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Abstract. The paper presents simulations of the Brazilian test using two numerical models. Both
models are regularized in order to obtain results independent of discretization. The first one, called
gradient damage, is refined by additional averaging equation which contains gradient terms and an internal
length scale as localization limiter. In the second one, called viscoplastic consistency model, the yield
function depends on the viscoplastic strain rate. In this model regularization properties are governed by
the assumed strain rate. The two models are implemented in the FEAP finite element package and
compared in this paper. Parameter studies of the split test are performed in order to point out the features
of each model. 
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1. Introduction

In the paper we analyze the behaviour of two regularized numerical models in the so-called

Brazilian test. In laboratories this experimental test is used to establish the concrete tensile strength.

It is one of basic fracture tests in the major concrete standards. The concrete cylinder or prism is

subjected to a compressive vertical load through bearing strips in order to avoid multiple cracking

and crushing, see Fig. 1. The compression between the loading platens induces a perpendicular

tensile force in the middle of the specimen. Under the influence of compression primary and

secondary cracks can form (Rocco et al. 1999, Rodriguez-Ferran and Huerta 2001) and splitting

inside the specimen is observed. The splitting tensile strength  can be evaluated according to the

formula, see e.g. in (Chen and Chang 1978, Rocco et al. 2001) 

(1)

where Pmax is the maximum load recorded during the test, B and D are characteristic sizes of the

specimen. In the case of a cylinder – B is the width and D is the diameter.

In the numerical simulation, according to the experiment, strain localization is expected in the

vertical central zone of the specimen between load-transferring strips as is shown e.g. in (Feenstra

1993, Rodriguez-Ferran and Huerta 2001). The prismatic specimen was computed for example by

f t

s

f t

s 2Pmax

πBD
-------------=

* Corresponding author, Ph.D., E-mail: jpamin@L5.pk.edu.pl

DOI: http://dx.doi.org/10.12989/cac.2011.8.3.243



244 Adam Wosatko, Andrzej Winnicki and Jerzy Pamin

Lopez et al. (2008). The cylinder specimen is simulated here in plane strain conditions, but plane

stress (Winnicki et al. 2001) or 3D analyses (Ruiz et al. 2000) are also possible. We assume small

strains and static loading.

The paper is organized as follows. Section 2 contains a compact description of the gradient

enhancement for the scalar damage model (Peerlings et al. 1996). Apart from the nonlinear

constitutive relation an additional averaging equation is enclosed in the system of equations, hence

displacements and an averaged strain measure are interpolated. In Section 3 we summarize the

derivation of the viscoplastic consistency model. This theory proposed by Wang (1997) for metals is

developed here for concrete according to Winnicki (2007). It is assumed that the yield function can

expand or shrink depending on the actual viscoplastic strain rate. The Burzyn' ski-Hoffman  surface in

its isotropic form is selected as the yield surface and two internal variables can describe in a separate

way hardening/softening behaviour in compression and tension. In Section 4 we set together the

geometry and discretization of the Brazilian test, the general material data like Young’s modulus and

also the data for each model. The results of simulations are discussed in Section 5, in turn: for gradient

damage in Subsection 5.1, for viscoplastic consistency in Subsection 5.2 and finally a comparison of

these models is performed in Subsection 5.3. Conclusions are detailed in Section 6.

2. Gradient damage model

2.1 Constitutive relation

The simplest model of continuum damage mechanics which can describe elastic stiffness degradation in

quasi-brittle materials is scalar damage. This means that one damage measure ω, which grows

monotonically from 0 to 1 (Kachanov 1958), is a function of damage history parameter κd and

Fig. 1 Idea of Brazilian split test
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depends on the deformation of a body. For a material without any defect (the lack of damage) the

parameter ω equals to 0. For a material with a complete loss of stiffness (total damage) we have .

