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Abstract. The analysis of prismatic members made of reinforced concrete under inclined bending, especially
the computation of ultimate loads, is a pronounced non-linear problem which is frequently solved by
discretizing the stress distribution in the cross-section using interpolation functions. In the approach
described in the present contribution the exact analytical stress distribution is used instead. The obtained
expressions are integrated by means of a symbolic manipulation package and automatically converted to
optimized Fortran code. The direct problem-computation of ultimate internal forces given the position of
the neutral axis-is first described. Subsequently, two kinds of inverse problem are treated: the computation
of rupture envelops and the dimensioning of reinforcement, given design internal forces. An iterative
Newton-Raphson procedure is used. Examples are presented. 

Keywords: reinforced concrete sections; ultimate limit state; prismatic members; inclined bending; formula-
tion; design.

1. Introduction

The computation of the behaviour of reinforced concrete prismatic members under bending is a

pronounced non-linear problem, especially in loading cases in which the material is close to rupture,

since in these cases its rheological behaviour cannot be represented with sufficient accuracy by a

linear law.

This problem is frequently solved by numerical means, where the stress distribution in the cross-

section is approximated using interpolation functions. Fafitis (2001) presented a method for the

computation of the stresses in reinforced concrete sections using Green’s Theorem. It is based on

the transformation of the double integrals in the equilibrium equations into line integrals along the

perimeter of the compressed concrete section. Gauss-Legendre quadrature is then used in the line

integration. If the stress-strain relation for concrete is defined by polynomials up to the third degree

the three point integration scheme yields the exact result. For this reason the method is exact if the

stress-strain law of concrete is described by the parabola-rectangle law. If other complex constitutive

equations as the ones indicated in Eurocode (2004) and Model Code (1990), are used the method

gives approximate results. Bonet et al. (2004) presented two methods based on Gauss quadrature
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and division of the compression zone into layers. Brondum (1987) and Yen (1991) performed these

integrations but using constant stress diagram. Rodrigues et al. (1999) proposed the resolution by

decomposing the section into trapezes. Other methods are based on the definition of a fiber mesh of

the total cross-section including the reinforcement bars. The number of them depends on the desired

accuracy. These methods are used by Sfakianakis (2002). Charalampakisa et al. (2008) present also

a work with a fiber algorithm where the cross section is described by multi-nested curvilinear

polygons. 

In a work from De Vivo and Rosati (1998) the equilibrium nonlinear equations of the section, submitted

to axial load and bending moment, are solved by two algorithms. These are based on a secant

strategy where the nonlinear constitutive law of concrete is replaced by a linear one of secant type.

The method is improved with a tangent approach in Alfano et al. (2007). Other algorithms are

presented by Rosati et al. (2008) with different schemes to evaluate ultimate axial load and bending

moments of the reinforced concrete sections. Another work from Zupan and Saje (2006) considers

an analytical integration of stress field over concrete cross sections with a uniaxial stress-strain

relation for concrete given by a smooth simplified function. 

Barros et al. (2004) proposed the use of Heaviside functions for the definition of the stress-strain

law and the rupture conditions and performing the exact integration by the use of mathematical

manipulation programs. Lately in Barros et al. (2005) the method is applied to the evaluation of

interaction surfaces of rupture in biaxial bending, with application to complex sections. This method

is used in the present work. The integration of the stresses in the cross-section is performed

analytically, so that no interpolation functions are needed. Thus, the computation of the internal

forces which correspond to a given deformation is exact. In the case of the inverse problem−computation

of the deformations for given internal forces−although the problem is solved by numerical means−

the Newton-Raphson algorithm is used−the solution may also be considered as exact, since no

interpolations are used and the iterative procedure is stopped only when the error attains a negligible

value. 

2. Computation of internal forces

The internal forces are computed as described by Barros et al. (2004, 2005), using expressions

obtained by analytical integration of the one-dimensional stress-strain relations for compressed

concrete and for steel. The integrations are performed by means of a symbolic manipulation

program (Maple).

As the cross section is assumed to remain plain, three deformation parameters must be given. In

this contribution these parameters are: the strain in the most compressed concrete fibre and two

parameters defining the position of the neutral axis. 

