Placing the particles

After having created the particles for a prescribed volume, the particles are placed into the

specimen at a random position and with random orientation, which are assumed to be uniformly

distributed in their domain. For a 3-dimension simulation, this corresponds to three coordinates and

three orientation angles. In order to avoid overlapping between particles and the boundary of the

domain and overlapping between neighboring particles, separation checks have to be performed.
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Fig. 1 Sampling of particles according to a prescribed grading curve
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From the computational point of view, the most expensive procedure is the separation between

particles, which is due to the large number of particles considered. At first, the bounding boxes of

the ellipsoides are checked and in the case of their intersection, an efficient separation check for

ellipsoides developed by (Wang et al. 2001) is applied. The representation of two ellipsoids A and

B from Eq. (1) is rewritten as 

(15) 

 (16) 

with x = (x1, x2, x3, 1) being homogenous coordinates,

(17)

(18)

and T a transformation matrix that maps the ellipsoid B 
into the coordinate system aligned with the

principal axes of A. The characteristic polynomial is defined as 

(19) 

and f(λ) is called the characteristic equation. (Wang et al. 2001) showed that two ellipsoids A 
and

B can be separated by a plane if and only if the characteristic equation has two distinct positive

roots. It is not required to exactly determine the roots, but the existance - e.g. using Sturm-

sequences (Hook and McAree 1990) - of two positive roots is sufficient to conclude that the

ellipsoides are separated. 

An important aspect is the enlargement of all radii of an ellipsoid by ∆r = εr2, where being a

userdefined constant. This approach is physically motivated by (Wittmann et al. 1985), who showed that

aggregates are surrounded by a thin film of mortar. From the numerical point of view, this procedure is

essential to define a minimum distance between ellipsoides and, consequently, non-distorted elements in

the meshing procedure. 

The randomness in the spatial location and the orientation of the particles reflects the stochastic

character of the arrangement of particles in a real model. Different realizations of the particle

arrangement can be obtained by modifying the seed of the random number generator used for the

generation of the random locations and orientations, thus the variability of the response with respect

to varying particle arrangement can be investigated. 

In order to generate a 2-dimensional model, a slice of the 3-dimensional model is used, where

ellipses with a radius smaller than a prescribed treshold related to the mesh size are removed. 

3. Material formulations for the constituents

For normal strength concrete, it is seldom observed that cracks pass through the aggregates. As a

consequence, the aggregates are assumed to be linear elastic. Due to the small dimension of the ITZ, it is

modeled with a discrete crack concept applying a cohesive formulation, whereas the matrix material

is simulated using a combined damage/plasticity formulation. 

A:0 x
T
Ax=

B:0 x
T
T
T
BTx=

A diag 1 r1

A( )
2

1 r2

A( )
2

⁄ 1 r3

A( )
2

⁄ , 1–, ,⁄( )=

B diag 1 r1

B( )
2

⁄ 1 r2

B( )
2

⁄ 1 r3

B( )
2

⁄ 1–, , ,( )=

f λ( ) det λA B+( )=



A mesoscale model for concrete to simulate mechanical failure 407

3.1 Plasticity model combined with nonlocal isotropic damage for the matrix

Pure plastic models are not capable of simulating the stiffness degradation, which is observed in

experiments. By contrast, pure damage models are not able to represent irreversible deformations. A

combination of both approaches can overcome these deficiencies. The combination of plasticity with

damage is usually based on an isotropic plasticity model combined either with an anisotropic

damage model as e.g. in (Carol et al. 2001, Hansen et al. 2001), or an isotropic damage model. 

The plasticity model can either be formulated in the effective stress space (i.e. the undamaged

stress space) as e.g. in (Ju 1989, Jason et al. 2006). Another choice is a formulation in the nominal

stress space (i.e. the damage stress space) as in (Lubliner et al. 1989, Ananiev and Ožbolt 2004).

Grassl investigated the two different approaches with respect to the local uniqueness conditions

(Grassl and Jirásek 2004), which means, whether for a prescribed strain history a unique response in

terms of stresses and history variables is obtained. The formulation in the effective stress space

fulfilled these conditions without any further restrictions, whereas for the formulation in the nominal

stress space certain restrictions for the plasticity model (e.g. a plasticity model with hardening) have

been found. 

