
Computers and Concrete, Vol. 7, No. 6 (2010) 511-522 511

Quantification of void shape in cemented materials

Okan Önal*, Gürkan Özden and Burak Felekoğlu
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Abstract. A color based segmentation procedure and a modified signature technique have been applied to the
detection and analyses of complicated void shapes in cemented materials. The gray-scale segmentation
and available signature methods were found to be inefficient especially for the analyses of complicated
void shapes. The applicability of the developed methodology has been demonstrated on artificially
prepared cemented materials made of self compacted concrete material. In order to characterize the void
shapes in the investigated sample images, two new shape parameters called as coefficients of inclusion
and exclusion have been proposed. When compared with the traditional use of the signature method, it
was found that the methodology followed herein would better characterize complicated void shapes. The
methodology followed in this study may be applied to the analysis of complicated void shapes that are
often encountered in other cementitious materials such as clays and rocks.
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1. Introduction

The vast majority of research on the determination of skeleton and fabric characteristics of

cohesive materials with grains and voids involved study of grain characteristics. The literature is

rich in research papers about size, shape, orientation and spatial distribution of grains either in

sliced sections of cohesive materials or discrete aggregate samples using digital image analysis

methods. Research studies on void characteristics, however, have been comparatively limited. Void

distribution characteristics of soils, bituminous, concrete and rock materials were studied using

digital image analysis methods in the past. Crabtree et al. (1984) have successfully segmented the

voids in thin sections of blue dyed epoxy impregnated rock material using color segmentation

technique. Masad et al. (1999) have studied the structural characterization of asphalt concrete using

both X-ray computed tomography and conventional investigation of sliced sections via digital image

processing methods. The segmentation of voids has been achieved by gray-scale segmentation

technique, where a white mortar has been used to provide enough contrast while identifying air

voids. Frost and Kuo (1996) have automated the Oda’s methodology (1972) to determine the local

void ratio of granular material in 2D sections using high level image processing techniques.

Similarly, Bhatia and Soliman (1990) have determined the frequency distribution of void ratio for

three granular materials having different grain characteristics using image analyzer. Obaidat et al.

(1998) used spatial filters and image processing operations of a semi automated computer-vision

system to quantify the percentage of voids in mineral aggregates of bituminous mixtures. Soroushian et al.

(2003) have developed specimen preparation and image processing techniques focusing on concrete
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micro cracks and voids for use in automated quantitative micro structural investigation of concrete.

He utilized epoxy impregnation so that the gray-scale segmentation of the pores and cracks could be

made in the scanning electron microscopy images. Ozturk and Baradan (2008) have obtained

mathematical models to determine the relationship between pore structure of cement mortars and

compressive strength using gray scale segmentation technique applied on the scanning electron

microscope images. The above mentioned studies, however, do not cover the shape characteristics

of the voids. Zhang et al. (2005) have investigated the roundness ratio parameters, a basic shape

parameter of the air void detected using gray-scale segmentation technique. The same shape

parameter for voids has been employed for foam concrete by Nambiar and Ramamurthy (2006). 

This study aimed spatial distribution and shape characterization of voids in cemented materials

using color segmentation and signature methods. The color segmentation has been found very

beneficial while separating voids from the rest of the image. Trials for segmenting the voids in

gray-scale segmentation were not proved to be efficient since either void shapes could not be

captured satisfactorily or the voids and small objects in the cohesive matrix were not detected

during threshold stages. The signature technique as applied in this study is similar to the form index

parameter proposed by Masad et al. (2001). However, it has been modified in order to adapt it to

the analyses of highly irregular void shapes. The signature algorithm as applied in this study

enabled definition of new shape parameters that were proved to be useful in characterization of

individual voids. 

2. Materials

In order to demonstrate applicability of void detection and analysis algorithms, two specimens

were cast using basalt coarse aggregate, river sand and ordinary Portland cement and sliced horizontally

into 12 pieces. One of these specimens served as the control sample where proportioning of the

mixture has been made in such a manner that minimum segregation is allowed to take place along

the specimen length. The other specimen, on the other hand, has been artificially segregated by

arranging mixture properties. This was made since it was noticed in authors’ previous experiences

that void shapes were considerably different and complicated in segregated self compacting concrete

samples. Since the self-compacting concrete has the viscosity up to 10 times than that of ordinary

concrete, it is possible to cast without vibration and to maintain its fluidity without segregation of

material. Therefore, complicated void shapes which cause at mixing and casting of concrete remain

in the concrete mixture. The image acquisition system employed throughout the study is a visual

inspection unit with a USB connection to a desktop computer. Details of imaging specimens and the

image acquisition system are given in the following.