2.1. Constitutive equations

In what concerns the concrete, two constitutive laws are considered: the stress-strain relation

defined by CEB-FIP (1991) (Fig. 1) and the equation defined in the Eurocode 2 (2004) (Fig. 2). For

the steel an elastic perfectly plastic material law is considered, as represented in Fig. 3. Since the

unloading behaviour of the reinforced concrete members is not analysed, there is no need to identify

the elastic and plastic parts of the deformation. 



Closed form ultimate strength of multi-rectangle reinforced concrete sections under axial load 507

The constitutive equations are described by single expressions, rather than parametric ones, which

facilitates their analytical treatment by means of a symbolic manipulation package (Maple). The

corresponding expressions for the concrete are 

(1)

for the parabola-rectangle relation for the concrete, where H represents the Heaviside function, and 

(2)

for the constitutive law defined in (European 2004). The main difference between these two laws
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Fig. 1 Parabola-rectangle stress-strain relation for the concrete (CEB-FIP (1991))

Fig. 2 Stress-strain relation defined in Eurocode 2 (2004)

Fig. 3 Elastic perfectly plastic material law assumed for the reinforcing steel 
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resides in the value of the ultimate strain, which is fixed in the CEB curve and variable with the

class of concrete in the Eurocode curve. 

Using the Heaviside function, the stress-strain relation for the steel (Fig. 3) may also be represented by a

single expression, yielding 

(3)

2.2. Computation of the internal forces 

This section briefly describes the way as the concrete stress resultants are computed. The geometrical

properties of the cross section are depicted in Fig. 4. The steel area is assumed to be distributed

along the sides of a rectangle with the dimensions (b-2a)×(h-2a). The amount of steel may then be

defined by the thickness of each side (a1, a2, a3 and a4). 

For the computation of the contribution of the concrete stresses to the internal forces, five cases

must be considered, as represented in Fig. 5. Angle β may take values in the interval 0<β< . Other

alternatives correspond to changes of the reference corner, which coincides with the most

compressed concrete fibre.

The formal expressions for the computation of the stress resultants in terms of the reference axes

depicted in Fig. 4 are, for the five cases (Fig. 5)
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Fig. 4 Geometrical properties and reference axes for the concrete stresses

Fig. 5 The five alternatives considered in the computation of the concrete stress resultants
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Case V: 

(8)

The integrals contained in expressions (4) to (8) are analytically evaluated by using a symbolic

manipulation package (Maple), after substitution of σc by expressions (1) or (2). The strain in the

concrete, as a function of y (Fig. 4), is referred to the strain in the reference corner (most compressed

concrete fibre) εc 

(9)

The results are subsequently converted to optimized Fortran code. 

If the ultimate internal forces of the cross section are to be computed, εc is given by 

(10)

and d=(h-a)cosβ+(b−a) sinβ. εsu and εcu represent the ultimate steel strain and the absolute value of

the ultimate compressive concrete strain, respectively. The total internal forces are computed by

adding the steel and concrete contributions (see Barros et al. (2004) for the contribution of steel),

after converting the moments furnished by expressions (4) to (8) to the central axes xg, yg (Fig. 4),

using the expressions 

(11)

2.3. Extension to multi-rectangular cross sections 
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Xi = X − xci cosβ − yci sinβ (12)

The strain at the reference corner of rectangle i may be computed from the maximum

compressive strain in the cross section εc, which occurs in the corner at the distance dmin = min (xci

cosβ + yci sinβ) for i=1, ..., nr (nr represents the total number of rectangles in the cross section), of

the origin of the reference system (Fig. 6), using the expression 

(13)

If the ultimate resistance of the cross section is to be computed, εc is given by the expressions 

(14)

α0 is defined in Eq. (10). The quantity dtot represents the total effective height of the cross section,

which is given by 

(15)

for i =1, ..., nr. ai represents the concrete cover of rectangle i. 

The internal forces in the global section are computed from the stress resultants in each of the nr
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Fig. 6 Relevant geometrical data for the multi-rectangular cross section
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(16)

where Ni, Mxi and Myi represent the stress resultants referred to the central axes of each rectangle, as

given by Eq. (11), and xgi and ygi are the distances of the geometrical centre of each rectangle to the

geometrical centre of rectangle 1.