In the current work, a plasticity formulation for small strains in the effective stress space combined

with an isotropic damage model similar to (Grassl and Jirásek 2006) has been used. 

An advantage from a numerical point of view is that the formulation in the effective stress space

further allows a decoupling of the return mapping algorithm for the plasticity solution from the

damage evolution. 

The stress-strain relation is given by 

(20)

(21)

where σ is the stress tensor, C the elastic material matrix, ε the total strain, ε p the plastic strain, 

the effective stress. For ω = 0, the model corresponds to a plasticity model, whereas for εp = 0 a

pure damage model is obtained. 

First, the plasticity model is presented, afterwards the local damage formulation is added, and,

finally, the extension to the nonlocal damage model is made. 

3.1.1 Plasticity formulation

An associated plasticity model defined in the effective stress space  is used. For multisurface

plasticity, the evolution of the plastic strain is governed by Koiters rule

(22)

where  are the yield functions of the plasticity model and γi the corresponding plastic multipliers.

The Karush-Kuhn-Tucker conditions are given by 

(23)

In this work, hardening is not considered in the model. Three different yield surfaces have been

investigated Rankine, Drucker-Prager and a combination of both within a multisurface plasticity

approach. For the Rankine model, the rounded yield surface is defined by 
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(24)

with the principal stresses  and the uniaxial tensile strength fct. 

The Drucker-Prager yield surface is defined by 

(25)

where I1 is the first invariant of the stress tensor and J2 the second invariant of its deviator. The

material parameters β and Hp can be determined from the unixial compressive strength fc and the

biaxial compressive strength fc2

(26)

 (27)

Further details about the numerical implementation can be found in Appendix A. 

The Drucker-Prager yield surface gives a good approximation of the material behavior of concrete

in compression. Other material laws for concrete in compression additionally include the Lode angle

(or equivalently, the third invariant of the stress tensor), which has not been considered in this work.

One of the main purposes of mesoscale simulations is the assumption that simple material

formulations for each component lead to a complex response due to the geometrical distribution and

the interaction of the components. 

The Rankine criterion is a good approximation in tension. Consequently, a combination of both

yield criteria to model tension as well as compression has been implemented, as illustrated in Fig. 2.
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Fig. 2 Rankine and Drucker-Prager yield surfaces and the principal stress space
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By using the rounded Rankine criterion no auxiliary yield function is required. Due to the

decoupling of plasticity and damage, a return mapping algorithm for the plastic part of the model

with multisurface plasticity according to (Simo and Hughes 1997) can be used. 

Application of an implicit backward Euler difference scheme to Eqs. (22), (23) and (21) gives the

following coupled system of equations

(28)

(29)

(30)

(31)

(32)

which is solved for the plastic multipliers ∆γα, the plastic strains εp and the effective stresses .

During the iterative solution of the coupled system of equations using a Newton-iteration as

explained in detail in (Simo and Hughes 1997), it is required to update the active yield functions.

For each intermediate state in the Newton iteration, the Karush-Kuhn-Tucker conditions are verified.

If the plastic multiplier for a formerly active yield function is negativ, the yield function is removed

from the set of active functions. Similarly, if the value of a yield function that is not part of the

active set is positive, the function is added to the active set. In general, this procedure converges.

However for certain situations, an oscillating behavior was experienced, where a yield function was

added in one step and removed in the next one. In such a situation, where convergence after a

certain number of iterations is not achieved, all possible sets of active yield functions are checked.

Within each of these iterations, the set of active functions remains constant. After convergence of

the procedure (all active yield functions are equal to zero), consistency of the solution is verfied, i.e.

if all other yield functions/plastic multiplier fulfill the Karush-Kuhn-Tucker conditions. 

The nonlinear iteration on the system level is solved using a full Newton-Raphson iteration, which

requires the determination of an algorithmic elastoplastic tangent modulus. Differentiation of Eqs.