2.1 Sample preparation

Two cylindrical specimens, 10 cm in diameter and 60 cm in height, were cast using ordinary

Portland cement serving as the cementitious material. The well-known powder-type mix design

method of self-compacting concrete (SCC) (Okamura and Ouchi 1999) has been applied to the

design and production of the specimen material. In order to increase the powder amount of the mix,

a C-type fly ash and limestone powder were used. Characteristics of the self-compacting mix

proportions for the two specimens are given in Table 1. One should note that proportioning of self-
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compacting mixtures was the same except the admixture, a polycarboxylate type super plasticizer,

of which proportion has been set as 3.3% and 10% of the cement weight in order to produce non-

segregating and artificially segregated mixtures, respectively.

Once cast, samples were cured in lime-saturated water for 90 days. Following the curing period,

samples were horizontally sliced into 12 pieces using a pit saw. According to Hilliard (1968) when a

limited number of uniformly distributed test planes is cut parallel, the expected value of the area

fraction of voids on test planes is an unbiased estimate of the volume fraction of voids of the

specimen. In order to highlight voids on slice surfaces, sections have been plastered using jointing

mortar and than sandpapered until the section surface reappeared. In this manner, voids have been

filled with yellow mortar, which can be detected by means of color segmentation techniques.

2.2 Image acquisition system

Since the success of digital image processing operations greatly depends on the quality of the

Table 1 SCC mix proportions

Material

Proportion

By weight per cubic meter, 
kg

By volume per cubic 
meter, l

Cement 360 114

Water 180 180

Inert filler (limestone) 190 74

Fly ash 140 62

Sand 740 285

Coarse aggregate 720 267

Air content - 10

Admixture 12-36 10.9-32.7

Fig. 1 Visual inspection unit
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captured images and the illumination conditions, a visual inspection unit housing a high precision

digital camera (Canon EOS 350D), EF-S 18-55 mm Lens and three florescence light sources has

been build for the acquisition of the specimen images as shown in Fig. 1. The visual inspection unit

ensured constant illumination for the image acquisition. Moreover, shutter speed and aperture

combination of the camera was kept the same for each captured image. Therefore, contrast,

brightness and saturation parameters of the captured images varied in a narrow band, which

enhanced the results of the segmentation techniques. 

3. Image acquisition

The image acquisition was performed by remote shooting capability of the camera’s software. The

camera was controlled by the computer via USB cable connection so that a fully insulated area

from the ambiance illumination was obtained during image capturing. Since both the gray-scale and

color segmentation techniques were employed during image processing of an input image in the

study, the aperture and shutter speed combination of the camera were set as F 5.6 - 1/13 s in order

to obtain the best possible contrast and color saturation balance. The images were captured with a

resolution of 3456×2304 pixels creating a field view of 182×122 mm and were directly transferred

to the computer.

4. Image processing

A complete analysis of a specimen image including voids, grains and cohesive matrix requires use

of both gray-scale and color segmentation. Gray-scale and color segmentation algorithms were

coded using a technical computing language (Mathworks 2005) while generating the script files

employed in this study. Aggregate grains were subject to gray-scale segmentation while determining

the state of segregation of the SCC sample which was intentionally cast with a soft cohesive matrix.

The images have been transformed from RGB format into gray scale, in order to apply gray scale

segmentation technique. A proper threshold value has been calculated using Otsu (1979) methodology.

The gray scale images have been converted into binary images where the two levels are assigned to

pixels that are below or above the specified threshold value. The color based segmentation,

however, was utilized for the detection of voids within the specimens. The extracted features of the

images such as grains and voids were investigated by the image analysis functions of an image

processing toolbox for the determination of the spatial distribution and shape characteristics. On the

other hand, it was necessary to develop a specific script code for the extraction of the digital

signatures of the voids and analysis of irregular void shapes. 

4.1 Color segmentation

Color segmentation has been performed using L*a*b* color space (a coordinate system and a

subspace within that system where each color is represented by a single point) for the determination

of voids in 2D sections. The L*a*b* color space model (Robertson 1997) has been introduced as a

device independent color model enabling quantification of visual differences in any digitized image

since influence of illumination conditions could be easily normalized in this space by tracing any
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deviations in lighting conditions in L* layer. The L*a*b color space consists of the luminosity ‘L*’

or brightness layer, the chromaticity layer ‘a*’ indicating the location of the color along the red-

green axis, and the chromaticity layer ‘b*’ indicating the location where the color falls along the

blue-yellow axis (Fig. 2). During color segmentation, therefore, captured images were transformed

into L*a*b* space firstly.