Considering the damage evolution we distinguish the actual body with strains ε and stresses σ and

its fictitious undamaged counterpart with stresses  and strains . The fictitious counterpart

represents the undamaged “skeleton” of the body, and the stresses  acting on it are called

effective. We adopt the postulate that the strains ε observed in the actual body and in its undamaged

representation  are equal (Lemaitre 1971, Simo and Ju 1987). Then, the real stress tensor σ and its

effective counterpart  are related by the above-mentioned parameter ω 

(2)

where

(3)

Here E is the elastic stiffness operator. It is assumed here that the elastic strain tensor  is equal to

the strain tensor ε when the standard elasto-damage model is considered, but the model can easily

be coupled with a plastic behaviour of the undamaged “skeleton”, cf. (de Borst et al. 1999). The so-

called damage stress  which describes the change in the stress state due to damage can be

defined as 

(4)

so Eq. (2) can also be written as follows

(5)

The strain equivalence is related with a loading function f d, also called damage activation

function, defined in the strain space

(6)

Here  is an equivalent strain measure. During the damage evolution the history parameter κd is

equal to the largest value of  reached in the loading history. The activation of damage obeys the

loading/unloading conditions written in the Kuhn-Tucker form

(7)

The equivalent strain measure  can be defined in different ways. In this paper we employ the

modified von Mises definition involving the first and second strain invariants,  and ,

respectively, (de Vree et al. 1995)

(8)

The loading functions for plane strain and plane stress conditions depending on Poisson’s ratio ν

are put together in Fig. 2. The parameter k is the ratio of compressive and tensile strength  and

, respectively: 

(9)

The elastic state envelopes for different values of k are depicted in Fig. 2(b).
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It is assumed that  permanently grows from damage threshold  to infinity and damage ω

asymptotically increases but never reaches 1. We define the damage growth function according to

Mazars and Pijaudier-Cabot (1989) and Peerlings et al. (1998)

(10)

The respective parameters η and α are responsible for the rate of softening and residual stress

which in one dimension tends to . The former parameter is thus connected with material

ductility and related to concrete fracture energy Gf. The latter one prevents the complete loss of

material stiffness and residual stresses remain only if , which leads to a more stable numerical

response.

If unloading is considered, irreversible strains are usually observed in concrete. In this case the

motivation for coupling the damage model with plasticity is substantial. A combination of a plasticity

theory formulated in the effective stress space with the above damage theory formulated in the

strain space is described for instance by de Borst et al. (1999). In addition, the constitutive relations

can incorporate a crack-closing projection operator which is important for cyclic loading and

extensive stress redistributions (see e.g. Pamin et al. 2003).

2.2 Gradient enhancement and finite elements

Following Peerlings et al. (1996), the damage evolution in the gradient-enhanced model is governed by

the following damage loading function

(11)

where the averaged (nonlocal) strain measure  satisfies the following differential equation

(12)

The parameter  has a unit of length squared and is related to an internal length scale l by
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Fig. 2 Sensitivity of modified von Mises function in strain space to values of ν and κ
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 (Askes et al. 2000). It is assumed here to be constant, although, with some modifications in

the formulation, it can be made a function of  or  (Geers 1997), which might be physically

relevant. 

Hereafter in this subsection Voigt’s notation is used. We consider a certain domain B, occupied by

the material body, with boundary . The weak form of equilibrium equations is the virtual work

equation

(13)

where the superscript T is the transpose symbol. In the above equation b is the body force vector

and t is the traction vector. The weak form of Eq. (12) is derived as follows. The variation of the

averaged strain measure , Green’s formula and the natural boundary condition  are

introduced to obtain

(14)

In the ensuing two-field formulation averaged strain measure  must be discretized in addition to

displacements u. These primary fields are interpolated in the following way

(15)

where N and h contain suitable shape functions. From the above interpolations the secondary fields

ε and  are computed

(16)

where , , L is a differential operator matrix. After discretization, applied also for

variations  and , Eqs. (13) and (14) must hold for any admissible δa and δe.