(17)

As an example of test and explanation of the used methodology, the ultimate internal forces of the

rectangular cross section depicted in Fig. 7 are computed, using both the rectangular and the multi-

rectangular approaches. In order to avoid gaps in the steel bands in the last approach, which would

be introduced by the concrete cover, this quantity is considered zero, so that exactly the same results

have to be obtained from both approaches. 

The reinforcement has a constant thickness of 4 mm. In Table 1 the geometrical input data, for

each of the four multi-rectangular alternatives considered, is represented. 

The results obtained for a C25/30 concrete, using the Eurocode 2 (2004) constitutive law

(fcd=16.67 MPa, Ecc1=2.95, εc1=0.0022 and εcu=0.0033) and A400 steel (E=200 GPa, fsyd=  MPa

and εsu=0.01) are presented in Table 2. Although different in what concerns the moments, as a

consequence of the different reference axes (central axes of rectangle 1 in each case), these results

represent exactly the same internal forces (for the number of decimal digits used in Table 2). 
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Fig. 7 Rectangular section used to test the multi-rectangle approach
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3. Numerical solution of the inverse problem 

In the previous sections a methodology has been described which allows for the computation of

internal forces (stress resultants) in the cross section, given deformation parameters: position of the

neutral axis and strain in the most compressed concrete fibre. In what follows a numerical technique

is presented for the solution of the inverse problem: given some or all the internal forces,

computation of deformation parameters and/or the remaining internal forces or a dimensioning

parameter. 

 

 

Table 1 Geometrical data for the multi-rectangular cases of Fig. 7

Rectangle b h xc yc a1 a2 a3 a4

1 0.8 0.4 0.0 0.0 0.004 0.004 0.004 0.0 

2 0.3 0.6 0.4 0.0 0.0 0.0 0.004 0.004 

3 0.5 0.6 0.4 0.3 0.004 0.0 0.0 0.004 

Case b) X =0.45 m

Rectangle b h xc yc a1 a2 a3 a4

1 0.3 0.6 0.0 0.0 0.0 0.0 0.004 0.004 

2 0.5 0.6 0.0 0.3 0.004 0.0 0.0 0.004 

3 0.8 0.4 −0.4 0.0 0.004 0.004 0.004 0.0 

Case c) X=0.103589838 m

Rectangle b h xc yc a1 a2 a3 a4

1 0.5 0.6 0.0 0.0 0.004 0.0 0.0 0.004 

2 0.8 0.4 −0.4 −0.3 0.004 0.004 0.004 0.0 

3 0.3 0.6 0.0 −0.3 0.0 0.0 0.004 0.004 

Case d) X = −0.046410162 m

Rectangle b h xc yc a1 a2 a3 a4

1 0.8 0.4 0.2 0.3 0.004 0.004 0.004 0.0

2 0.3 0.6 0.6 0.3 0.0 0.0 0.004 0.004

3 0.5 0.6 0.6 0.6 0.004 0.0 0.0 0.004 

Case e)−X =0.773205081 m

Table 2 Ultimate internal forces in the rectangular section of Fig. 7

case N(N) Mx(Nm) My(Nm)

a −1004301.5 845134.064 −2224687.29

b −1004301.5 845134.064 −1923396.84

c −1004301.5 594058.689 −2425547.59

d −1004301.5 995779.288 −2425547.59

e −1004301.5 845134.064 −1923396.84
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The resulting non-linear system of equations is solved by means of a Newton-Raphson algorithm,

with a step length limitation in order to improve robustness. 

3.1. Computation of rupture envelops

The internal forces corresponding to points located on the rupture envelope defined in the N, Mx,

My space may generally be computed by solving a system of two nonlinear equations. In fact, as the

three ultimate internal forces for a given cross-section depend only on two parameters (β and X),

the computation may be carried out by solving the system formed by two of the equations which

define the ultimate internal forces as functions of β and X equated to given values of those forces.

