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Abstract. Three-dimensional graphic objects created by MATLAB are exported to the AUTOCAD program
through the MATLAB handle functions. The imported SAT format files are used to produce the finite element
mesh for MSC.PATRAN. Based on the Monte-Carlo random sample principle, the material heterogeneity
of cement composites with randomly distributed fibers is described by the WEIBULL distribution function. In
this paper, a concept called “soft region” including micro-defects, micro-voids, etc. is put forward for the
simulation of crack propagation in fiber-reinforced cement composites. The performance of the numerical
model is demonstrated by several examples involving crack initiation and growth in the composites under
three-dimensional stress conditions: tensile loading; compressive loading and crack growth along a bi-
material interface.

Keywords: fiber-reinforced cement composites; stress-strain behavior; interfacial transition zone; finite
element analysis (FEA); multi-scale modeling.

1 Introduction

Concrete is a brittle composite material characterized by a non-homogeneous internal structure.

Under the influence of external loads the failure of composites can be caused by discontinuities

created by the technological defects or local differences of mechanical properties of the concrete

components. In the vicinity of discontinuities local stress concentrations occur, which can initiate

defects (under tensile or compressive loading). The propagation of such defects may further degrade

the material or structural element. A brittle fracture process starts when large defects start to grow

in an unstable manner (Ruiz et al. 2000, Most and Bucher 2007, Remmers et al. 2008, Sancho  et

al. 2007a, 2007b, Oliver et al. 2004, Sadowski and Golewski 2008). 

Concrete is a mixture of cement, water and aggregates. In terms of microstructure, besides the

cement paste matrix and aggregate inclusions, there is a third phase, called the interfacial transition

zone (ITZ). The ITZ is formed due to the wall effect and can be treated as a thin shell that

randomly forms around each aggregate particle. Thus, concrete can be viewed as a bulk paste

matrix containing composite inclusions (Sun et al. 2007). Leite et al. (2007) present a mathematical

modeling and computational tool to simulate the fracture processes of cement composites at the
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meso-scopic level. Three-dimensional beam lattice models are extended and used to simulate the

size effect on strength in 3-point bending fracture experiments. At the meso-level concrete is treated

as a three-phase material, consisting of the aggregate particles, cement matrix and the ITZ, which

separates aggregates and cement matrix (Man and Van Mier 2008). To date, the modeling of large

multiple defects, micro-voids etc. in a matrix with three-dimensional randomly distributed properties

has not yet been effectively carried out.

The simulation of damage and failure of short fiber reinforced cement composites is a challenging

task. Due to the number of failure mechanisms introduced by the fibers on the meso-scale of the

material, randomly oriented fibers, such as steel fibers, affect the macroscopic failure behavior in

compression, tension, flexure, and shear. On the meso-scale the fibers introduce additional damage

and failure mechanisms like fiber fracture, fiber bridging, fiber bending and matrix spalling for

inclined fibers and fiber pull-out (Okabe et al. 2005, Sivakumar et al. 2008, Zairi et al. 2008,

Cheng et al. 2004). However, the numerical simulation of three-dimensional crack failure in fiber-

reinforced cement composites has rarely been reported in the literature. The internal structure of

fiber-reinforced concrete is very complex as it varies with the number of fibers and changing

mechanical properties during the loading process. Also, cracks along the interface between fiber and

matrix propagate mainly into the cement matrix surrounding the fibers.

In this paper, a “soft-region” concept is presented that addresses the crack problem of fiber-

reinforced cement composites. A soft region is a region that contains many micro-cracks and micro-

voids which represent the initial damage state. Instead of individual discrete cracks, only the entire

region with initial damage is considered. This region can be modeled with general finite elements

for a numerical test, but such elements fail at a lower load level. The shape and size of defects are

very difficult to determine, thus the influence of the shape and size on soft-region elements is

ignored. 

Under external load the original degree of damage of samples is represented by the soft-region volume

ratio and the corresponding average strength. In the next sections, the implementation of fibers randomly

distributed in a three-dimensional matrix is discussed, based on the Monte Carlo sampling principle.

Thereafter, a mathematical model for the constitutive relationship and material properties is

presented. The application of the model is illustrated through two numerical examples: (i) a tensile

crack test and (ii) a compressive crack test.

