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Abstract. In this paper, we present a new finite Timoshenko beam element with a model for ultimate
load computation of reinforced concrete frames. The proposed model combines the descriptions of the
diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or
collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to
identify the parameters for stress-resultant-based macro model, which is used to described the behavior of
the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with
embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode.
A special attention is paid to the influence of the axial force on the bending moment - rotation response,
especially for the columns behavior computation.

Keywords: reinforced concrete frames;  macro model; embedded discontinuities.

1. Introduction

The standard design procedure of reinforced concrete frame structures starts with linear analysis to

obtain the corresponding diagrams of stress resultants (bending moment, shear and axial force),

followed by the ultimate analysis of each cross section. The main disadvantage of such a design

procedure concerns the (highly) statically indeterminate frames, where the failure of each beam or

column would not imply the complete failure of the structure, but would lead to a significant stress

resultant redistribution with respect to the result obtained by linear analysis.

The alternative is the performance based design procedure where the behavior until complete

failure of beam-column and frames imposes to consider so-called plastic hinges corresponding to

the zones where plasticity and/ or damage localizes. Engineering structures are usually statically

indeterminate, so that the total failure of one member would affect the global response of the

structure but it would not lead to a complete loss of the structural integrity. Moreover, being capable

of describing the softening response of the members of one particular structure can provide an

estimate of the residual life of a partially damaged structure. Such a procedure can also help to

provide a more detailed crack description, which is needed to make decisions about the maintenance
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and repairs.

In that spirit, the Eurocode 2 allows to use a concrete behavior law with a beginning of softening

branch instead of the classical parabolic-rectangle without softening curve. But it doesn't warn to the

use of softening laws in finite element method, where localizations of strain can prevent the

objectivity of the result.

A lot of research works are concerned by the problem of computation with plastic hinges

appearance in the reinforced-concrete frame structures (see for example recent papers (Anthoine et

al. 1997, Cipollina et al. 1995, Florez-Lopez 1998, Marante et al. 2004, Marante and Florez-Lopez

2003, Rajasankar et al. 2009). Many works focus on the evaluation of the ultimate load but only a

few works are concerned by the evaluation of the residual life, especially for reinforced concrete

beam. Some authors study the softening in plastic hinges (Armero and Ehrlich 2006, Ehrlich and

Armero 2005, Jirasek 1997, Nanakorn 2004) and sometimes especially in presence of axial force

(Zingales and Elishako 2000). 

We developed a stress-resultant marco model for reinforced concrete beams and columns (Pham

2009). This model is a Timoshenko beam element with an embedded rotation discontinuity in its

middle. A continuous moment curvature hardening behavior law is used in the regular part overall

the element and a singular softening moment rotation law is used on the discontinuity. Treated in the

incompatible mode framework, this finite energy approach avoids the localization problems

encountered when dealing with softening behavior laws. The parameters of the stress resultant

macro model are identified from computations at a more detailed level with multi-fiber beam

elements, especially developed for that, where an enhancement is introduced in the fibers to model

the softening of materials (concrete and steel). 

In Section 2, we present the new Timoshenko beam element. In Section 3, we present the

identification procedure, taking into account the coupling between axial force and bending moment.

Finally, in Section 4, we present several examples to show the precision and the robustness of the

macro-element.

2. Timoshenko beam element with embedded rotation discontinuity

In a Timoshenko beam finite element of length le, the classical displacement field, based on linear

interpolation functions N1(x) = 1−  and N2(x) = , is written as

(1)

where

(2)

and

(3)

u(x) and v(x) are the axial and transversal displacements of the mean line of the beam element
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and θ(x) the rotation of its cross sections. Ui Vi and θi are the nodal displacements. With the purpose

of embedding the rotation discontinuity, the incompatible mode method (Ibrahimbegovic 2009,

Ibrahimbegovic and Wilson 1991) is used to enrich the classical rotational displacement interpolation with

a jump of rotation α. The rotation can thus be re-written as

(4)

with

(5)

HΓ is the Heanside function and xc the position of the discontinuity, the middle of the element in

our case (see Fig. 1D).

