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Abstract. This paper presents methodologies for remaining life prediction of plain concrete structural
components considering tension softening effect. Non-linear fracture mechanics principles (NLFM) have
been used for crack growth analysis and remaining life prediction. Various tension softening models such
as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions.
A methodology to account for tension softening effects in the computation of SIF and remaining life
prediction of concrete structural components has been presented. The tension softening effects has been
represented by using any one of the models mentioned above. Numerical studies have been conducted on
three point bending concrete structural component under constant amplitude loading. Remaining life has
been predicted for different loading cases and for various tension softening models. The predicted values
have been compared with the corresponding experimental observations. It is observed that the predicted
life using bi-linear model and power curve model is in close agreement with the experimental values.
Parametric studies on remaining life prediction have also been conducted by using modified bilinear
model. A suitable value for constant ‘k’ of modified bilinear model is suggested based on parametric
studies.
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1. Introduction

Concrete is a widely used material that is required to withstand a large number of cycles of
repeated loading in structures such as highways, airports, bridges and offshore structures. The
present state-of-the-art of designing such structures against the fatigue mode of distress is largely
empirical, gained by many years of experience. As long as the designer is dealing with structures
made of similar to those for which the relationships were derived, the performance can be
reasonably well predicted. However, as conditions change, a need exists for a rational approach.
Concrete contains numerous flaws, such as holes or air pockets, precracked aggregates, lack of bond
between aggregate and matrix, etc., from which cracks may originate. When the tensile strength of a
material is reached in a structure, cracking will occur. During fatigue cyclic loading, the flaw is
blunted and resharpened and it is reasonable to assume that the crack so formed will be the nucleus
of crack propagation that may lead to failure, and that the crack will initiate after the first loading
cycle. Cracks generally propagate in a direction, which is perpendicular to the maximum tensile
stress. In heterogeneous materials, cracks tend to follow the weakest path in the material. While the
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shape of the crack is likely to be highly irregular, it is expected that the irregularities will be
smoothed out and the cracks will grow in a slow manner to a simple shape along which the stress
intensity factor (SIF) is nearly uniform. Fracture mechanics is a rapidly developing field that has
great potential for application to concrete structural design.

The fracture behavior of concrete is greatly influenced by the fracture process zone (FPZ). In
concrete and rock fracture, the plastic flow is next to nonexistent and the nonlinear zone is almost
entirely rolled by FPZ. Such materials are now commonly called quasi-brittle. The variation of FPZ
along the structure thickness or width is usually neglected. The inelastic fracture response due to the
presence of FPZ may then be taken into account by a cohesive pressure acting on the crack faces.
Fig. 1 shows FPZ in brittle-ductile materials and quasi-brittle materials (Bazant 2002).

To model this behavior using discrete crack fracture mechanics, it is assumed that an initial crack
begins to propagate at the proportional limit fy and continues to propagate in a stable manner until
the peak stress. When the crack extends in concrete, new crack surfaces are formed along the path
of the initial crack tip. The newly formed crack surfaces may be in contact and this leads to
toughening mechanisms in FPZ such as aggregate bridging. Further, they may continue to sustain
some normal tensile stress that is characterized by a material tensile stress-separation relationship.

The first application of fracture mechanics to concrete was made by Kaplan (1961) using linear
elastic fracture mechanics (LEFM) principles. Barenblatt (1959) and Dugdale (1960) made the first
attempt to include the cohesive forces in the crack tip region within the limits of elasticity theory.
Barenblatt (1959) assumed that cohesive forces act in a small zone near the crack ends such that the
faces close smoothly. The distribution of these forces is generally unknown. For Dugdale (1960)
model, the distribution of the closing forces is known and constant according to an elastic-perfectly
plastic material. A major advance in concrete fracture was made by Hillerborg, et al. (1976), which
includes the tension softening process zone through a fictitious crack ahead of the pre-existing crack
whose lips are acted upon by closing forces such that there is no stress concentration at the tip of
this extended crack. Bazant (1976) and Bazant and Cedolin (1979) used a smeared crack model to
model cracking in concrete. In this model, the crack front is assumed to consist of a diffuse zone of
microcracks and the stresses that close FPZ faces are represented through a stress-strain softening
law.