2. Numerical models

2.1 Fiber-reinforced cement composite model

In short-fiber reinforced cement composites, large numbers of chopped fibers are randomly distributed in

the matrix. Different types of fiber have been used in engineering applications, e.g. straight, hooked

end, corrugated, etc. To simplify the study, the types of used in this paper are assumed to be straight

and cylindrical. Fibers randomly distributed in the matrix can be simulated by the MATLAB

program (Uzunoglu et al. 2003), a powerful programming language as well as an interactive

computational tool. Files that contain codes in MATLAB language are called M-files. There are two

types of M-files that we can write: scripts and functions. In this paper, the second one is selected.

MATLAB provides a wide variety of techniques to display data graphically. Interactive tools can

manipulate graphs to achieve the results that reveal the most information from the relevant data.
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The cylinder function treats its first argument as a profile curve, and generates x-, y-, and z-

coordinates of a unit cylinder. E.g. [X, Y, Z] = cylinder(r) returns the x-, y-, and z-coordinates of a

cylinder using r to define a profile curve. The cylinder function treats each element in r as a radius

at equally spaced heights along the unit height of the cylinder. The cylinder has 20 equally spaced

points around its circumference. To ensure the randomness of fibers distributed in the matrix, the

rand matrix function and rotate function are used. Of course, fibers produced through MATLAB

must be restricted to the matrix. 

There is a problem: no fiber should intersect with other fibers. So once one fiber is created, the

next fiber not only should be restricted to the matrix but also have no points in common with the

former fiber. The other fibers are treated by analogy. The case can be finished by “if” sentence and

“dsearchn” function, i.e. if the distance between each point of one fiber and any points of other

fibers is less than a given threshold value, it can be assumed that the two fibers intersect. So the

next fiber must be created again.

In addition to fiber and concrete matrix, fiber-reinforced cement composites have a third phase (a

thin interfacial layer), that exists between the fiber and matrix. To create the interfacial layer, the

previously generated fibers are assumed to include the interfacial layer. In this method, randomly

distributed fibers can also be created without including the interfacial layer. So a Boolean algorithm

is used by MSC.PATRAN to create the interfacial layer. 

In fact, MATLAB only exports the figure files instead of the object files. The figure files cannot

Fig. 1 Flow chart of geometric model created
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be imported into commercial finite element programs such as MSC.MARC or ABAQUS. However,

the object files created by AUTOCAD can be imported. Using the handle graphic function of

MATLAB, the figure files created by MATLAB can be successfully copied into AUTOCAD. Handle

Graphics refers to a system of graphics objects that MATLAB uses to implement the graphic and

visualization functions. Each object created has a fixed set of properties. We can use these

properties to control the behavior and appearance of a given graph. MATLAB creates a graphics

object, and it assigns an identifier (called a handle) to the object. This handle is used to access the

object’s properties with the “set” and “get” functions. For example, the following statements create

a graph and return a handle to an object in h: h = mesh (X, Y, Z). In terms of the “get” function,

some data of key points of graphic created by MATLAB is attained and used to produce the

corresponding graphic of AUTOCAD as follows:

X1 = get(h, ‘xdata’)

Y1 = get(h, ‘ydata’)

Z1 = get(h, ‘Zdata’)

Afterwards, the graphic created by AUTOCAD is exported to the “SAT” file that then can be

imported to commercial finite element programs (e.g. MSC.PATRAN). The flow chart is shown in

Fig. 1. Using this procedure, a geometric model of the fiber-reinforced cement composite can be

obtained (Fig. 2). 

2.2 Analysis of mechanical properties

Considering the initial defects of materials, a soft region concept is presented to depict the initial

micro-defects, micro-voids, etc. The cement-based materials are assumed to be two-phase composites

consisting of the matrix phase and matrix soft region phase. The two phases may be of the same

element type (hexahedron element) in the finite element model, but they have different mechanical

properties. The number of matrix soft region elements controls the initial degree of damage of the

cement-based composite. In this study, the percentage of soft region elements is fixed at 20%. In

fact, the mechanical properties of cement composite components vary with the different local

Fig. 2 Geometric model of fiber-reinforced cement composites
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positions. This can be modeled by assigning different soft region elements different mechanical

properties. Once the mechanical properties of each local region are distinguished, a finite element

model of the cement composite can be obtained (Fig. 3). The model mesh can be created by

MENTAT-MARC, but the cracking strength of each meso-element may be different. In Fig. 3

different colors denote different cracking strengths. Element cracking strength of each phase except

for the fiber phase independently obeys the Weibull distribution.