Taken, for example, functions Mx and My, we get the system of equations

(18)

where  and  are the given internal forces. The values of β and X may be computed by means

of a Newton-Raphson procedure which may be described by the algorithm
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The derivatives contained in matrix Ai are numerically obtained, by considering very small
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where dX is a sufficiently small value to compute the derivative accurately.

With the objective of improving the robustness of the iterative procedure, by avoiding large

increments in the values of the unknowns, the incremental values of β and X are limited to some
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(22)

if ψ > 1. Although, eventually, requiring more iterations, this procedure avoids convergence to

undesired solutions (e.g. values of β outside the limits 0<β< ).

Once β and X are known, the third ultimate internal force (N in this case) is directly computed

using Eq. (16). 

In the particular case of the computation of level curves of the rupture envelope (constant axial

force N), the problem may be solved in a simpler way by fixating the value of β and computing the

value of X corresponding to the given axial force N, by solving the non-linear equation. 

N (β, X)= (23)

This equation is also solved by means of the Newton-Raphson algorithm, that is 

(24)

A pair of values Mx, My is then obtained from the pair β, X by means of Eq. (16). 

3.2. Dimensioning of the reinforcing steel

For a given cross-section the amount of steel needed to withstand a given set of acting internal

forces N, Mx, My may be computed by using a similar procedure as described in the previous

section. This amount is defined by the thickness of the steel bands (cf. Fig. 4). Since three equations
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parameter may be used to quantify the thickness of the steel bands. To this end, the following linear

function is used to define that thickness 

ai = aic + aipγ (25)
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(28)

The derivatives in matrix Ai are computed as defined by Eq. (20). A limitation of the incremental

values of the unknowns is also implemented. In this case Eq. (21) is substituted by 

(29)

which corresponds to the factor 

(30)

to be applied to vector xi+1 whenever ψ > 1. 

4. Examples

As an example of application of the procedure expounded in Section 3.1 a level curve and a

meridian of the rupture envelop of the cross-section depicted in Fig. 8 are computed. This is the
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Fig. 8 Column strengthened by reinforced concrete jacketing
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cross-section of a column which has been strengthened by means of reinforced concrete jacketing.

Experimental data is available for the ultimate internal forces in plane bending (Júlio  et al. 2005). 

The cross-section is square and doubly symmetrical. The values indicated in the figure for the

concrete cover are measured in relation to the axis of the steel bars. The diameter of the bars is 10

mm. The original (core) and strengthening concrete have the constitutive laws represented in Fig. 9,

corresponding to the law defined in Eurocode 2 (2004), given the measured compressive strength.

The ultimate stresses have been experimentally determined, as also the parameters dening the

rheological behaviour of the steel: Young modulus E=209.456 GPa and yielding stress fsyd=526.102

MPa. 

The cross-section has been divided into 13 rectangles, as represented in Fig. 10. The steel bands

have been considered only in the faces which are parallel to axis x, since the experimental results

have been obtained in plane bending around this axis. The geometrical parameters corresponding to

this model (13 rectangles) are presented in Table 3. 

The level curve of the rupture envelope corresponding to the compressive axial force used in the

experimental test−174.7 kN−has been computed by means of the procedure defined by Eqs. (23) and

(24) yielding the curve represented in Fig. 11. The experimentally obtained value in plane bending is

also represented in the figure. We may observe that the error of the computed solution is smaller than

5%.

Fig. 9 Constitutive laws of the two kinds of concrete in the column of Fig. 8

Fig. 10 Subdivision of the cross-section of Fig. 8 into 13 elementary rectangles
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In Fig. 12 two meridians of the rupture envelope corresponding to the ratios  of 0.01 and 0.05

are represented. These values, although corresponding to inclined bending are very close to the

situation of plane bending which has been analysed experimentally. These curves have been

computed using the algorithm represented by Eqs. (18) to (22). 

As a consequence of the form of the basic equations (Eqs. (4) to (8)) it is not possible to analyse

directly situations corresponding to values of β that are very close to zero or to 90o using the

methodology presented in this paper, since those equations become indeterminate for β=0 or β= .

Thus, in the cross-section of Fig. 8 the plain bending case cannot be directly analysed. Figs. 11 and

12 show, however, that we can get sufficiently close to these values of β, so that this restriction

does not have practical significance.