(28) and (29) and rearranging finally gives
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where J 
is the set of active yield functions. It is further to be noted that Σ is symmetric, which simplifies

the computational effort. In combination with the damage formulation, the algorithmic tangent of

the plastic strains with respect to the total strains is required. This can be derived from differentiation of

Eq. (28)

(35)

Rearranging Eq. (35) gives the required expression

σn 1+ C εn 1+ ε n 1+

p
–( )=

ε n 1+

p
ε n

p
γα
∂f α

p
σn 1+( )

∂σ
--------------------------∆

α 1=

m

∑+=

f α
p
σn 1+( ) 0≤

γα∆ 0≥

γα f α

p
σn 1+( )∆ 0=

σ

dσn 1+

dεn 1+

------------- Σ Σ ∂σ f
p
σn 1+( )[ ]

T
∂σ f

p
σn 1+( )Σ ∂σf

p
σn 1+( )[ ]

T
{ }

1–

∂σ f
p
σn 1+( )Σ–=

Σ C
1–

γα
∂2

f α

p
σn 1+( )

∂σ2
-------------------------∆

α:f
α

J∈

∑+

1–

=

dσn 1+

dεn 1+

------------- C C
dε n 1+

p

dεn 1+

-------------–=



410 Jörg F. Unger, Stefan Eckardt and Carsten Könke

(36)

where  can be calculated from Eq. (33).

3.1.2 Local damage formulation

The proposed material law should be used within a mesoscale approach to model the soft matrix,

which is surrounded by hard aggregates. For this scale, it is sufficient to simulate damage with an

isotropic damage model, since the anisotropy of the global response is implicitly comprised in the

mesoscale model. Several choices for the description of damage are possible, i.e. as a function of

the stresses, the total strains or the plastic strains. In the presented model, the definition of a damage

model as a function of the equivalent plastic strains has been used. Plasticity and damage start at the

same time, and the elastic region is fully described by the yield function of the plasticity model.

This corresponds to the assumption that relocations in the microstructure at the elastic limit are

described by the plasticity model, but simultaneously lead to damage within the microstructure.

With this approach, hardening in the prepeak region of the load-displacement curve cannot be

captured. However, this phenomena is included in the mesomodel due to the successive creation of

microcracks, which coalesce only in the post-peak region into macroscopic cracks. The damage

model is described by the evolution law, the loading function and the loading/unloading conditions.

The loading function is given by 

(37)

with the loading/unloading conditions 

(38)

where 
 
is the equivalent plastic strain. The damage evolution is given by 

(39) 

The parameter εf is a parameter that is related to the fracture energy G of the material and the

equivalente length leq, which is a parameter of the finite element model and describes the influence

radius of the corresponding material point, i.e. the dimension of the element that includes this

material point. This parameter can be determined from the area under the stress-strain curve. 

3.1.3 Nonlocal damage formulation

The mesh sensitivity of the local formulation is reduced by introducing the factor leq that accounts for

the thickness of the local zones of damage. However, the zone of damage decreases with the meshsize

and, in general, damage localizes only in one row of elements. Furthermore, the calculation of the

equivalent lenght is not straightforward, since for different orientations of the element with respect

to the loading direction a modification of the equivalente lenght would be required. In order to

circumvent these drawbacks, a nonlocal formulation is used. In nonlocal formulations, certain variables are
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on the distance r between source and target point. Furthermore, the weight function is scaled, so

that a uniform field t is identical to its nonlocal counterpart . In this work, the rescaled bell-shaped

weighting function is used

(41)

(42)

(Jirásek 1998) investigated nonlocal models with respect to their capability to describe the material

until final failure. For certain nonlocal formulations, locking phenomena occured and the material

response could only be correctly approximated close to the peak of the load-displacement curve. For

nonlocal models of the form 

(43)

no locking phenomena were found. In this context, a second variant was investigated where not the

strain is averaged, but the equivalent strain. Both variants have been investigated, but no substantial

difference in the results has been realized. Due to numerical reasons, the second variant has been

finally applied, since for the nonlocal averaging only a scalar variable has to be computed, whereas

in Eq. (43) a field of up to six variables (depending on the number of plastic strain components) has

to be averaged. In the nonlocal formulation, the evolution law is replaced by 

(44)

where κ is the local equivalent plastic strain and  its nonlocal counterpart calculated using Eq.