To reduce the computational effort, it is assumed that cracks do not occur at the aggregate-paste

interface but in the soft region, the effect of aggregate is ignored, and concrete is treated as a two-

phase composite. For the same reason, the fiber-reinforced cement based composite is treated as a

four-phase composite including the matrix, matrix soft region, fiber and interfacial layer between

matrix and fiber. In the three-dimensional mode, the mesh subdivision has a little problem with the

cavity created by the fiber and interfacial layer, but MSC.PATRAN (Patran 2001) can solve this

instead of MENTAT-MARC. Obviously, enough mesh density is needed. Here the tetrahedron

element will replace the hexahedron element. Similarly, elements in different local positions of the

same material will have different mechanical properties (e.g. strength, elastic modulus, etc.) except

for the fibers. A finite element model consisting of 6 fibers and corresponding interfaces is

illustrated in Fig. 4.

Strength and elastic modulus are two important parameters of the composites, but the strength

parameter is more crucial for the macro-mechanical properties of the composites than the elastic

Fig. 3 Finite element model of cement based composite considering heterogeneous material 

Fig. 4 Finite element model of fiber-reinforced cement composites with the mechanical properties differences
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modulus (Huang and Jiang 2007). Now the strength properties of each phase except for the fibers

are assumed to obey the Weibull distribution, a powerful modeling tool used in reliability analyses

to predict failure rates and to provide a description of the failure of materials. This is necessitated

by various factors such as the anisotropy, internal structure, and service environment of composites,

which prevent designers from having a specific strength value to characterize their mechanical

behavior. The Weibull distribution is defined by the ‘shape’ and ‘scale’ parameters. The two-

parameter Weibull distribution function that models the fracture strength of a material is given by

(1)

where F is the fracture probability of the material under direct tensile stress σ; α is the shape

parameter or Weibull modulus, and 1/λ is the scale parameter of the distribution. The parameters α

and 1/λ are estimated from the relevant literature (Birgoren and Dirikolu 2004).

To obtain the strength parameters for the matrix, matrix soft region, interface layer obeying the

Weibull distribution, firstly, a homogeneous pseudo-random number is created by a FORTRAN

procedure, and secondly, a sample formula obeying the Weibull distribution can be obtained by the

transform method (Muralidhar 2004). 

(2)

where u is the pseudo-random number obeying the uniformity distribution.

Cement-based composites are materials of low tensile strength. It is assumed that they do not fail

in compression. Relevant Weibull parameters of the tensile numerical model are listed as follows.

Here homogeneity denotes the shape parameter, i.e. α in Eq. (2). Average denotes the average

cracking strength of the corresponding element, i.e. 1/λ in Eq. (2). The critical crushing strain

means that an element will be crushed if the element strain achieves a specific value (Table 1).

The selected numerical specimen is assumed to be of the size 200 × 200 × 200 mm3, and the

length and radius of the fiber are taken as 30 mm and 1 mm, respectively. The fiber’s elastic modulus is

taken as 210 GPa and its Poisson’s ratio as 0.25. To reduce the computational effort, only 6 fibers
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Table 1 Weibull parameters

Cracking strength
Critical crush strain

Homogeneity Average(Mpa)

Homogeneous matrix 6 3 1010

Matrix soft region 3 0.3 1010

Fiber-matrix interface layer 3 1 1010

Table 2 Geometric parameters of numerical model

Case
Length
(mm)

Radius
(mm)

Interface thickness 
(mm)

Fiber total
number

Matrix soft
region ratio(%)

Case 1 30 1
radial axial

6 20
0.25 0.5

Case 2 Pure cement composites
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and corresponding interfaces are considered in the fiber-reinforced cement composite model.

Unreinforced cement composites are also analyzed for comparison with the fiber-reinforced

composites. Relevant geometric parameters are listed in Table 2.

In this study, two numerical tests are simulated: tension and compression. Due to the symmetry of

the numerical specimen, only one-eighth part of the model is analyzed, Fig. 5.