It has been necessary to define only specific colors in the original image so that color segmentation

could be performed satisfactorily without increasing computational effort and complexity of the

algorithm. Four specific colors were selected in the slices of the specimens for this purpose. The

selection has been made visually depending on the appearance of the original image. Two tones of

yellow colors were selected for the voids, in order to avoid erroneous segmentation, since color

transition from the voids to the cohesive matrix in captured images takes place gradually. The grain

objects and the cohesive matrix, on the other hand, were related to the black and gray color,

respectively. The average a*b* values for each color were calculated in the L*a*b* color space for

each selected color. Color classification is made based on the closest Euclidian distance of each

pixel to these average values in color space (Fig. 2). The classified pixels have been stored as

different layers in a matrix. Following color segmentation, two tones of the yellow layers that were

detected in the images have been merged together and transformed to binary form while generating

the final image. The flow chart diagram of the color segmentation process for void detection is

given in Fig. 3.

5. Image analysis

The image segmentation (i.e. segmented voids in Fig. 3(e)) is followed by the characterization of

the regions. A region map, where labels are assigned to pixels has been generated using the eight

adjacency pixel relationship. In this manner, a new matrix carrying label information is formed so

that quantitative information about the objects could be obtained examining their properties in this

Fig. 2 L*a*b* color space model in color segmentation
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matrix. For instance the area, centroid and circumference of the objects in the region map have been

extracted using the Matlab image processing toolbox functions that enable calculation of the area

ratio and spatial distribution of the grains and voids. Moreover, the characteristics of the voids have

been numerically expressed using the roundness parameter, R, which is defined as R = (4⋅π⋅area)/

(perimeter)2 where area and perimeter are given in pixels for each void and the eccentricity

parameter, which is defined with respect to the axes of an ellipse whose second moment is equal to

that of the shape using the below equation

(1)

One can notice in the above given equation that the ellipse parameter varies between 0 and 1.

e 1
b
2

a
2

-----–=

Fig. 3 Image processing flow chart of void detection by color segmentation

Table 2 Shape characteristics of typical void images

 Shape

Roundness ratio (Rr) 0.810 0.760 0.180 0.330 0.260

Eccentricity(e) 0.350 0.630 0.640 0.820 0.920

Coefficient of inclusion (ci) 0.046 0.107 0.327 0.184 0.392

Coefficient of exclusion (ce) 0.045 0.087 0.243 0.366 0.590

ce− ci -0.001 -0.020 -0.084 0.182 0.189

ce + ci 0.091 0.107 0.570 0.550 0.982
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Values of 0 and 1 define two degenerate cases; an ellipse whose eccentricity is 0 being a circle and

an ellipse whose eccentricity is 1 being a line. 

The eccentricity values of the void shapes in non-segregated and segregated samples are given in

Table 2. The eccentricities for the void shapes in the segregated sample converge to unity, where the

same parameters for the circular voids decrease depending on the degree of elongation. The

roundness parameter has been computed for void shapes in the segregated and non-segregated

sample images. A sample image for the illustration of voids in segregated and non-segregated is

shown in Fig. 4 where some portion of the voids in a slice is given. It can be noticed in Table 2

that the roundness ratio converges to unity for a perfectly circular void and diverges from unity

depending on the distortion of the void shape. The same parameter has been used for void analyses

by Lange et al. (1994) and Zhang et al. (2005).

In the segregated sample, the void shapes are more irregular when compared with those in the

non-segregated one, and the roundness ratio parameter is not sufficient to completely characterize a

void shape alone as one can notice in Table 2. The same is also valid for the eccentricity parameter.

In order to provide supplementary tools, additional parameters such as the coefficient of inclusion,

ci, and the coefficient of exclusion, ce, can be defined.

The coefficients of inclusion and exclusion are defined by evaluating the signature of the void

shape with respect to an equivalent circle of which area is equal to that of the void. The circle is

positioned at the centroid of the void being analyzed (Fig. 5(a)). The evaluation process starts by

assigning a specific value to each border pixel. This is performed by taking the difference between

the Euclidean distance of a pixel, dp, which is defined as the distance from the border of the void

shape to the center of the equivalent circle and the radius of the equivalent circle, re. This value is

later normalized with respect to the radius of the equivalent circle yielding the ordinate of the

signature of the void as given in Eq. (2) and shown in Fig. 5(b). The abscissa of this figure is set as

the number of pixels along the void shape border as explained in the following.