(40). For a uniaxial tensile test it is observed that with the presented nonlocal formulation, constant

plastic strains localize in a single element, whereas in the neighboring elements almost no plastic

strains are observed. By contrast (due to the nonlocal formulation), damage is generated in the

whole region of the nonlocal influence radius. It is furthermore noted that most of the inelastic

energy is dissipated in the single element with the localization, which is explained by the large

plastic strains within this element. 

The determination of the nonlocal radius is a severe problem. Many researchers claim that this

nonlocal radius R is a material property. This seems to be reasonable, since the size of the fracture

process zone is related to the intrinsic material length of the material. (Grassl and Jirásek 2010)

investigated the size of the fracture process zone from mesoscale simulations using lattice models in

order to determine an appropriate nonlocal radius for different weighting functions. For concrete, it

was found that the size of the fracture process zone relates to the size of the largest particles in the

model. Fixing the nonlocal radius as a material property, the parameter εf is directly related to the

specific fracture energy of the material. As a consequence, two of the three parameters εf, R and G

can be defined by the user, whereas the third parameter can directly be calculated

(45)
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Eq. (45) is obtained by integration of the stress-strain curve with localized plastic strains in a

single element. 

The algorithmic stiffness for the combined model can be derived by differentiation of Eq. (20)

(46)

which can be evaluated using Eqs. (44), (40) and Eq. (36). The indices i and j reference the intergration

points. In this context it is to be noted that the stiffness matrix is no longer symmetric. This is due

to the rescaling of the weighting function, which results in unsymmetric weights and is related to

boundary effects (Krayani et al. 2009). In the current mesoscale model, it is especially important to

reduce the influence of these boundary effects, since there are many internal boundaries due to the

different material formulation for matrix and particles. However, in this model, the cohesive

interface has a smaller tensile strength compared to the matrix. As a result, the smeared crack in the

nonlocal model is almost perpendicular to the boundaries between matrix and particles, which

reduces the boundary effect dramatically. In contrast, investigations using models without cohesive

interface elements, in which the interface crack around a particle had to be simulated as a crack

solely within the matrix showed strong boundary effects. 

It is further to be noted that the stresses within an element depend on all strains within the nonlocal

radius. Consequently, the element stiffness matrix is not quadratic, but has a rectangular shape.

3.2 Cohesive interface formulation for the ITZ

In order to describe cracking phenomena in quasibrittle materials, Hillerborg developed the

fictitious crack model (Hillerborg et al. 1976). The model is an extension of the Dugdale/Barenblatt

plastic crack-tip model (Dugdale 1960, Barenblatt 1962), which relates normal stress and normal

crack opening. It is based on the idea that, close to the crack tip, stresses between opposite faces of

the crack can be transfered by mechanisms such as aggregate interlocking, friction and material bonding.

In the current work, a model based on (Tvergaard 2003; Ortiz and Pandolfi 1999) is used, which

describes normal as well as tangential tractions along an interface. A total crack opening λ is introduced

(47)

where un and ut are the normal opening and tangential sliding of the interface surfaces, and α is a

material constant which controls the weighting between the normal and tangential opening. Note

that by using the McCauly brackets, only a positive normal crack opening contributes to the total

crack opening. Furthermore, a cohesive traction-separation law is used for loading conditions

(48)

where λ0 = fct/Kp is the crack opening at which the linear elastic peak load is reached, Kp is the

penalty stiffness, fct the tensile strength of the interface layer and Gf its fracture energy. The penalty

part is important to allow a crack to remain closed for compressive stresses and small tensile stresses. 

Assuming that a potential Φ
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(49) 

exists, the normal and tangential tractions are obtained respectively by

(50)

(51)

Describing the total potential as a function of the mixed displacement λ leads to the assumption

that the fracture energies for mode I and mode II are equivalent, although this differs from the

general assumption that the mode II fracture energy for concrete is higher than the mode I fracture

energy. However, an advantage for the numerical implementation is that the obtained stiffness matrix

is symmetric. The penalty stiffness Kp must be chosen carefully. On the one hand, the penetration of the

two adjacent crack faces of the interface in compression has to be reduced by making Kp as large as

possible. On the other hand, a high penalty stiffness results in an ill-conditioned global stiffness

matrix. In the implementation of the model, the penalty stiffness was determined using an empirical

approach.