3. Numerical simulations

3.1 Tensile numerical test

Cement composites are of low tensile strength. They display nonlinear behavior on the macro-scale,

but brittle behavior on the meso-scale. For the meso-scopic heterogeneity, an elastic brittle hypothesis of

meso-elements is enough to describe the macro-mechanical properties. Under external load, the meso-

element shows linear properties. A crack develops in the material perpendicular to the direction of the

maximum principal stress if this exceeds a certain value. After an initial crack has formed at a material

point, a second crack can form perpendicular to the first one. Likewise, a third crack can form

perpendicular to the first two. The material loses all load-carrying capacity across the crack unless

tension softening is included. If tension softening is included, the stress in the direction of maximum

stress does not go immediately to zero; instead the material softens until there is no stress across the

crack. The softening behavior is characterized by a descending branch in the tensile stress-strain

diagram, which may depend on the element size. Now a series of numerical analyses of composites

with different tension softening moduli are carried out to study their effects on the macro-mechanical

properties. Four groups of numerical tests simulate the tensile behavior of the composites. In each group

the meso-element has a different softening modulus for the descending branch of the stress-strain curve.

Here σcr denotes the tensile strength of the meso-element, and Esoft denotes the softening modulus of the

descending branch of the stress-strain curve of the meso-element (Fig. 6).

After a crack forms, the loading can be reversed, therefore, the opening crack width must be

considered. In this case, the crack can close again, and partial recovery occurs, in which case it is

assumed that the material regains full compressive strength and that shear stresses are transmitted

across the crack, but with a reduced shear modulus. Actually, it is found that the reduced shear

Fig. 5 Sketch diagram of mechanics model
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modulus affects the macro-mechanical performance of composite materials. To compare the

differences, four cases with different residual shear factors are considered.

It is assumed that cracking strains occur at a given integration point of an element, once cracking

starts. The material strain is not equal to the element strain. The difference is defined as the

cracking strain which refers to crack opening. The Newton-Raphson method is selected in the

nonlinear analysis and as the convergence criterion the residual stress method is used. If at an

integration point cracking occurs and the crack is not closed, the cracking strain can be calculated

first. The relationship between strain increments is given as

(3)

where is the integration point strain related to the node displacement, εco is the material strain

consisting of the elastic strain and the plastic strain, εcr is the cracking strain. 

Firstly, the material is assumed to be isotropic without cracks (εcr = 0), and its behavior is depicted

by an elastic-plastic relationship. The strain increment at a given point can then be calculated. Computing

the new principal stress values, the transformation matrix is formed to ensure that stress and strain

refer to the principal coordinate axes. If the stress and strain in the principal direction are denoted

by S and e, we can get: S = Rσ, e = Rεco, so the constitutive equation in the element coordinate

system can be transformed to the principal directions.

If the principal stress S in one direction exceeds the threshold value Scr, cracking strain ecr will be

created in the direction θi (i = 1, 2, 3). The stress in the specified direction reduces to zero, thus the

constitutive relationship can be considered in a concise system. For 2D plane stress conditions, one

crack formation results in a one-dimensional stress-strain relationship. For the Poisson effect of elastic

materials and the incompressibility of plastic materials, continuous deformation exists perpendicular to the

cracking direction. For a solution, several items should be considered. To simulate the tensile

softening, each cracking direction will be carried out using a uniaxial overlay. The constitutive

relationship is given as

(4)

Here the stress in the cracking direction should be non-zero. Finally, the stress-strain relationship

in the principal direction will be transformed to the element coordinates to obtain the stiffness relationship

at each Gauss point.

The heterogeneity properties with failure strength of the same phase are considered, and the
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ε
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Fig. 6 Elastic brittle constitutive equation of meso-element with varied Esoft



Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites 335

elastic modulus is given a fixed value. Values assumed for the elastic moduli of the homogeneous

matrix, matrix soft region and interface layer are 30 GPa, 10 GPa, 20 GPa, respectively. All material

Poisson’s ratios are assumed to be 0.2. The softening moduli of the components (the homogeneous

matrix, matrix soft region, fiber-matrix interface) are chosen according to reference (Tang and Zhu

2003). However, these parameters are not the same as introduced in (Tang and Zhu 2003). When

these parameters are selected, all numerical test results must be based on real experimental data.

Similarly, the “shear residual factor” must obey that principle too. To obtain a rational result, the

analysis must be repeated many times, selecting different parameter values. To compare these cases,

a series of parameter values are shown in Table 3. 

3.1.1 Tension test results for cement composites (CC)

For cement-based composites consisting of two phases (homogeneous matrix and matrix soft

region), each element may have a different cracking strength. When the external load increases to a

certain value, a crack is formed in the element with the lowest strength. As the load increases

further, more and more cracks occur. Finally, cracks develop throughout the model and result in the

rupture of the specimen (Fig. 7). 