The boundary value problem is linearized, hence at nodal points the increments of the primary

fields from iteration i to iteration i + 1 are introduced according to the following decomposition

(17)

Analogically, at integration points we decompose secondary fields, for example the stress 

(18)

Hence the constitutive relation is written in its incremental version

(19)

The increment of damage ∆ω depends on the increment of averaged strain 

(20)

In the averaging equation the increment of equivalent strain measure  is computed from the

interpolated displacement increment ∆a

(21)

Finally, we rewrite Eqs. (13) and (14) in a matrix form, so that the gradient damage formulation can
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be written as the coupled matrix problem

(22)

The submatrices and vectors in Eq. (22) are like in the formulation presented by Peerlings et al.

(1996) 

(23)

(24)

(25)

(26)

In the absence of damage growth  and the equilibrium equations are uncoupled from the

averaging equation.

We have implemented the finite elements in the FEAP package (Taylor 2001) using three variants

of -continuous interpolation, which is sufficient. In the first option elements with analogical

linear interpolation (lin/lin) of both displacements  and averaged strain  are employed (elements

called Q4/4). In the second option quadratic interpolation of the displacements and linear of the

averaged strain is assumed (quad/lin), hence a different number of degrees of freedom at the corner

and midside nodes is required (elements Q8/4). For the last group of elements quadratic interpolation

(quad/quad) of both fundamental unknowns is introduced (elements Q8/8).

3. Burzyński-Hoffman viscoplasticity

The second employed model for concrete is developed within the viscoplasticity theory and follows the

idea proposed by Wang (1997) for metals, named “the consistency model”. It was shown that the

consistency model with constant viscoplastic modulus coincides with the model of Perzyna (1966)

in the case of the simplest form of the “over-stress” function (Winnicki 2001). A similar approach

was independently proposed by Kleiber (1998) and later developed by Heeres et al. (2002).

In the considered model the yield function can expand or shrink depending on the actual

viscoplastic strain rate. The stress state is forced to remain on the yield surface and the consistency

condition is invoked. There is no need for an additional equation defining a viscoplastic multiplier.

Therefore, this approach is very close to the classical rate independent plasticity. The established

numerical algorithms like the closest point projection or the cutting plane algorithm (Simo and

Hughes 1997) can easily be adapted.

The Burzyński-Hoffman  surface in its isotropic form is selected, since it has been successfully

employed in the analysis of concrete structures (Bićanić  et al. 1994, Pearce 1993). This yield surface

is of the form (cf. also Życzkowski 1981)
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(27)

where s is the deviatoric stress tensor.

It is assumed that two internal variables κc and κt exist which are both functions of the equivalent

viscoplastic strain. They describe in a separate way hardening/softening behaviour in compression and

tension, respectively. In addition, two more internal variables ηc and ηt determine the increase/decrease of

compressive and tensile strengths due to the actual rate of the equivalent viscoplastic strain. Thus,

the actual compressive and tensile strengths are

(28)

The rates of the internal variables depend on the current stress and the rates of internal variables κ

and η

(29)

(30)

In the above equations gc and gt are scalar functions of stress accounting for independent processes of

damage in compression and tension. In turn,  is defined as an equivalent viscoplastic strain (in the

rate form) assuming work hardening, and in a similar way η depends on first derivatives of the

viscoplastic strain (i.e. its rate is a function of second derivatives)

(31)

It should be noted that in the course of loading the yield surface can change its shape due to the

separate hardening/softening processes of the compressive and tensile strength, although the surface

remains convex at all times (see Fig. 3).

The strain rate is decomposed into its elastic and viscoplastic parts
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Fig. 3 The initial and softened yield surface (fc/ft = 10)
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(32)

and the generalized Hooke’s law is valid for the elastic part: 

(33)

The viscoplastic flow is defined similarly to the classical associated plasticity and to the Perzyna

model 

(34)

where the plastic flow tensor

(35)

where I is the unit tensor.

The difference between this model and the classical associated plasticity lies in the definition of

the yield surface which depends not only on the internal parameter κ but also on the additional one

η. Since the total value of the latter depends on the first derivatives of viscoplastic strains, the yield surface

is rate dependent and can change its size and shape according to the value of the viscoplastic strain rate -

i.e. expands for higher rates and shrinks for lower rates. As a result, this model can correctly predict

basic viscoplastic phenomena like creep and relaxation.