A history variable λmax, which corresponds to the maximum total crack opening λ reached during

loading, is required to decide, whether the material point is under loading (λ ≥ λmax) or unloading

(λ < λmax) conditions. A damage model is applied for the unloading path, and a linear function back

to the origin is assumed

(52)

(53)

If the interface is in compression, the contact condition is approximated by the penalty stiffness 

(54)

and the parameter λ is only a function of the tangential displacement

(55)

4. Numerical results

4.1 Tensile test

In a first example, a tensile test performed by (Kessler-Kramer 2002) was used. The geometry is

illustrated in Fig. 3. The main advantage of this test compared to many others is the fact that there

is no prescribed notch, which triggers the localization. As a consequence, the particle distribution

has a much more pronounced but nontheless more realistic effect compared to a notched specimen.

In order to simplify the numerical model, only the inner part with a width of 60 cm is modeled,
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Fig. 3 Geometry and final damage distribution of the tensile test performed by (Kessler-Kramer 2002) for
varying particle distributions

Table 1 Material parameters for the numerical simulation of the tensile test (Kessler-Kramer 2002)

Parameter Matrix Interface Aggregate

Young’s modulus E  27500† - 55000

Poisson’s ratio ν [−] 0.18 - 0.2

Tensile strength fct 3.9 2.93 -

Uniaxial compressive strength fc 39 - -

Biaxial compressive strength fc2 45.2 - -

Fracture energy G 0.219 0.164 -

Nonlocal radius r 1.5 - -

Interaction value a [−] - 1 -

† The parameter was calculated from the macroscopic Young’s modulus 33930  and the actual fraction of
aggregates using Eq. (56).

N

mm
2

---------- ≈

N

mm
2

----------

N

mm
2

----------

N

mm
2

----------

Nmm

mm
2

------------

mm[ ]

N

mm
2

----------



A mesoscale model for concrete to simulate mechanical failure 415

which correponds to the region over which the relative displacements are measured in the

experiment. Strong boundary effects, e.g. that damage develops especially in the boundary layer

triggered by the stiffer displacement constraints (compared to the experiment) was not observed.

The material parameters used in the simulation are summarized in Table 1. The grading curve was

taken from (Kessler-Kramer 2002), where the total amount of aggregates is given by 77 mass-%,

partitioned into 24.6 mass-% in the class 8/16, 29.2 mass-% in the class 2/8 and 23.1 mass-%

homogenized in the matrix material with a diameter smaller than 2 mm. The Young’s modulus of

the matrix Em was determined using the Reuss formula (Reuss 1929). By assuming the Young’s

modulus of the particles to be twice the Young’s modulus of the matrix, the following relation is

obtained

(56)

where ρm is the volume fraction of the matrix and Ec the macroscopic Young’s modulus of concrete.

An alternative possibility is to fix the Young’s modulus of the particles and compute the Young’s

modulus of the matrix. 

On the basis of 50 simulations, the influence of the particle distribution on the load-displacement

curve is evaluated. In Fig. 3(b) the particle distribution and the damage at the final load-step for the

first three samples is illustrated. It is observed that the particle configuration has a substantial influence

on the location of the final crack. Furthermore, cracks are passing primarily along grain boundaries,

and matrix cracks are only obtained when these cracks in the interface layer coalesce. In the initial

stage, many microcracks depicted by zones of local damage are obtained. In general, the final

failure mode is a single crack which has been developed from these microcracks. It sometimes

happens - as in the right sample in Fig. 3(b) - that two competing cracks are obtained and the

localization into a single crack is obtained only at an advanced loading level. 

The mean and the standard deviation of the corresponding load-displacement curves are illustrated

in Fig. 4. It is observed that the particle distribution primarily influences the post-peak branch - the

peak load is only slightly influenced. This is due to the fact that the particles primarily influence the

crack path and, consequently, the length over which energy is dissipated. 