Fig. 4 Void shapes in (a) non-segregated and (b) segregated specimens
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(2)

The coefficient of exclusion is described as the ratio of the sum of the positive values of δp to the

number of positive valued ordinates of the signature. Namely, this procedure gives the average of

the positive side of the signature. The same is also valid for the negative side resulting in the

calculation of the coefficient of inclusion. The methodology followed here to obtain the signature of

the void shape differs from its predecessors (Masad et al. 2001) by using the number of pixels, Np,

along the perimeter as the abscissa of the signature function instead of angle increments during

scanning of the shape. Such a methodology has been found necessary for complete evaluation of the

irregularly shaped voids since the angular increment method has failed to detect complicated border

shapes. This fact can be better demonstrated by comparing the coefficients of exclusion and

inclusion that were computed using both methods. The angular scanning method yielded 0.203 and

0.249 for exclusion and inclusion coefficients, respectively. The perimeter method, on the other

hand, resulted in 0.251 and 0.240 for the same parameters. The difference between these methods is

due to the presence of shaded areas left untouched during the angular scanning procedure as

illustrated in Figs. 5(a) and 5(b).

6. Results and discussions

Since one of the artificially prepared samples was intentionally segregated by means of additives,

image analysis algorithms were expected to capture non-uniform grain and void distribution along

sample length. This aspect of the study is shown in Fig. 6 where digital images of the upper faces

of the slices along sample length are given. Non-uniform grain and void distributions of the

segregated sample are visible in Figs. 6(b) and 6(d), respectively. Please note that the fourth section

δ
p

d
p

r
e

–

r
e

-------------=

Fig. 5 (a) The equivalent circle, (b) digital signature of the void shape using the perimeter method
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from the top have not been captured, since the excessive segregation of the concrete. The other

sample, on the other hand, exhibits quite uniform distribution since the cohesive matrix of this

sample was able to provide enough resistance to avoid segregation (Figs. 6(a) and 6(c)). Porosity

values for each specimen section have been computed using the binary images resulted from the

color segmentation process. The variation of the ratio of the total void area in a section to the total

area of this section along the specimen length has been presented as porosity values in Fig. 7 where

random distribution of the porosity parameter in the segregated sample is remarkable.

The cohesive matrix characteristics have an influence on the void shape as noted in the previous

sections. A closer look to the slice images revealed that voids of the segregated sample are more

rounded compared with those of the segregated sample. The shape characteristics that are defined in

the previous section for void images can effectively describe attributes of a void when they are used

in combination. For instance, it can be noticed that the roundness parameter in Table 2 may be

sufficient while defining a round or nearly round void shape. However, it is not possible to handle

complicated void shapes using either the roundness or the eccentricity parameter alone. The

eccentricity parameter is a common way of definition of the elongation characteristic of any shape

in image processing. It is notable in Table 2 that the orientation of the second void shape from left

Fig. 6 (a) Grain distribution for the non-segregated specimen, (b) grain distribution for the segregated specimen, (c)
void distribution for the non-segregated specimen, (d) void distribution for the segregated specimen
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can be captured by the help of the eccentricity parameter, which is considerably larger than that of

its left neighbor. On the other hand, the roundness and eccentricity parameters do not yield enough

information about the third and following voids from the left in Table 2. The third image, for

Fig. 7 Porosity variation along specimen length

Fig. 8 (a) The difference and (b) the sum of the coefficients of exclusion and inclusion
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instance, has the highest perimeter length with respect to its area and there are gaps inclusive with

respect to the overall shape of the void. This shape can be quite effectively defined by the help of

the coefficient of inclusion, the coefficient of exclusion and the difference of these two parameters.

The high inclusion coefficient means that the length of the perimeter remained inside the equivalent

circle is a large value. The difference between the coefficient of exclusion and the coefficient of

inclusion tells that the shape is an inclusive one with large gaps inside the equivalent circle. The

low value of the roundness ratio parameter cannot describe the inclusive feature of this shape since

its absolute value describes a highly elongated shape which is not the case. It is not possible to

acquire an idea about the actual shape of this void during an automated image analysis operation by

only using the roundness ratio and the eccentricity parameters.

The sum of inclusion and exclusion parameters (ce+ci) is a measure for the severity of a distorted

image with respect to an ideal circle. The value of (ce−ci) better describes the actual shape of a void

since its negative and positive values tell that the void has either an inclusive or an exclusive shape.

A ce−ci value very close to zero means that the shape is nearly a circle (the first void in Table 2). A

highly negative value tells that the shape has large gaps inside the equivalent circle (the third void).