Prasad and Krishnamoorthy (2002) developed a 2D computational model for investigation of crack
formation and crack growth in plain and RC plane stress members. Attard and Tin-Loi (2005)
conducted studies on numerical simulation of quasi-brittle fracture in concrete. Fracture was modeled
through a constitutive softening-fracture law at the interface nodes, with the material within the
triangular unit remaining linear elastic. Gasser and Holzapfel (2005), described methodologies for

Fig. 1 FPZ in ductile and brittle materials
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modeling 3D crack propagation in unreinforced concrete. It was mentioned that tensile failure involves
progressive micro-cracking, debonding and other complex irreversible processes of internal damage.
Wu et al. (2006), proposed an analytical model to predict the effective fracture toughness of
concrete based on the fictitious crack model. The equilibrium equations of forces in the section
were derived in combination with the plane section assumption. Slowik, et al. (2006) presented a
method for determining tension softening curves of cementitious materials based on an evolutionary
algorithm. Extensive research work was carried out towards numerical modelling of fracture and
size effect in plain concrete using lattice model Raghu Prasad, et al. (2006). The concept of lattice
model is discretization of the continuum by line elements such as bar and beam elements, which
can transfer forces and moments.

When the structural components are subjected to repetitive live loads of high-stress amplitude,
according to classical theory, applied loads result in in-plane tensile stresses at the bottom of the
components. The stress-state in such structures is often simulated with three-point bending tests.
Plain concrete subjected to flexural loading fails owing to crack propagation. Repeated loading
results in a steady decrease in the stiffness of the structure, eventually leading to failure. It is of
interest to characterize the material behavior subjected to such loading and study the crack
propagation and remaining life resulting from such loading. 

The current approaches used to evaluate fatigue performance are mainly empirical. Fatigue
equations based on the well known S-N concept have been developed. Implementation of the
conventional S-N approach requires time-consuming experimental data collection for a given design
case followed by statistical analysis. The resulting information is not applicable to other design
cases with different loading configurations or boundary conditions. A severe limitation of the S-N
approach is the inherent empiricism as it does not use fundamental material parameters that can be
determined for use in design or evaluation. Mechanistic approaches that utilize the concept of
fracture mechanics to study crack propagation from fatigue loading have also been proposed. For
example, Perdikaris, et al. (1987) showed that compliance measurements provide a convenient
method for estimating the traction-free crack length of fatigued concrete specimens. Since then, few
experimental investigations on fatigue crack propagation in concrete have been reported (Baluch, et
al. 1987, Ramsamooj 1994, Stuart 1982, Subramanian, et al. 2000, Matsumoto 1999, Toumi and
Turatsinze 1998, Slowik, et al. 1996, Bazant 1991, Ingraffea 1977, Mu, et al. 2004). The rate of
fatigue crack growth in concrete exhibits an acceleration stage that follows an initial deceleration
stage. In the deceleration stage the rate of crack growth decreases with increasing crack length,
whereas in the acceleration stage there is a steady increase in crack growth rate up to failure. They
have attempted to apply the fracture mechanics principles to describe the crack growth during the
acceleration stage of fatigue crack growth in concrete. It has been observed that the Paris law
coefficients are dependent on the material composition potentially explaining the large differences in
the values of the Paris law coefficients. From literature, it has also been observed that the research
work towards crack growth analysis and remaining life prediction of concrete structural components
considering tension softening is limited (Baluch, et al. 1987, Ramsamooj 1994, Stuart 1982,
Subramanian, et al. 2000, Matsumoto 1999, Toumi and Turatsinze 1998, Slowik, et al. 1996, Bazant
1991, Ingraffea 1977). There is a scope to conduct crack growth analysis and remaining life
prediction of concrete structural components considering tension softening effect in to account.
Further, it has been observed from the literature that there are numerous tension softening models to
account for softening effect. There is scanty information in choosing the appropriate softening
model for reliable remaining life prediction.
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This paper presents methodologies for remaining life prediction of concrete structural components
considering tension softening effect. Non-linear fracture mechanics principles have been used for
crack growth analysis and remaining life prediction. Various tension softening models such as linear,
bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions.
A methodology to account for tension softening effects in the computation of SIF and remaining
life prediction of concrete structural components has been presented. The tension softening effects
has been represented by using any one of the models mentioned above. Numerical studies have
been conducted on three point bending concrete structural component under constant amplitude
loading. Remaining life has been predicted for different loading cases using various tension
softening models and compared with the corresponding experimental observations. It is observed
that the predicted life using bi-linear model and power curve model is in close agreement with the
experimental values. Parametric studies on remaining life prediction have also been conducted by
using modified bilinear model. A suitable value for constant ‘k’ of modified bilinear model is
suggested from parametric studies.