Assuming that the elastic modulus or softening modulus of the matrix soft region is less than that

of the corresponding homogeneous matrix, a series of numerical tests with different softening

modulus are analyzed by MSC.MARC (Fig. 8(a)). The results show that the slope of the descending

branch decreases with increasing softening modulus, while the tensile strength increases slightly.

When the softening modulus of the homogeneous matrix or matrix soft region is taken separately as

5000 MPa or 4000 MPa, the whole stress-strain curve of the numerical specimen cannot be computed. For

the same reason, relevant numerical tests using different shear residual factors are also analyzed

Table 3 Mechanic parameters of cement composites (fiber-reinforced cement composites)

Case NO.
Homogeneous matrix

softening modulus (MPa)
Matrix soft region’s

softening modulus (MPa)
Interfacial layer

(MPa)
Shear residual

factor

NO.1

NO.1.1

5000 4000 4500 (FRC)

0.5

NO.1.2 0.1

NO.1.3 0.05

NO.1.4 0.01

NO.2

NO.2.1

1000 900 950 (FRC)

0.5

NO.2.2 0.1

NO.2.3 0.05

NO.2.4 0.01

NO.3

NO.3.1

500 400 450 (FRC)

0.5

NO.3.2 0.1

NO.3.3 0.05

NO.3.4 0.01

NO.4

NO.4.1

200 100 150 (FRC)

0.5

NO.4.2 0.1

NO.4.3 0.05

NO.4.4 0.01
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Fig. 7 Cracking strain cutting planes of CC

Fig. 8 Direct tensile stress-strain curve
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(Fig. 8(b)). With increasing shear residual factor the material softening behavior becomes more and

more pronounced. When the shear residual factor for all elements is taken as 0.5 (here the

homogeneous matrix and matrix soft region have the same shear residual factor), the numerical

results may be suspect. The shear residual factor has hardly any effect on the strength of CC.

3.1.2 Tension test results for fiber-reinforced cement composites (FRCC)

The addition of fibers makes the internal material structure more complex. The real mechanical

behavior can be viewed when the FRCC contains large numbers of short fibers, but this can be

computationally prohibitive. Therefore, a simple numerical model with six fibers was analyzed. To

observe the initiation of cracks and their development, the element mesh of the fibers and interface

layer should be refined. Still, the number of elements for the matrix soft region remains 20% of all

matrix elements, and some valuable results can be obtained by a series of numerical analyses. As

the external load increases, elements with low tensile strength begin to crack, e.g. in step 5. Also,

some of the soft region elements and interface layer elements between fiber and matrix start to crack at the

Fig. 9 Cracking strain isosurfaces of fiber-reinforced cement composites
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same time. Upon further loading, more extensive cracks develop between fiber and matrix. Finally, the

growing cracks cause specimen rupture, and the failure planes are readily identified (Fig. 9).

Varying the softening modulus, several stress-strain curves of FRCC are obtained (Fig. 10(a)). The

legend in the brackets refers to the softening modulus of the homogeneous matrix, the softening

modulus of the matrix soft region, the shear residual factor, and the softening modulus of the

interface layer. The four stress-strain curves are similar to those of CC. In order to validate the fiber

effect on the macro-mechanical properties of composites, two stress-strain curves are selected to

compare FRCC with CC (Fig. 10(b)). In any case, adding fibers having high strength and high

modulus can improve the mechanical properties of cement composites. Of course, if large numbers

of fibers are mixed into matrix, the numerical simulation results will be found to be more correct.

Related tensile experiment data can be found in reference (Muralidhar 2004), although some

mechanical parameters (including matrix and soft region average failure strength, etc.) are different,

the numerical simulation results are very rational.