A highly positive value, on the other hand, corresponds to an elongated shape void. A second level

differentiation the fourth and fifth voids can be made by considering the value of (ce+ci).

The mean values of the difference and sum of the coefficients of inclusion and exclusion have

been calculated for each slice image as presented in Fig. 8. The void shapes, appearing more

elongated in the segregated sample, are classified as exclusive shapes. The values of the ce−ci

parameter in the slices of the segregated sample are higher when compared with the non-segregated

one (Fig. 8(a)). The intensity of the distortion of the voids in the segregated sample is shown in Fig.

8(b). One can notice in both figures that the coefficient of inclusion and exclusion can effectively

characterize void shapes in the investigated samples.

7. Conclusions

It has been noticed that color segmentation can be effectively used if several different objects with

varying colors exist in the original image. The color segmentation process as employed in this study

generated several object layers for each color group in the image, which enabled individual analyses

of the desired object group in the image. In order to characterize the void shapes in the investigated

sample images, two new shape parameters called as coefficients of inclusion and exclusion have

been developed. In addition to the well known roundness ratio and eccentricity shape parameters,

these two parameters along with their sum and difference values have been used in the characterization

of the highly irregular void shapes. The developed parameters may also have potential use as

supplementary features in the neural network applications or object recognition processes in the

digital image analysis applications. The methodology followed in this study may be applied to the

analysis of complicated void shapes that are often encountered in other cementitious materials such

as clays and rocks.
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an image analyzer”, Soils Found.,  30(1), 1-16.
Crabtree, S.J., Ehrlich, Jr. R. and Prince, C. (1984), “Evaluation of strategies for segmentations of reservoir

rocks”, Comput. Vis. Graphics Image Proc.,  28(1), 1-18.
Frost, J.D. and Kuo, C.Y. (1996), “Automated determination of the distribution of local void ratio from digital

images”, Geotech. Test. J., 19(2) 107-117.
Hilliard, J.E. (1968), Measurement of volume in volume, quantitative microscopy, R.T. DeHoff and F.N. Rhines,

eds, McGraw-Hill, New York.
Lange, D.A., Jennings, H.M. and Shah S.P. (1994), “Image analysis techniques for characterization of pore

structure of cement-based materials”, Cement Concrete Res., 24(5), 841-853.
Masad, E., Muhunthan, B., Shashisdbar, N. and Harman, T. (1999), “Internal structure characterization of asphalt

concrete using image analysis”, J. Comput. Civil Eng., 13(2), 88-95. 
Masad, E., Olcott, D., White, T. and Tashman, L. (2001), “Correlation of fine aggregate imaging shape indices

with asphalt mixture performance”, Transport. Res. Record., 1757, 148-156. 
Mathworks (2005), MATLAB technical computing language version 7 and image analysis toolbox version 4.2,

Natick, MA.
Nambiar, E.K.K. and Ramamurthy, K. (2007), “Air-void characterization of foam concrete”, Cement Concrete

Res., 37, 221-230.
Obaidat, M.T., AI-Masaeid, H.R., Gharaybeh, F. and Khedaywi, T.S. (1998), “An innovative digital image

analysis approach to quantify the percentage of voids in mineral aggregates of bituminous mixtures”, Can. J.
Civil Eng., 25(6), 1041-1049.

Oda, M. (1972), “Initial fabrics and their relations to mechanical properties of granular materials”, Soils Found.,
12(1), 17-36. 

Okamura, H. and Ouchi, M. (1999), “Self-compacting concrete, development, present use and future”, Proceedings of
the First International RILEM Symposium on Self-Compacting Concrete, Ed.: Rilem Publications s.a.r.l.,
Stockholm, 3-14.

Otsu, N. (1979), “A threshold selection method from gray-level histograms”, IEEE T. Syst. Man Cy., 9(1), 62-66.
Ozturk, A.U. and Baradan, B. (2008), “A comparison study of porosity and compressive strength mathematical

models with image analysis”, Comput. Mater. Sci., 43(4), 974-979.
Robertson, A.R. (1997), “The CIE 1976 color difference formulae”, Color Res. Appl.,  2, 7-11.
Soroushian, P., Elzafraney, M. and Nossoni, A. (2003), “Specimen preparation and image processing and analysis

techniques for automated quantification of concrete micro cracks and voids”, Cement Concrete Res., 33(12),
1949-1962.

Zhang Z., Ansari, F. and Vitillo, N. (2005), “Automated determination of entrained air-void parameters in
hardened concrete”, ACI Mater. J., 102(1), 42-48. 

CC