In the spirit of incompatible mode method, (see Ibrahimbegovic 2009, Ibrahimbegovic and

Brancherie 2003, Ibrahimbegovic and Wilson 1991), the added part N3(x)α is used only for the

construction of enrichment in the curvature interpolation. The generalized strain εT=[ε γ κ] is written

as

(6)

where B is the derivative interpolation

(7)

and G the enhanced interpolation of bending strain, which can also be decomposed into a regular

part and a singular part, 

(8)

 is the Dirach function centered at the discontinuity point. We can note that with this choice

for the enrichment, the patch test  is verified. We can thus keep exactly the same
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Fig. 1 2D bar element and shapes of the interpolation functions
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approximation for the virtual strain field as the one use in Eq. (6) for real strain. The stress field

approximation over the element can be obtained from the real strain field in Eq. (6) with no

contribution from the singular part which is treated alone apart. This stress field  (N

axial force, V shear force and M bending moment) is non linear with a constitutive equation of the

form

(9)

and the moment-rotation jump relation can be written as

(10)

By exploiting the approximations for virtual strain strains and stresses, the weak form of

equilibrium equations can be recast in the format typical of incompatible mode method (A is the

finite element assembly procedure)

(11)

The system of Eq. (11) can be writtem in the incremental form

(12)

where

(13)

This set of equations is solved by using the operator split method, (see Ibrahimbegovic 2009).

Namely, we first solve local equation in each localized element for a fixed value of total

displacement d, so that we can determine the value of the rotation jump α. Then by static

condensation at the element level, the first equation in Eq. (12) turns into

(14)
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Fig. 2 Global stress resultant response: (a) continuous part (b) discontinuous part
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It is important to note that the non linear response is split into two parts:
● a continuous part with diffuse non linearity in the whole element, written with a stress-curvature

relationship (Eq. 9). We adopt here a stress-resultant elasto-plastic model with two linear

hardening phases (see Fig. 2(a)).
●a discrete part at the discontinuity point, written with a stress-rotation relationship. We adopt here

a rigid-plastic model with linear softening (see Fig. 2(b)).

In a such way, we avoid the non objectivity of the response due to strain localization since the

plastic hinge dissipates a finite energy. We have also a direct access to the crack opening and do not

need post analysis like in Dufour et al. (2008). Note that this method is of E-FEM kind, close in

ideas to the X-FEM methods (Asferg et al. 2007), but different in computational implementation.

The area under the curve on Fig. 2(b) is directly related to the fracture energy of the material. For

each hardening or softening branch, the threshold function is written as

(15)

where Mi represents Mc the cracking moment, My the yield moment or Mu the ultimate moment. I

denotes the cross-section inertia and Ki denotes the different hardening/softening moduli.

In the next section, a method for obtaining the values Mi, Ki and  will be described.

3. Stress resultant model parameter identification

In order to identify the parameters of the stress resultant model presented in section 2, we use a

multi-layer Timoshenko beam element described in section 3.1. We use only one element embedded

at its left end and loaded while imposing a rotation at its right end (see Fig. 3(b)). We can either

impose only a rotation for the beams (Fig. 3(a)) or add an axial force for the columns (Fig. 3(b)).

The identification procedure is described in section 3.2.

3.1 Multifiber beam model with embedded discontinuities in fibers 

In this section we present shortly the multi fibers beam model which provides the basis for

identifying the parameters of stress resultant model. This multi-fiber model is helpful to analyse and

handle a beam-column with multi materials embedded in one cross-section in general or for

reinforced concrete in particular. For the global coherence of the method, we also use embedded

strain discontinuity in each fibers.
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Fig. 3 Multi-fiber elements to compute stress resultant parameters for the macro model
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Assuming the cross sections remain plane and a uniform repartition of shear strain, the axial and

shear strains of each layer can be computed from the element displacements and the position yi of

the layer in the cross section

(16)

In order to be able to represent the strain localization due to the softening of the materials, we

folow the same developments as in section 2 in the frame of incompatible modes method. We can

introduce an axial strain discontinuity in each fiber, split in a regular part and a singular part

(17)

In a same manner, the axial stress along the fiber depends on the regular strain (stress-strain

relationship) and the localized traction on the crack discontinuity in the middle of the fiber depends

on the jump of displacement (stress-displacement relationship).