The functions gc and gt from Eqs. (29)-(30) are selected according to the experimental evidence

taking into account the influence of the damage process in compression on the concrete strength in

tension and, vice versa, the influence of the damage process in tension on the concrete strength in

compression. Hence, two very simple options are possible: 

• In the first approach (called further “isotropic”) it is assumed that damage is an isotropic

phenomenon

(36)

• In the second approach (called further “nonisotropic”) for a loading process with dominant

compressive stress  and  (i.e. the value of  is not affected by the process) and for a

loading process with dominant tensile stress  and . The following relation is introduced

(37)

The details of this idea can be found in (Winnicki, 2007).

The dependence of  on  and  is formulated in a general way as

(38)

where  is the initial compressive strength. Functions  and  are specified as piece-wise linear.

Example functions, based on experimental data from Kupfer (1973) and Suaris and Shah (1985), are

presented in Figs. 4(a) and 4(c), respectively. Similarly, the actual tensile strength is computed as

(39)

Again, the plots of functions Ht and St, based on experimental data performed by Reinhardt (1984) and
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of the loading process  is assumed causing the initial yield surface (elastic locus) to be contained

inside the bounding surface given by Eq. (27) with . In other words, in compression

the yield surface primarily expands and then shrinks whereas in tension it only shrinks.

In order to establish the viscoplastic multiplier  the consistency equation is used, which takes a form

(40)

Using Eqs. (29), (30), (31), (34) derivatives  can be expressed as

(41)

Where g is equal to
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where h is the classical generalized plastic modulus and s is the generalized viscoplastic modulus. Due

to the last term the consistency equation is no longer an algebraic equation for the viscoplastic

multiplier, but a differential equation of the first order, to be solved for an appropriate initial condition.

The detailed forms of the generalized plastic and viscoplastic moduli are

(44)

where

(45)

In turn, coefficients ac and at are

(46)

In the case when the functions Sc and St are constant, their derivatives vanish and Eq. (43) reduces

to the form known from the classical rate independent plasticity.

The fracture energies in uniaxial tension and compression for the case  can be

computed as

(47)

and 

(48)

where  and  are the values of viscoplastic strain  in tension and compression

associated with the maximum of functions Ht and Hc, respectively. Fracture energies gft and gfc

defined by Eqs. (47)-(48) are computed from the stress – viscoplastic strain curves and not from the

stress – displacement curves in the postcritical range (hence, they have dimensions Pa and not N/

m). In order to get fracture energies Gft and Gfc which are the actual material properties (fib 1999,

van Mier 1984, Vonk 1992) the respective fracture energies at the material point have to be

multiplied by the width of the localization zone. For the case , when the presented model

is not a localisation limiter, the width of the localisation zone usually coincides with one row of

finite elements. However, when viscous effects are active the width of localisation zone becomes

larger and can only be estimated a posteriori. Therefore, in this model a direct relationship between

gft and Gft (or between gfc and Gfc) does not exist.

In the case of statics the finite element algorithm for the Burzyński-Hoffman  viscoplastic model is

similar to the classical rate-independent plasticity and only the weak form of equilibrium equations

is discretized, see Eq. (13). 

4. Specification of numerical model

The geometry of the Brazilian tests is based on papers (Feenstra 1993, Winnicki et al. 2001). Due

to double symmetry only a quarter of the domain (with radius equal to 40 mm) is considered. The

general material data are presented in Table 1.

For gradient damage the load is applied to the specimen indirectly via a stiff platen (width -
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Table 1 General material data