3.2 Compressive numerical simulations

3.2.1 Compression results of cement composites (CC)

Under external compressive load, for internal heterogeneity of CC, the stress state of each point in

the material becomes more complex. Tension and shear of the internal structure may occur. Double

failure criteria can be used to depict CC’s cracking. When tensile stress in a meso-element occurs,

the cracking strength criterion is adopted. If shear stress in the meso-element occurs, the von Mises

criterion is adopted. On the meso-scale, the von Mises criterion is accurate enough compared with

the Mohr-Coulomb criterion or the Drucker-Prager criterion. The cracking strength criterion is used

as the principal failure criterion. The von Mises criterion assumes that failure (yielding) occurs

when the octahedral shear stress reaches its critical value. Mathematically, the failure criterion can

be expressed in the following form

(2)

where J2 is the second invariant of the stress deviator tensor, k is the failure (yielding) stress in pure

shear. Now the yielding stresses for the matrix soft region and homogeneous matrix are separately

f J2( ) J2 k
2

– 0= =

Fig. 10 Tensile stress-strain curve of CC and FRCC
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taken as 4 MPa and 24 MPa, and the other parameters refer to previous data. With these data, a

compression test can be simulated. In step 62, computation is broken off because of rupture of CC

and the material element loses its strength completely.

Several representative curves for different softening moduli and shear residual factors are drawn

in Fig. 11. The legend in the brackets refers to the softening modulus of homogeneous matrix,

softening modulus of matrix soft region and their shear residual factor. It is easy to see that CC has

more distinct brittleness for a high softening modulus and low shear residual factor. In fact, when a

lower softening modulus is selected, no failure phenomenon is observed. 

Compared with the tensile stress-strain curves of Fig. 8(a), under compressive load CC’s

toughness is more obvious. So when analyzing the mechanical behavior of CC, selecting a lower

softening modulus is improper and incorrect.

3.2.2 Compression results of fiber-reinforced cement composites (FRCC)

In the previous analysis, a lower softening modulus may cause irrational results, thus all numerical

simulations for FRCC use a higher softening modulus. At the same time, two shear residual factor

values are used to compare its effect on the mechanical properties of FRCC. From the representative

cracking strain isosurfaces, when the external load is small, cracking only occurs in the matrix soft

region and interface layer between fiber and matrix. With increasing load, those cracks begin to

converge. Finally, the specimen loses its strength completely.

Actually, adding fibers has few effects on the strength of composites and a little effect on the

toughness of composites (Fig. 12). However, when the shear residual factor value takes 0.5, the

results are not credible. Therefore, when analyzing compression problems, a higher softening

modulus and lower shear residual factor value may lead to more reasonable results. Of course, all

numerical tests must agree with the corresponding experiments.

4. Conclusions

A concept called the soft region is introduced to simulate crack propagation in CC or FRCC.

Fig. 11 compressive stress-strain curve of CC Fig. 12 compressive stress-strain curve of CC and FRCC
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Special attention is paid to the application of the Monte Carlo sampling principle. An important

conclusion is that, in contrast to the nonlinear constitutive model, a simple elastic brittle constitutive

equation of the meso-elements can depict the macro-mechanical behaviors of the composites. When

the heterogeneity of each phase component is considered, the simulation becomes more credible.

Additional studies show that the MATLAB program can be used to produce the three-dimensional

graphic files. The files have been exported into the AUTOCAD program in the MATLAB handle

function. In terms of MSC.PATRAN, a three-dimensional finite element model of fibers randomly

distributed within cement composites has been implemented.

Under an external load the stress-strain curve descending branch is affected by two parameters

(softening modulus and shear residual factor). Tensile and compressive numerical tests are analyzed

with different corresponding parameters. It is clear that the composites display more brittleness in

tension, and a lower softening modulus is unfit for the compressive mode. At the same time, the

numerical simulations of FRCC show that high strength and high modulus fibers can increase the

composites’ tensile strength and improve their toughness.

To reduce the computational effort and complexity, the number of fibers or fiber volume in FRCC

used in this study was small. As more fibers are added, the same numerical method can be adopted.
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CM

Notations

f(σ) = probability density function

F(σ) = probability distribution function

σ = the failure strength

λ = the reciprocal of the scale parameter

α = the shape parameter

u = the pseudo-random number obeyed the uniformity distribution

ε = the integrate point strain

ε
co = the material strain consisting of elastic strain and plastic strain

ε
cr = the cracking strain

S = the stress in principal direction

e = the strain in principal direction

R = the converted matrix

Scr = the stress threshold value

ecr = the strain threshold value

θ = the direction angle

∆Si = the stress in cracking direction at the ith direction

∆ei
cr = the cracking strain at the ith direction

Esoft = the soft modulus

f(J2) = the failure criteria

J2 = the second invariants of the stress deviator tensor

k = the failure (yielding) stress in pure shear