The constitutive laws of concrete and steel are presented on Fig. 3.1. This are Elasto-Plastic

models with hardening in the regular part and softening on the singular part. For the concrete, since

the behavior is non symmetric, we use two independent displacement jumps,  in tension and 

in compression.

From the stresses in each fiber, we compute the stress resultants in the cross sections

(18)

The solution procedure in, in the same manner as in Eqs. (12) and (14), split into local resolutions

on each fiber and a global resolution with a modified stiffness matrix obtained by static condensation.

3.2 Combined axial load and bending moment threshold functions

Since we want to use the macro stress resultant model presented in section 2 to compute the

response of reinforced concrete frames, we must take into account the interaction between axial

force and bending moment (especially for columns). Thus, the threshold functions of Eq. (15) are

rewritten as

εx
i

x( )
du x( )

dx
------------- yi

dθ x( )

dx
-------------; 2εxy

i
–

dν x( )

dx
------------- θ x( )–= =

εx
i

εx
i

α
i
δ x

c

i
+=

αt

i
αc

i

N σx S  V;d
S
∫ σxy S  M;d

S
∫ y

2
σx Sd

S
∫–= = =

Fig. 4 Behaviors of concrete and steel



Stress resultant model for ultimate load design of reinforced-concrete frames 309

(19)

We present the procedure of identification of the parameter on a particular example of reinforced

concrete beam-column frame element (Fig. 5). The dimensions of rectangular cross-section of the

beam are b×h equal to 30×40 (cm). Inside the cross-section, four rebars of diameter 20 mm are

placed at the top and the bottom. The concrete has compressive strength =30 MPa, tensile

strength =1.8 MPa, modulus of elasticity Eb=28,600 MPa. By using the multi-fiber model for

parameter identification, we use the divided rectangular cross-section of the beam with 20 concrete

layers and 8 discrete fibers for describing the steel reinforcements.

In the first step, we compute the limit values of axial force for this beam without bending moment

by imposing only an axial displacement. We obtain the yield axial force Ny. Then, for different

ration of axial force n=N/Ny, we compute the bending moment-curvature response while imposing N

constant and increasing rotation of the right end of the element. The responses for 12 different ratios

are presented on Fig 6. We can separate these diagrams into two main groups: the first one for axial

force ratios n from 0 to 0.4 and the second for axial force ratios n from 0.4 to 1.05. The first group

corresponds to the large-eccentricity cases, where the failure in the reinforced-concrete beam is

Φ
M

M N ζi

M
, ,( ):  M Mi N( ) Ki N( )I ζi

M
⋅+( ) 0≤–=

fc′

fct

Fig. 5 Geometry of reinforced concrete beam-column for parameter identification

Fig. 6 Moment-curvature relations obtained by multi-fiber beam-column model
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induced by the yielding of reinforcement in tension zone. With the increasing values of axial force

we can obtain the corresponding increase in values of cracking, yielding and ultimate moment (Mc,

My, Mu), where the values of My and Mu will differ clearly. We also have fairly long part with

hardening response diffuse of plastic phase. The second group corresponds to the small-eccentricity

case, where the failure process is governed by the compressive failure of concrete in compression

zone. With the increase of axial force, we obtain a small difference between the values of yield and

ultimate moments, and the value of ultimate moment can even become smaller than the yield

moment ( ).