Specimen: Nonlinear

Young’s modulus: Ec = 37700 MPa

Poisson’s ratio: ν = 0.15

Material model: Gradient damage

or Viscoplastic consistency

Platen: Elastic

Young’s modulus: Es =10 Ec

Poisson’s ratio: ν = 0.15

Table 2 Gradient damage – basic model data

Equivalent strain measure: Modified von Mises definition, k = 10

Damage growth function: Exponential softening, α = 0.99, η = 600

Fracture energy: Gf = 0.075 N/mm

Internal length scale: l = 6 mm, i.e. c = 180 mm2

Threshold: κo = 7.9576 × 10
−5

Table 3 Discretizations used in simulations

Coarse meshes

Name C12 (Fig. 5(a)) C20 C24

Used FE Q4/4 Q8/4 Q8/8

Interpolation lin/lin quad/lin quad/quad

Dofs/element 12 20 24

Nodes/sym.edge 17 17 17

Elems/sym.edge 16 8 8

Medium meshes

Name M12 M20 M24

Used Fe Q4/4 Q8/4 Q8/8

Interpolation lin/lin quad/lin quad/quad

Dofs/element 12 20 24

Nodes/sym.edge 33 33 33

Elems/sym.edge 32 16 16

Fine meshes

Name F12 F20 (Fig. 5(c)) F24 (Fig. 5(c))

Used FE Q4/4 Q8/4 Q8/8

Interpolation lin/lin quad/lin quad/quad

Dofs/element 12 20 24

Nodes/sym.edge 65 65 65

Elems/sym.edge 64 32 32



254 Adam Wosatko, Andrzej Winnicki and Jerzy Pamin

5 mm, height - 2.5 mm). The basic data for this model are in Table 2. The platen is perfectly

connected with the specimen. The load acts downwards at the top of the platen. The discretizations

applied in computations for gradient damage are listed in Table 3. Selected meshes are shown in

Fig. 5. The influence of mesh refinement is discussed in the next section. We also examine the

influence of internal length l and ductility parameter η. To compare, in Subsection 5.3, direct

loading without the platen is considered, see mesh M20wp in Fig. 5(b). In this case the load acts

downwards at the edge part equivalent to the platen.

Because of a snapback response the test is computed using the arc length method. In the

calculations selective integration is applied for lin/lin interpolation (FE Q4/4) and 2 × 2 integration

for the remaining elements.

Apart from general data given in Table 1, input parameters for the viscoplastic consistency model

are shown in Table 4. In Fig. 6 the piecewise linearized forms of functions  and St are

specified in order to set the relation between tension and compression during the loading process.

For this model we focus our analysis on the investigation of the influence of the material

parameters, so computations are performed using mainly the coarse mesh of four-noded elements

(corresponding to mesh C12). The medium mesh with eight-noded elements (like M20) is applied

only in the comparison in Subsection 5.3. The specimen is considered with or without the platen. In

Hc  Ht  Sc, ,

Fig. 5 Exemplary meshes
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Subsection 5.2, we first describe results which depend on the strain rate for the “isotropic” and

“nonisotropic” version of the model. A linear softening character of Hc and Ht is assumed, which is

called “standard” in Figs. 6(a) and 6(b). We take into account functions Sc and St shown in Fig. 6(c)

and Fig. 6(d), respectively. Next, we assume the “isotropic” model, , and analyze the response

of the modelled specimen for different curves Hc, where the local fracture energies can be calculated

according to Eq. (48) and is equal to either  kPa (standard case),  kPa or

 kPa. Together with these results we also show an analogical analysis for different

curves Ht, where from Eq. (47) the following local fracture energies can be computed:  kPa

(standard case),  kPa and  kPa. In Subsection 5.3 we confront the results

for this model in its “isotropic” version with those for gradient damage, assuming standard 

and .

5. Results of simulations

5.1 Gradient damage model

In the simulations the vertical displacement at the top of the platen on the symmetry axis is

measured, which grows with the applied loading. In Fig. 7 load-displacement diagrams for the used

St Sc 1≡=

gfc 225.0= 4 3⁄( )gfc 300.0=

2gfc 450.0=

gft 1.50=

10gft 15.0= 20gft 30.0=

Hc  Ht,
St Sc 1≡=

Table 4 Viscoplastic consistency – basic model data in specimen

Equivalent viscoplastic strain: Work hardening, Eq. (31)

Initial tensile strength:  MPa

Initial compressive strength:  MPa

Material curves: Fig. 6 

fc′ 3=

fc′ 30=

Fig. 6 Material functions for Burzyński-Hoffman viscoplasticity
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Fig. 7 Load-displacement diagrams for gradient damage – summary of used meshes