2. Concrete fracture models

Based on different energy dissipation mechanisms, NLFM models for quasi-brittle materials can
be classified as a fictitious crack approach (cohesive crack model) and an equivalent-elastic crack
approach. Fracture mechanics models using only the Dugdale-Barenblatt energy dissipation mechanism
are usually referred to as the fictitious crack approach, whereas fracture mechanics models using
only the Griffth-Irwin energy dissipation mechanism are usually referred to as the effective-elastic
crack approach or equivalent-elastic crack approach. 

The energy release rate for a mode I quasi-brittle crack, Gq, can be expressed as (Shah, et al.
1995).

(1)

Brief description of fictitious crack model is presented below.

2.1. Fictitious crack approach (Cohesive crack model)

The fictitious crack approach assumes that energy to create the new surface is small compared to
that required to separate them, and the energy rate term GIC vanishes in Eq. (1). Fig. 2 shows the
simulation of a newly formed crack structures and the corresponding fracture process zone (Shah, et
al. 1995). As a result, the energy dissipation for crack propagation can be completely characterized
by the cohesive stress-separation relationship σ(ω). Since all energy produced by the applied load is
completely balanced by the cohesive pressure, Eq. (1) is reduced to (with GIc = 0)

(2)

Eq. (2) is valid for structures with a constant thickness. The fictitious crack is assumed to initiate
and propagate when the principal tensile stress reaches the tensile strength of material ft. 

Cohesive crack model requires a unique σ(ω) curve to quantify the value of energy dissipation.

Gq GIc Gσ+=

Gq tσ w( ) wd
0

 W

∫=
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Fig. 2 Mode I crack for fictitious crack approach

Table 1 Different types of closing pressure for FPZ

Type Expression Shape

Linear curve -
Hillerborg, et al. 

(1976)

Bilinear curve - 
Roelfstra and 

Wittmann (1986)

Trilinear curve - 
Liaw, et al. (1990)

Exponential curve - 
Footer, et al. (1986)

where n is a fitting parameter

Reinhardt (1985)

where 0 < n < 1 is a fitting parameter

σ ft 1 w wc⁄–( )=

σ
ft ft σ1–( )w w1⁄–               for w w1≤
σ1 σ1 w w1–( ) wc w1–( )⁄– for w1 w>⎩

⎨
⎧

=

σ
ft                                      for w w1≤
ft 0.7ft w w1–( ) w2 w1–( )– for w1 w< w2≤
0.3ft wc w–( ) wc w2–( )⁄     for w2 w wc≤<⎩

⎪
⎨
⎪
⎧

=

σ ft 1
w
wc

-----–
⎝ ⎠
⎛ ⎞

n

=

σ ft 1
w
wc

-----
⎝ ⎠
⎛ ⎞

n

–
⎩ ⎭
⎨ ⎬
⎧ ⎫

=



266 A. Rama Chandra Murthy, G.S. Palani, Nagesh R. Iyer and Smitha Gopinath

The choice of the σ(ω) function influences the prediction of the structural response significantly,
and the local fracture behavior, for example the crack opening displacement, is particularly sensitive
to the shape of σ(ω). Many different shapes σ(ω) curves, including linear, bilinear, trilinear, exponential,
and power functions, have been used in the literature. Some of the widely used σ(ω) curves with
appropriate expressions are listed in Table 1.