In order to determine the parameters for the stress resultant model, namely the cracking, yielding,

and ultimate moments (Mc, My, Mu) and the corresponding curvature values, we present the stress-

time curves for four particular fibers are chosen in the cross-section: two for the reinforcements, one

in tension zone and the other in compression zone, and two for the concrete, one is tension and one

in compression, at the top and bottom edges of the cross-section where the strain values are the

largest. For those selected fibers, we can identify easily all limitations for moment following the

limit stresses of concrete and steel fibers. The crack-moment Mc corresponds to the the tensile

cracking of the bottom concrete fiber. The yield-moment My is reached when the tensile steel fiber

reaches its yield strength fy. For the large-eccentricity in compression case, the ultimate moment Mu

is equal to the maximum value of moment Mmax for each types of cross-section. But for small-

eccentricity compression case, Mu is identified from the change of tangent modulus, namely, the

point where the tangent modulus changes suddenly from the plastic phase to the softening phase.

For these three particular points, we can have the corresponding curvatures, κc, κy and κu. The

ultimate state (no more load capacity), (Mt, κt) is assumed to be the the point where the compressive

concrete fiber at the same position of the compressive steel fiber is damaged completely. From this

point we can deduce the last point of the macro model (M=0, κp), by extrapolation of the softening

phase until M=0.

The limit bending moments for different ratios of compressive force are represented on Fig. 8(a).

We recognize clearly the previously defined expression distinguishing two eccentricity compression

Mu My≤

Fig. 7 Fiber stress-time curves and moment-time curve
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cases. For n=N/Ny varying from 0 to 0.4, the values of yield and ultimate moments increase. In the

opposite, for larger values of n varying from 0.4 to 1.05, the values of yield and ultimate moments

decrease. The variations of My and Mu are quite similar, while for the cracking moment Mc, the

changing tendency is for a value of n equal to 0.6.

The limit curvatures for different ratios of compressive force are represented on Fig. 8(b). We

note that the curve shapes of curvature κu and κp are different from those of curvature κc and κy.

The curves of κu and κp increase linearly for values of n between 0 and 0.1, and decrease for larger

values of n. The curve of κc always increases linearly, while the curve of κy reaches its maximum

for a value of n equal to 0.4.

From this step, we can use directly the computed values of the limit bending moments and

corresponding curvatures from Fig. 8 to introduce them in the threshold functions of Eq. (19). The

values of tangent modulus can be computed with

(20)

For values of n between two computed points, we can make a linear interpolation. An other

possibility is to find the best-fit polynomial interpolation of the different curves of Fig. 8 with an

optimization tool. It has been done in Pham (2009).

Since the identification procedure presented in this section is done with computations on a single

multi-fiber beam finite element, it is very fast. The computation of the whole reinforced concrete

frame structure will now be very fast done with the stress resultant beam elements. In the next

section, we present different examples to show the precision and the robustness of the method.

4. Numerical examples

4.1 Single element with variation of axial force

The threshold functions of the macro element have been identified for different levels of axial

K1 n( ) My n( ) Mc n( )–( ) κy n( ) κc n( )–( )⁄=

K2 n( ) Mu n( ) My n( )–( ) κu n( ) κy n( )–( )⁄=

K3 n( ) Mp n( ) Mu n( )–( ) κp n( ) κu n( )–( )⁄=

Fig. 8 Variation of parameters with respect to N/Ny ratio: (a) Bending moments, (b) Curvatures
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force. But for each level, the axial force remained constant during the computation (only the

rotation and the bending moment changed). In a real structure, between two time step, the axial

force can change, and thus the threshold functions change (the axial force is considered as a local

variable in the threshold functions). This could lead to numerical problems.

The first numerical example is to test the robustness in case of variation of axial force. It is the

same element used in the section 3.2. (Figs. 3(b) and 5), but in this case, the axial force varies with

the time. Four cases of loading program have been computed. For the first one N = 0, for the second

one N = 705 kN, for the third one N increased from 705 kN to 1029 kN and for the last one N

decreased from 705 kN to 211.5 kN. Fore each case, the computation was done first with the multi-

fiber element of section 3.1 to have a reference. The second computation was done with the

procedure presented in this paper (identification of the threshold functions with constant axial forces

and then computation with the macro stress resultant element).