Fig. 8 Gradient damage – contour plots for mesh C12
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meshes are presented. We observe a snapback response which is connected with the splitting process. In

Fig. 7 two groups of diagrams are plotted. One group shows a sharper drop after a longer peak

phase. It is for the computations performed with all coarse meshes, and medium meshes M20 or

M24 (see Table 3). The second group of diagrams for all fine meshes and medium mesh M12 show

the response with a more distinct peak and the snapback is less pronounced. An explanation why

the solution for mesh M12 belongs to the second group can be found if we compare the mesh

density and especially integration point density for the meshes. In this respect the refinement for

mesh M12 is similar to meshes F20 and F24. Hence, an improvement of the approximation only slightly

influences the loading path. In the final stage, the loading paths converge to the same residual load

level.

The contour plots in Figs. 8-10 show the mesh independence of the results. We can notice the

failure mode associated with primary crack formation (Rocco et al. 1999, Rodriguez-Ferran and

Huerta 2001), i.e. a crack appears under the loading platen along the vertical symmetry axis. All the

plots are depicted for the final points of the loading paths. Apart from the splitting we observe a

concentration of strains in the area under the platen (see contour plots of the horizontal normal

Fig. 9 Gradient damage – contour plots for mesh M20
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Fig. 10 Gradient damage – contour plots for mesh F24

Fig. 11 Gradient damage, influence of internal length scale, diagrams
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Fig. 12 Gradient damage, influence of internal length scale, contour plots
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Fig. 13 Gradient damage, influence of ductility parameter, diagrams

Fig. 14 Gradient damage, influence of ductility parameter, deformations
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Fig. 15 Viscoplastic consistency, different load rates and relations of functions gc-gx-, diagrams

Fig. 16 Viscoplastic consistency, “isotropic” model, slow load rate, contour plots
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strain ε11). The concentration is induced just after the primary crack formation and it can depend on

the value of the internal length parameter.

The internal length parameter which is incorporated in the averaging Eq. (12) decides in the

Brazilian test whether or not and how the splitting phenomenon appears. The diagrams in Fig. 11

show that with a decreasing value of l the material becomes more brittle. All solutions are obtained

for mesh M20. When the parameter equals 3 mm the splitting phenomenon does not occur. It is

reflected in the contour plots (Fig. 12) and in the diagram with gradual softening. The loading path

for l equal to 12 mm first exhibits a moderate softening stage and then a snapback drop, in contrast

with the diagram for l = 6 mm. The higher the value of l, the more delayed the snapback is.

Moreover, if Figs. 9 and 12(d)-12(f) are confronted, it can be concluded that the localization zone

Fig. 17 Viscoplastic consistency, “isotropic” model, medium load rate, contour plots
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broadens together with the increase of the internal length scale. In the last case (l = 12 mm) the

concentration of strains in the area under the platen almost vanishes, as is depicted in Fig. 12(d).

For mesh M20 we also examine the influence of ductility parameter η. The larger the value of

this parameter is the smaller the value of fracture energy Gf is involved and the more brittle

response is observed. The diagrams in Fig. 13 show that below a limit value of ductility

parameter, which is between η = 600 and η = 800, a snapback and the splitting effect occur. The

deformations presented in Fig. 14 confirm the above observation. For cases η = 400 and η = 600

we can notice horizontal displacements along the vertical axis, which means that the split in the

middle is simulated. On the contrary, for η = 800 and η = 1200, when a more brittle material is

assumed, we observe deformations concentrated directly below the bearing strip and no split is

predicted.

Fig. 18 Viscoplastic consistency, “isotropic” model, fast load rate, contour plots
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5.2 Viscoplastic consistency model

All computations for the results presented in this subsection were performed using the four-noded

coarse mesh. We do not consider mesh sensitivity, but we will show that viscoplasticity is an

effective localization limiter, (see also e.g. Wang 1997). Firstly, Fig. 15 presents the structural

response for different loading rates, also taking into account the relation between functions gc and

gt, see Eqs. (36) and (37). In these cases the load is applied through the platen. Generally, load-

displacement diagrams for the “nonisotropic” model ( ) exhibit slightly lower peak loads than

for the “isotropic” model ( ), but the softening intensity after the peak is quite similar. Additionally,

the higher strain rates result in larger maximum loads and corresponding displacements. The

gc  gt≠
gc gt 1= =

Fig. 19 Viscoplastic consistency, “nonisotropic” model, slow load rate, contour plots
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postcritical part of the diagram is also less steep for a higher strain rate.