3. SIF accounting for tension softening and remaining life prediction

In this approach, one of the major assumptions is to use fracture mechanics principles to describe
the crack growth phenomena during the acceleration stage of fatigue crack growth in concrete. The
fatigue mechanism in plain concrete may be attributed to progressive bond deterioration between
aggregates and matrix or by development of cracks existing in the concrete matrix. These two
mechanisms may act together or separately, leading to complexity of the fatigue mechanism. It is
well known fact that concrete typically exhibits nonlinear fracture processes because of the large
FPZ, leading to LEFM based approach objectionable. Hence an analytical model for assessing the
fatigue life of concrete accounting the tension softening effect is required. The following are the

Table 1 Different types of closing pressure for FPZ (Continued)

Type Expression Shape

Gopalaratnam and 
Shah (1985)

where k and λ are material parameters

similar relationship 
was also suggested 
by Cedolin, et al. 

(1987)

k = −0.06163 and λ = 1.01 for concrete with
  values of 33-47 MPa.

Power curve - 
Du, et al. (1990)

Bilinear curve with 
w1 = 0 - Figueiras 
and Owen (1984) where, k=constant

Power curve - 
Hordijk (1991)

where a1 and a2 are fitting parameters
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basic assumptions of tension softening.
Modelling assumptions
i. Plane sections of the beam remain plane after deformation
ii. Fictitious crack surface remains plane after deformation
iii. Normal closing fractions acting on the factious crack follow the linear stress crack opening

displacement
iv. Fiber bending stress in the concrete along the bottom of the beam is equal to the fraction

normal to the crack mouth at the bottom of the beam.

To incorporate the tension softening behavior, based on the principle of superposition the stress
intensity factor (SIF) has to be modified as (Fig. 3),

(3)

where  is SIF for the concentrated load P in a three point bending beam geometry, and  is
SIF due to the closing force applied on the effective crack face inside the process zone, which can
be obtained through Green’s function approach by knowing the appropriate softening relation.
Superposition principle is used by accounting the non linearity in incremental form. SIF due to
applied load and due to closing force will act in opposite directions. KI will not become zero as the
magnitude of  is around 10 to 20% of .

3.1. Computation of 

SIF due to the concentrated load P can be calculated by using LEFM principles. A three-point
bending beam is shown in Fig. 3(b). The SIF for the beam can be expressed as

(4)

where P = applied load, a = crack length, b = depth of the beam, t = thickness and g1(a/b) = geometry

KI K I
P K I

q–=

K I
P K I

q

K I
q K I

P

K I
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P σ πag1

a
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---
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⎛ ⎞= where σ, 3PS

2b2t
----------=

Fig. 3 Illustration of superposition principle
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factor, depends on the ratio of span to depth of the beam and is given below for S/b = 2.5 (Tada, et
al. 1985).

(5)

3.2. Computation of 

The incremental SIF due to the closing force dq can be written as, (Shah, et al. 1995)

(6)

where dq can be expressed as function of softening stress distribution over the crack length Δa; the
function ‘g’ represents the geometry factor. 

Calculation of ‘dq’
By using the above concept (Fig. 3(d)), cohesive crack can be modelled in the following manner

(Fig. 4).
The crack opening displacement w at any point x is assumed to follow linear relationship (Fig. 4)

and can be expressed as,

         (7)

where δ is the crack tip opening displacement, a0 is initial crack length and.

As an example, let us consider linear softening law (refer Table 1) 

(8)
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σ ft 1 w wc⁄–( )=

Fig. 4 Cohesive crack modelling
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Where ft = tensile strength of concrete and wc = critical crack opening displacement
Substituting for w from Eq. (7) in the linear softening law given by Eq. (8), one can obtain,

(9)

The crack opening displacement at any point δ(x) can be calculated using the following equation

(10)

where CMOD is crack mouth opening displacement and is calculated using the following formula.