The results are presented on Fig. 9. We can see that the results of the macro model (right) are

very close to those of the multi-fiber model (left). They are only more sharp since there is no

progressive yielding of the fiber, one after the other. On the other hand, the cost used for

computation with the macro model is much smaller than the one for computation with multi-fiber

model.

4.2 Two storeys reinforced concrete frame

In the second numerical example, we consider a reinforced-concrete frame with two floors and

one span. The dimensions of the frame are detailed in the Fig. 10. The cross-section of both column

and beam is b × d = 30 × 40 (cm). In both beam and column, 4φ20 mm of the longitudinal bar are

placed at each side, and the stirrups φ10 mm at the distance a = 125 mm are used along to the

length of span and the height of two-storey. This example is based on the experiment presented in

(Vecchio and Emara 1992). Two fixed vertical forces P = 700 KN are applied at two nodes on the

top of the frame representing the effect of the dead load. The lateral force is imposed on one side at

the top node with the values increasing from zero to the time of the complete collapse of the frame.

The finite element model used in the numerical computations is as follows: each column with the

height h = 2 m is divided into 8 elements with Le = 0.25 m and each beam with the length L = 3.5 m

Fig. 9 Single element with variation of axial force during rotation loading: (a) Multi-fiber element, (b) Macro-
element
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is divided into 14 elements with Le = 0.25 m. The concrete has compressive strength = 30 MPa,

tensile strength = 1.8 MPa, modulus of elasticity Eb = 28,600 MPa. All the details on material

parameters and geometry for the test can be found in Vecchio and Emara (1992).

The cross section dimensions are the same as the one used in section 3, we thus use the same

threshold functions for the stress resultant macro element. Like in the first example (section 4.1), we

compare the response obtained with the macro elements and the procedure described in this paper to

the reference obtained with a complete multi-fiber elements computation. Both are also compared to

the test result on Fig. 11. The three curves are close together. The curve with the stress resultant

macro model is very fast to compute.

fc′

fct

Fig. 10 RC frame experiment

Fig. 11 Order of appearence of failure hinges: (a) Constant axial load threshold, (b) Varying axial load threshold
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We can note that, thanks to the good modeling of the softening branches in our models, both

multi-fiber model and macro model can catch the failure and descending branch of the frame

response. This is not the case with usual softening stress strain models where numerical difficulties

appear when reaching this failure.

We tried to compute the response of the frame without taking into account the variation of axial

force in the elements (Pham 2009). A constant axial load of 0 kN and 700 kN was used to identify

the threshold functions respectively of the beams and of the columns. It didn't change a lot the

global response, but the appearance of plastic and failure hinges was very different from the case

where the axial force varies in the threshold functions used in the computation. Thus it is important

to take into account this variation.

5. Conclusions

We presented a stress resultant beam macro model to compute the response of reinforced concrete

frames. This model is consistent until the failure due to the softening response of the elements. It

can be use for the performance-based design statically indeterminate structures where the failure of

one single element does not always lead to the complete failure of the structure. The procedure,

from the identifications of the macro model parameters, until the complete computation of the

structure is very fast, thus we can seek to optimize a number of factors that are involved in the

computed nonlinear response, such as material properties of concrete and steel, the dimensions of

the cross-section, the steel reinforcement ratio. This is made possible for any particular loading

program by the approach presented herein, which relies on material level information (with the

realistic properties of concrete and steel, including the localized failure) in order to build the stress

resultant model for a particular reinforced concrete cross-section. In this manner we end up with

what is most likely the most reliable basis for parameter identification which possesses the

predictive capabilities. Moreover, the idea to build the stress-resultant constitutive model for a RC

beam from the corresponding properties of the constituents is the main advantage with respect to

classical and more recent works on ultimate limit load failure of frame structure, where the stress-

resultant models are proposed in a fairly ad-hoc manner.
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