Figs. 16-21 present contour plots for both the total values of strain – horizontal component ,

vertical component ε22 and internal variables – κt and κc (which are equal for the “isotropic” model)

at the end of the loading process. We observe that the horizontal component of strain is highly

localised. Damage is localised in the narrow vertical zone in the middle of the specimen, forming a

wedge at the top under the platen. For higher strain rates the width of the localisation zone becomes

larger, which proves that the rate-dependence plays the role of localization limiter.

When the internal parameters κt and κc are different in the “nonisotropic” model, it is visible that

damage in compression (variable κc) at the end of loading process is more localised along the

vertical symmetry axis than damage in tension (variable κt), cf. for example Figs. 21(c) and 21(d). It

ε11

Fig. 20 Viscoplastic consistency, “nonisotropic” model, medium load rate, contour plots
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Fig. 21 Viscoplastic consistency, “nonisotropic” model, fast load rate, contour plots

Fig. 22 Viscoplastic consistency, influence of applied functions Hc and Ht, diagrams 
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seems surprising that the failure mechanism is connected with damage development in compression

and not in tension. This finding will be also confirmed in next paragraphs.

Now we show the results of computations, where the specimen is loaded without the platen. The

question whether the incorporation of the platen in the numerical model is necessary will be

discussed in the next section. However, we can point out here that the existence of the platen does

not change the results substantially. We also introduce , remembering that the localisation

zone then coincides with one row of finite elements and focusing our attention on the definition of

material functions Hc and Ht. In the load-displacement diagrams in Fig. 22 we notice that different

definitions of Ht have a negligibly small influence on the loading path. On the other hand, the

postcritical behaviour at the structural level depends on the assumed ductility in compression.

In Figs. 23-27 we depict the contour plots for the total values of strain (horizontal component ε11,

vertical component ε22) and internal variables . Both the total strain and internal parameters

St Sc 1≡=

κt κc=

Fig. 23 Viscoplastic consistency, standard case: gfc = 225.0 kPa, gft =1.50 kPa, contour plots
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represent highly localised damage in the form of a narrow vertical zone near the symmetry axis.

This is in agreement with the experimentally observed mechanism of failure. We can also see that a

wedge forms under the loaded area, which also compares well with experiments. A larger value of

the fracture energy in compression gfc (cf. Fig. 25) results in a more pronounced damage zone at the

top of the specimen. On the other hand, the change in the value of gft has practically no influence

on the obtained patterns (see e.g. Fig. 27) in comparison to the standard case (Fig. 23). Hence, the

contour plots confirm that different definitions of Hc influence the concrete behaviour simulated in

this test, whereas the change of Ht does not.

Fig. 24 Viscoplastic consistency, case with  (300.0 kPa) and gft =1.50 kPa, contour plots
4

3
---gfc
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5.3 Comparison of models

In Figs. 28 and 29 we compare load-displacement diagrams for the two considered numerical

models and additionally different platen representations. The data for gradient damage are shown in

Tables 1 and 2. Tables 1 and 4 summarize the data for the viscoplastic consistency model, material

curves Hc and Ht are like for the standard case from Figs. 6(a) and 6(b). We also assume .

The diagrams for the coarse mesh with four-noded elements, which corresponds to mesh C12 (see

Table 3 and Fig. 5(a)), are depicted in Fig. 28. To confront these results, we also perform

computations for eight-noded medium mesh, which corresponds to mesh M20 (see Table 3 and Fig.

5(b)). The loading paths for this mesh are presented in Fig. 29.