(11)

where g2(a/b) is geometric factor, depends on the ratio of span to depth of the beam and is given
below for S = 2.5b

(12)

Hence, replacing dq in Eq. (6) and integrating over length Δa,  can be obtained as,

(13)

where

(14)

Similar expressions can be obtained for other models such as bilinear, trilinear, exponential, power
law etc., Remaining life can be predicted by using any one of the standard crack growth equations
(such as Paris, Erdogan-Ratwani, etc.,)

(15)

Here ΔK can be computed by using following expression

DK = Kmax – Kmin, where Kmax = Kp – Kq (16)
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4. Numerical studies

Crack growth analysis and remaining life prediction studies have been carried out by using LEFM
and NLFM principles for concrete three point bending specimens under constant amplitude loading.
The details of the studies are presented below. 

4.1. Problem1 

This problem was studied by Toumi and Turatsinze (1998) for three point bending concrete
specimen (refer Fig. 5).

Length (S) = 320 mm
Depth (b) = 80 mm
Thickness (t) = 50 mm
Initial crack length (ao) = 2 to 4 mm
Compressive strength = 57 MPa
Tensile strength = 4.2 MPa 
Fracture toughness = 0.63 MPa
Crack growth equation = Paris
Min. load =198.72 N 
The bending tensile stress (fb) can be calculated by using the formula given below

fb = 3PS / 2tb2  (17)

Crack growth analysis and remaining life prediction has been carried out using LEFM and NLFM
principles.

4.1.1. Using LEFM principles
Remaining life has been predicted for the different loading cases using LEFM Principles. Geometric

factor is calculated by using the expression given below (Tada, et al. 1985).

(18)

Table 2 shows the predicted remaining life values for various loading cases along with the
experimental values presented by Toumi and Turatsinze (1998). From Table 2, it can be observed
that there is maximum of about 12% difference between the predicted and experimental values.

m

g1
a
b
---
⎝ ⎠
⎛ ⎞ 1.0 2.5a b⁄– 4.49 a b⁄( )2 3.98 a b⁄( )3– 1.33 a b⁄( )4+ +

1 a b⁄–( )3 2⁄
-----------------------------------------------------------------------------------------------------------------------=

Fig. 5 Three point bending problem
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The difference in the values is attributed to not considering the tension softening effect in the
analysis. Fig. 6 shows the variation of predicted remaining life with crack length for differed
loading cases. 

Table 2 Predicted remaining life values using LEFM principles

S. No. Max. Stress
(MPa)

Crack growth constants Remaining life (Cycles)

% diff.C
(μm/cycle) m Present study

Literature
(Exptl.) Toumi and 
Turatsinze (1998)

1 1.125 6.45 4.18 28689 32222 10.96
2 1.05 0.33 2.31 57251 63611 9.98
3 0.975 0.26 2.25 62603 69444 9.82
4 0.9 2.04 2.6 16188 18333 11.70

Fig. 6 Crack length vs remaining life - LEFM

Table 3 Remaining life prediction using various tension softening models

Max.stress 
MPa

Remaining life using

Linear Bilinear Trilinear Expo. Model 
by Footer

Expo. Model 
by Reinhardt

Power 
model

Exptl
Toumi and 
Turatsinze 

(1998)

1.125 33304 32251 32942 33308 33102 30887 32222
1.05 66747 63892 65032 66781 65348 61011 63611
0.975 74775 69692 70998 74791 71346 66592 69444
0.9 19102 18479 18801 19116 18892 17612 18333
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4.1.2. Using NLFM principles

Crack growth analysis and remaining life prediction has been carried out by accounting the
tension softening effect. Various tension softening models are used to account for the tension
softening effect in SIF computation. Table 3 shows the predicted remaining life by using various
tension softening models along with the experimental values. From Table 3, it can be observed that
the predicted remaining life using linear, tri-linear and exponential models is larger compared to
corresponding experimental values. It can also be observed that the predicted remaining life using
bi-linear and power curve models are in good agreement with the experimental values. Fig. 7 shows
a plot between crack length and remaining life for various tension softening models. From the plot,
it can be observed that the predicted remaining life is larger for linear model compared to other
tension softening models.