4.2 Compression test 3D

In a second example, a compression test of a concrete cube is performed in 3D and compared to

1

Ec

-----
ρm

Em

------
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Fig. 4 Influence of particle distribution on the load-displacement curve
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experimental data from (van Vliet and van Mier 1995). In contrast to a tensile test, where the failure

state can be calculated in 2D, the compression test has to be performed in 3D in order to accurately

capture the failure mechanism.

The experimentally tested concrete cube has a side length of 100 mm. In the numerical

simulation, a concrete cube with a side length of 25 mm has been used and the results were scaled

Fig. 5 Particles simulated in the concrete cube with edge length 25 mm 

Table 2 Material parameters for the 3-dimensional compression test

Parameter Matrix Interface Aggregate

Young’s modulus E 26738 - 53476.1

Poisson’s ratio ν [−] 0.18 - 0.18

Tensile strength fct 3.4 fi·3.4 -

Uniaxial compressive strength fc 50 - -

Biaxial compressive strength fc2 58 - -

Fracture energy G 0.12 Gi·0.12 -

Nonlocal radius r [mm] 1 - -

Interaction value α [−] - 1 -
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for comparison.

The full cube could not be simulated numerically due to the large number of dofs and the mesh

creation in 3D. The upper and lower boundary conditions correspond to high friction between the

cube and the loading platens. According to a prescribed grading curve, 39 ellipsoids in in the class

4-8 mm where placed into the specimen, and 230 ellipsoids in the class 2-4 mm, which is illustrated

in Fig. 5. The matrix is assumed to include all the particles smaller than 2 mm. The material

parameters used in the simulation are summarized in Table 2. It is important to mention that no

parameter fitting has been performed. The fracture energy of the matrix was set to the experimental

fracture energy of the macroscopic concrete specimen, which is only an approximation. Due to the

increased fracture surface in a mesoscale tensile test, the fracture energy of the matrix is slightly

smaller compared to the macroscopic model. Due to lack of additional information, the fracture

energy and the tensile strength of the interface where chosen to be a multiple of the corresponding

parameters of the matrix. The factor was chosen to be 90%, which assures that the cracks around

the particles propagate along the interface elements. If cracks around the particle develop in the

matrix with the crack being almost parallel to the interface between matrix and particle, boundary

effects due to the renormalization of the nonlocal weighting function occur, and the assumption of

energy dissipation in the full range of the nonlocal radius is not valid any more. 

Additionally, the influence of different yield functions used in the plasticity model has been

investigated (Rankine, Drucker-Prager and combination of both) and compared to the isotropic

damage model. In Fig. 6, the damage distribution at the end of the calculation is illustrated. One of

the main motivations for using mesoscale models was the idea to represent the complex

macroscopic response by dissolving the heterogenuous mesostructure in the numerical model and

applying simple material formulations to each of the constituents. For that matter it was assumed

that the compressive failure of concrete could be modeled by using a mesoscale model with matrix

failure defined by a criterion in tension as e.g. the Rankine yield surface. The damage pattern in

Fig. 6(b) does no coincide with the experimental results obtained for a compression test of concrete

with high friction between the platens and the cube. Furthermore, no global softening behavior

could be observed as illustrated in Fig. 7. At the ultimate applied displacement, columns of intact

material transmitted high compressive forces. They were separated by vertical cracks, which

Fig. 6 Damage distribution after the final load step of a uniaxial compression test for different yield functions
of the matrix material using the combined damage-plasticity model 
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developed due to the lateral strain in the matrix. An alternative formulation was based on a pure