The experimentally obtained value for the rupture load corresponds to the highest ordinate of the

load-displacement curve of a vertical cantilever column with a horizontal load applied at the top.

Rupture took place by compressive concrete failure, with a strain of 1.8% in the most tensioned

steel bar. 

As an example of application of the algorithm described in Section 3.2 let us consider the cross-

M
y

M
x

------

π

2
---

Table 3 Geometrical data corresponding to the model depicted in Fig. 10

Rectangle b h a x
c

y
c

a1 a2  a3 a4

1 0.200 0.200 0.031 -0.100 -0.100 0.001707 0 0.001707 0

2 0.228 0.021 0 0.114 -0.114 0 0 0 0

3 0.228 0.021 0 -0.135 -0.114 0 0 0 0

4 0.021 0.228 0 -0.114 -0.135 0.001033 0 0 0

5 0.021 0.228 0 -0.114 0.114 0 0 0.001033 0

6 0.021 0.021 0 0.114 0.114 0 0 0 0

7 0.021 0.021 0 -0.135 0.114 0 0 0 0

8 0.021 0.021 0 -0.135 -0.135 0 0 0 0

9 0.021 0.021 0 0.114 -0.135 0 0 0 0

10 0.228 0.014 0 0.100 -0.114 0 0 0 0

11 0.228 0.014 0 -0.114 -0.114 0 0 0 0

12 0.014 0.200 0 -0.100 -0.114 0 0 0 0

13 0.014 0.200 0 -0.100 0.100 0 0 0 0

Fig. 11 Level curve of the rupture envelope for N = −174.7 kN
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section represented in Fig. 13(a). The member is made of concrete C25/30 and steel A400. Steel

bars of diameter 16 mm with a uniform spacing shall be used. 

In Fig. 13(b) the computation model is represented. The dashed lines represent the steel band

corresponding to the steel bar located in the concave corner of the cross-section. The concrete cover,

measured with respect to the axes of the steel bars is 3 cm. The geometrical data corresponding to Eq.

(25) is represented in Table 4. 

The design internal forces are N=−2000 kN, Mx =550 kNm and My =1200 kNm. 

The bending moments are defined with respect to axes with the same directions as x and y,

located at the centroid of rectangle 1. The iterative process described in Section 3.2 yielded the

Fig. 12 Meridians of the rupture envelope for My = 0.01Mx and My = 0.05Mx

Fig. 13 Dimensioning of the reinforcement bars in a multi-rectangular cross-section

Table 4 Geometrical data corresponding to Eq. (25) for the model of Fig. 13(b)

ac ap ac ap ac ap

0.37 0 0 1 0 1

0 1 0 1 0 0

0 1 0 0 0 1

0.59 0 0 1 0 1 

Rectangle 1 Rectangle 2 Rectangle 3 
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results indicated in Table 5. These results, with the degree of accuracy represented by the values

indicated in Table 5, have been obtained after 6 iterations in both cases, when the starting values for

the unknowns are β=45o, X=0.5 m and γ=1 mm. With the starting values: β=15o, X=0.1 m and γ

=0.1 mm, which are less close to the solution, 12 iterations are needed for the same degree of

accuracy. Besides, in the latter case, convergence is only achieved if the limitation of the

incremental values of the unknowns described by Eqs. (29) and (30) is used. 

5. Conclusions

A tool for the analysis and dimensioning of reinforced concrete prismatic members with rectangular and

multi-rectangular cross-section is presented. Since the algorithm is directly based on an analytical

approach, no discretization-induced errors are introduced. Besides, the algorithm is very fast

showing negligible computation times, even for a large number of rectangles or for a large number

of solutions, as for the case of drawing rupture envelops. 

The approach has been tested for the computation of ultimate internal forces and rupture envelops

and for the dimensioning of reinforcing steel. In the case of the computation of rupture envelops,

experimental results are available, so that a comparison between experimental and numerical results

is presented. 

A procedure of step limitation has been introduced in the iterative solution of the inverse problem

in order to improve the robustness of the algorithm, which has proven to be very effective. 
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