Remaining life is also predicted by using modified bi-linear model. Table 4 shows the predicted
remaining life for different values of k used in the modified bi-linear model. From the Table, it can

Fig. 7 Crack length Vs remaining life - NLFM

Table 4 Remaining life using modified bilinear model

Max.stress 

Remaining life using modified Bilinear model, 

with w1=0

Exptl
Toumi and 
Turatsinze 

(1998)
k=0.9 k=0.8 k=0.7 k =0.6 k=0.5

1.125 32809 32310 31826 31352 30982 32222
1.05 64842 63862 62740 61893 61063 63611
0.975 71102 69672 68412 67568 66510 69444
0.9 18678 18441 18096 17806 17417 18333

σ kft 1.0
w
wc
------–⎝ ⎠

⎛ ⎞=
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be observed that the predicted remaining life with k = 0.7 and 0.6 is in very good agreement with
the corresponding experimental values.

4.2. Problem 2 

Crack growth studies and remaining life prediction has been carried out using LEFM and NLFM
principles for concrete three point bending specimens under constant amplitude loading. This
problem was experimentally studied by [Bazant and Schell 1993]. The details of the studies are
presented below. 

Beam depth (b) = 38.1, 107.8, 304.8 mm
Span (S) = 2.5 * D mm
Thickness (t) = 38.1 mm
Initial crack length = b/6 mm
Modulus of elasticity = 38,300 MPa
Tensile strength = 8.9 MPa
Other input details are given in Table 5

4.2.1. Using LEFM principles
Remaining life has been predicted for the different loading cases using LEFM Principles. Table 5

shows the predicted remaining life values for the various loading cases along with the experimental

Table 5 Predicted remaining life values using LEFM principles

Sl. No. Details of 
beam, mm

Max. stress, 
MPa

Min. Stress, 
MPa

Crack growth constants Remaining life

Diff(%)
Log C m

Present 
study

Exptl.
Bazant and 

Schell (1993)

1 b=38.1 
S=95.25
t=38.1

0.291 0.0279 -65.264 8.525 29010 33409 13.17

2 b=107.8
S=268.75
t=38.1

0.07422 0.00675 -64.07 8.099 6779 7450 9.00

3 b=304.8
S=762
t=38.1

0.01915 0.00174 -66.235 8.248 36642 40867 10.338

Table 6 Remaining life prediction using various tension softening models

Max.stress
 MPa

Remaining life using

Linear Bilinear Trilinear Expo. Model 
by Footer

Expo. Model 
by Reinhardt

Power 
curve

Exptl.
Bazant and 

Schell (1993)

0.291 34862 33496 34129 34982 34672 31982 33409
0.07422 7789 7498 7662 7801 7754 7162 7450
0.01915 42812 41146 41970 42798 42486 39102 40867
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values reported by Bazant and Schell (1993). From Table 5, it can be observed that there is
maximum of about 13% difference between the predicted and experimental values. The difference
in the values can be attributed to not considering the tension softening effect in the analysis.

4.2.2. Using NLFM principles
Crack growth analysis and remaining life prediction has been carried out by accounting for the

tension softening effect. Various tension softening models are used to account for the tension
softening effect in the SIF computation. Table 6 shows the predicted remaining life by using various
tension softening models along with the experimental values. From Table 6, it can be observed that
the predicted remaining life using linear, tri-linear and exponential models is higher compared to
corresponding experimental values. It can also be observed that the predicted remaining life values
using bi-linear and power curve models are in good agreement with the corresponding experimental
values. 