Drucker-Prager criterion, where the cone of the failure surface was determined from the uniaxial

and biaxial compressive strengths. In most numerical simulations, the latter was estimated from the

unixial compressive strength. The Drucker-Prager yield surface is often used to describe failure of

concrete in compression. The failure pattern corresponds to the experimental results similar to the

combined approach, where curved shear zones develop, which finally lead to spalling of the vertical

edges. Additionally, softening of the global response can be simulated. The onset of failure is

accurately captured by the model, as well as the lateral strain (which is calculated from the lateral

displacements at the midsection). The fracture energy in compression is overestimated by the

numerical model, which is probably due to the fact that the parameter εf is calibrated from a tensile

test. Furthermore, a combination of the Rankine criterion for tension and the Drucker-Prager

criterion in compression in the framework of a multiplasticity approach was investigated. The onset

of material degradation was slightly earlier compared to the Drucker-Prager model. The simulated

axial stress-strain diagramm is close to the experimental data, although the compressive strength is

slightly smaller in the numerical model, which is probably due to the parameter set (no fitting). In a

similar way, the difference in the lateral strain can be explained. The volumetric expansion

(dilatation) is best approximated with the combined model. The interface parameters, i.e. the factor

relating the fracture energy and the tensile strength of the interface to the corresponding parameters

of the matrix, have only a minor influence. This might be attributed to the small number of particles

considered in the simulation. A second reason is probably the fact that in a compression test the

primary failure domain is the matrix. Interface cracks seem to have only a minor influence. 

5. Conclusions

In the present paper, a mesoscale model for concrete has been presented. This allows a more

realistic simulation of the nonlinear behavior. Microcracks, which primarily initiate along particle

Fig. 7 Uniaxial compression test in 3D of a cube with edge length 25 mm for different yield surfaces and Gi

and fi varied between 45% and 90% (DP: combined Drucker-Prager, RK: combined Rankine)
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boundaries finally coalesce into a macroscopic crack. Particles are assumed to be represented by

ellipsoids, whose size distribution is generated according to prescribed grading curves. Zones of

local failure within the model are either represented by interface cracks in the ITZ simulated with a

cohesive model, or by a constitutive model for the matrix based on a plasticity formulation in the

effective stress space using Drucker-Prager and Rankine yield surfaces combined with a nonlocal

isotropic damage formulation as a function of the equivalent plastic strain. On the one hand, this

model allows to implement one source of the stochastic scatter of experiments into the numerical

model. On the other hand, the damage distribution on the mesoscale including microcracks is

computed. This model might serve as a basis for coupled problems, where the damage distribution

influences the constitutive parameters, e.g. the moisture transport, the thermal conductivity or

chemical processes. Localization in uniaxial tests is automatically obtained without the requirement

to predefine weakened sections. Furthermore, the complex nonlinear behavior on the macroscale can

be simulated by simple formulations on the mesoscale, e.g. the nonlinear prepeak behavior can be

represented without any hardening variables in the constitutive relations. 
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Appendix A. Numerical implementation of the multisurface plasticity model

Appendix A.1 Rankine model

For the Rankine model, the yield surface is defined by 

(A.1)

with the principal stresses σIII ≤ 
σII ≤ σI and the uniaxial tensile strength fct. The rounding of the

yieldsurface has a physical meaning which corresponds to the assumption, that the yield function is

influenced by the interaction between positive principal stresses. On the other hand, it is also due to

numerical reasons, since singularities occur in the standard Rankine approach for the derivative of

the yield function at stress states with σI = σII. In the present approach, the rounding was performed

with the full radius σy, but smaller radii can be used as illustrated in Fig. A1 to obtain in the limit

with σM → 
fct the standard Rankine yield surface. 

Appendix A.2 Drucker-Prager model

The Drucker-Prager yield surface corresponds to a cone in the principal stress space and has a

singularity at the apex. In order to increase the stability and the convergence speed of the numerical

solution close to this singularity, an auxilary yield function has been added

(A.2)

with α = 0.9999. This is illustrated in Fig. A2. Trial stress 1 is directly mapped to the Drucker-

Prager yield surface. For trial stress 2, the auxiliary yield function is activated for the first iteration
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Fig. A1 Rounded Rankine criterion for plane stress
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step of the return mapping, but finally deactived. Without the auxiliary function, numerical problems

occur for trial stresses 3 and 4, but with the auxiliary yield function activated, they are both mapped

back to the apex. 

Fig. A2 Return mapping of trial stresses using the Drucker-Prager yield surface in combination with the
auxiliary yield function