Considering the presence of the platen in the numerical model, the load-displacement paths run

very closely to each other, although the cases without the platen exhibit a slightly smaller initial

St Sc 1≡=

Fig. 25 Viscoplastic consistency, case with 2gfc (450.0 kPa) and gft = 1.50 kPa, contour plots
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stiffness and less pronounced snapback. For gradient damage we obtain snapback response after a

similar peak load level and then a slow convergence to the same residual load level, while for

Burzyński-Hoffman  viscoplasticity the loading paths reach the peak point, drop until the snapback

effect and finally computations diverge at some load level, even though the consistent tangent

matrix was used (details of the consistent tangent matrix formulation are given in Winnicki 2007).

We notice that the carrying capacity is about 20 per cent larger for viscoplastic consistency in

comparison to gradient damage. 

The contour plots in Figs. 30 and 31 are produced for the gradient damage model and the

configuration without the platen. If we confront them with contour plots shown in Figs. 8 and 9 we

can notice that the incorporation of the platen is insignificant.

A similar observation is made for Burzyński-Hoffman  viscoplasticity, although here when the

platen is considered the wedge formation is slightly more clear (compare Fig. 23 with Fig. 32 and

Fig. 33 with Fig. 34).

Fig. 26 Viscoplastic consistency, case with gfc = 225.0 kPa, and 10gft (15.0 kPa), contour plots
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Fig. 27 Viscoplastic consistency, case with gfc = 225.0 kPa, and 20gft (30.3 kPa), contour plots

Fig. 28 Comparison of models, results for four-noded coarse mesh (C12), diagrams
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Fig. 29 Comparison of models, results for eight-noded medium mesh (M20), diagrams

Fig. 30 Gradient damage, contour plots for mesh C12wp without platen
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The character of the splitting process is analogical for the two models, however the final

localization patterns are different for each of them. We can see the primary crack formation near the

vertical symmetry axis, but for the viscoplastic consistency model the wedge also occurs. The

simulated crack patterns for both models are comparable to those observed in experiments, although

no secondary cracks are predicted by either of the models. For the gradient damage model the

strong damage zone expansion which is a feature of the model with constant parameter c prevents

stress build-up at a distance from the primary crack, required to initiate another crack. For the

Hoffman viscoplasticity model the localization zone is much narrower, but the wedge pattern

predicted excludes an alternative pattern with two parallel cracks.

Fig. 31 Gradient damage, contour plots for mesh M20wp without platen
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6. Conclusions

Different aspects of numerical simulation of the Brazilian split test have been analyzed using two

material models equipped with localization limiters. Realistic simulation results have been obtained:

larger internal length and loading rate result in higher peak load and model ductility.

For the gradient damage model the discretization insensitivity has been demonstrated, the influence of

the internal length and the ductility parameter in the damage growth function have been analyzed. It

has been observed that for a low value of internal length and fracture energy no split is observed

and the damage localizes directly under the platen.

For the viscoplastic consistency model the regularization effect has also been shown. The strain

Fig. 32 Viscoplastic consistency, contour plots for four-noded coarse mesh with platen
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rate sensitivity has been examined for two versions of the model: with one internal variable for

compression and tension or independent ones for the two stress states. It has turned out that the

response is strongly sensitive to the assumed material ductility in compression.

Both models are capable of representing different behaviour in tension and compression. For the

viscoplastic Hoffman model it is possible to link the model behaviour in tension and compression

directly with experiments. To achieve this in the damage model its isotropic (and not scalar) version

with two damage parameters degrading independently the tensile and compressive stiffnesses (cf.

Mazars and Pijaudier-Cabot 1989, Comi 2001) would have to be considered.

Finally, in Section 5.3 a comparison of the response provided by the two constitutive models is

shown for the models with and without the loading platen, the influence of which on the results is

minor. It is noticed that a different localized strain distribution is simulated by the models,

especially in the zone under the applied load: the gradient model predicts a vertical damage zone

Fig. 33 Viscoplastic consistency, contour plots for eight-noded medium mesh without platen
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under the platen (its width is determined by the internal length) while the viscoplastic model

reproduces a band of localized equivalent strain in the centre of the specimen, which further inclines

to form a wedge next to the load application area. No secondary cracks are simulated.
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