Remaining life is also predicted by using modified bi-linear model with different values of k.
Table 7 shows the predicted remaining life obtained by using the modified bi-linear model. From
the Table, it can be observed that the predicted remaining life with k=0.7 and 0.6 is in very good
agreement with the corresponding experimental observations.

Table 8 Predicted remaining life values using LEFM and NLFM principles

Sl. No
Max. 
Stress
MPa

Stress 
ratio

Initial crack 
length, mm

Crack growth 
constants 

Remaining life (Cycles) predicted by using 

LEFM
NLFM (modified bi-linear)

C m (k=0.7) (k=0.6)

1
2
3

0.5194
0.1
0.2
0.3

75
7.71e-25
5.78e-24
1.72e-24

3.12
3.12
3.15

38078*
33176
25436

43290
37682
28842

42612
37103
28367

4
5
6

0.692
0.1
0.2
0.3

75
7.71e-25
5.78e-24
1.72e-24

3.12
3.12
3.15

24536
21987
14789

27762
24912
16744

27412
24492
16482

7
8
9

0.4328
0.1
0.2
0.3

85
7.71e-25
5.78e-24
1.72e-24

3.12
3.12
3.15

25123
22453
17936

28382
25391
20112

28102
25010
19982

* − Experimental value 44000 [16]

Table 7 Remaining life using modified bilinear model

Max.stress 

Remaining life using modified Bilinear model, 

 With w1=0

Exptl 
Bazant and 

Schell 
(1993)

k=0.9 k=0.8 k=0.7 k=0.6 k=0.5

0.291 34117 33546 32983 32484 32101 33409
0.07422 7692 7512 7368 7213 7146 7450
0.01915 41848 41098 40315 39684 39128 40867

σ kft 1.0
w
wc
------–

⎝ ⎠
⎛ ⎞=
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4.3. Problem 3

Another example problem has been chosen for crack growth analysis and remaining life
prediction. This problem was studied by Baluch, et al. (1987).

Length of supported span (s) = 1360 mm
Thickness (t) = 51 mm
Depth (b) = 152 mm
Fracture toughness = 1.16×106 N/m3/2

Other input details are shown in the Table 8
Table 8 shows the predicted remaining life for different loading cases using LEFM and NLFM

principles. From Table 8, it can be observed that there is about 11% diff. between the predicted
value and the corresponding experimental value in the case of LEFM. Table 8 also shows the
predicted remaining life using modified bi-linear model with k=0.7 and 0.6. It can be observed that
the predicted values are in very good agreement with the experimental value. For other loading
cases, the experimental values are not available in the literature for comparison. Since the
methodologies for crack growth analysis and remaining life prediction accounting for tension
softening effect have been well tested and verified for the previous problems, it can be assumed that
the predicted remaining life is reliable.

5. Summary and concluding remarks

Methodologies for remaining life prediction of concrete structural components accounting for
tension softening effects have been presented. Non-linear fracture mechanics principles have been
used for crack growth analysis and remaining life prediction. Various tension softening models such
as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate
expressions. A methodology to account for tension softening effects in the computation of SIF and
remaining life prediction of concrete structural components has been presented. The tension
softening effects has been represented by using any one of the models mentioned above. Numerical
studies have been conducted on three point bending concrete structural component under constant
amplitude loading. Remaining life has been predicted for different loading cases and for various
tension softening models. The predicted values have been compared with the corresponding
experimental observations. The main observations from the study are:

● The predicted life using linear, tri-linear and exponential models is higher compared to
experimental values

● In general, the predicted life using bi-linear and power curve model is in close agreement with
the experimental values

Parametric studies on remaining life prediction have also been carried out by using modified
bilinear model. From the parametric studies, it is observed that the predicted remaining life with
k=0.7 and 0.6 of modified bi-linear model is in very close agreement with the corresponding
experimental values. 

From the overall study, it can be concluded that the methodologies for crack growth analysis and
remaining life prediction of concrete structural components can be effectively used for reliable
remaining life prediction. A modified bi-linear model with k=0.7 and 0.6 can be used to account for
tensioning softening effect in the analysis.
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