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Hypoelastic modeling of reinforced concrete walls
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Abstract. This paper presents a new hypoelasticity model which was implemented in a nonlinear finite
element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity
constitutive relationship utilizing the rotation of material axis through successive iterations. The model can
account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the
softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high
levels of compressive load. This research introduces the modified version of the common application
orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the
principal of “simplicity” by improvement of the “capability”. The results of analyses of experimental
reinforced concrete walls are presented to confirm the abilities of the proposed relationships.
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1. Introduction

In recent years, a large number of constitutive models for concrete materials have been developed,
but the models that are rational, reliable, practical and simple to implement in a general purpose
finite element analysis program are very limited. A rational concrete model should be able to
describe adequately the main characteristics of the complete stress-strain behavior of concrete
materials, ranging from a tension with a low confining pressure to a compressive state with very
high confining pressure, besides dealing with both the pre-peak and the post-peak regimes;
furthermore, the reliability of an applicable model is closely related to its numerical stability, which
in turn depends on its formulation and the numerical techniques adopted for its computer
implementation. This practical application requires that the model should be as simple as possible,
as long as the main characteristics of the constitutive behavior of the concrete materials are
“captured”. The main characteristics of a proper model for concrete materials can be summarized as
follows:

(i) The high nonlinearity of the stress-strain behavior of concrete in the pre-peak regime, i.e.,
growing and propagation of micro-cracks resulting in a decrease in the material stiffness.
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(ii) The softening behavior of concrete in the post-peak regime resulting from the localization of
macro-cracks in narrow bands. 

(iii) The irrecoverable volume dilatation at high level of compressive load resulting in an increase
in the Poisson’s ratio.

All of the above features for concrete are included in the material model developed during this
course of study. This model can be treated as a hypoelastic model which is very simple to
implement in a nonlinear finite element analysis program. The incremental nature of the hypoelastic
models along with the nonlinear stress-strain relationship utilized in the proposed model, capture the
nonlinear stress-strain behavior of concrete. The proposed constitutive model is applicable for the
entire stress or strain history including the post-peak regions and can model the strain softening
behavior of concrete through the assumed nonlinear stress-strain curve. A variable Poisson’s ratio is
used to account for volume dilatation at high stress levels.

In the followings, a brief review on the objective of the reinforced concrete constitutive models is
stated. Afterwards, the proposed analytical model will be introduced in detail. Eventually, the
analytical procedure is verified by a set of numerical analysis, consisting of shear panel W-2 tested
by Cervenka (1970), squat shear walls, namely DP1 and DP2, tested by Palermo and Vecchio
(2002), and SW shear walls tested by Lefas, et al. (1990). 

2. Review of constitutive models for concrete
 
Extensive research over the past decades has led to a few constitutive models for concrete which

are based on the principles of continuum mechanics and neglect the microstructure of the concrete.
These include elasticity-based models, plasticity-based models, plastic-fracturing models, elastic-
plastic-damage models, and the endochronic model (ASCE 1982). Elasticity-based models are
among the most popular constitutive relationships used in conjunction with the finite element
analysis of concrete structures. These models are simple and can be easily formulated and
implemented. Several elasticity-based constitutive models can be found in the literature, but in
general they can be grouped under the following approaches: (i) Linear elastic model; and (ii) Non-
linear elastic models. Hypoelastic models are from the second category. 

An alternative approach to overcome some deficiency associated to the other linear models is to
describe the material behavior in terms of increments of stress and strain. The stress-strain
relationships are then expressed using the tangent stiffness which varies with the current stress state.
Thus, this class of model is generally dependent on the deformation history. The behavior of this
class of model is infinitesimally (or incrementally) reversible (elastic behavior). Literally, “hypo”
means “in a lower sense” or “to a lower degree”. Hence, hypoelastic can imply a material that is
elastic to a lower or incremental sense. A hypoelastic material can be interpreted to be capable of
allowing for inelastic or plastic behavior. If the orthotropic models are expressed in terms of
increments of stress and strain, they are called hypoelastic models. Some of those include the
models proposed by Liu, et al. (1972), Darwin and Pecknold (1974), Elwi and Murray (1979),
Bathe, et al. (1989), Bouzaiene and Massicotte (1997), and Balan, et al. (2001). The constitutive
models of Liu, et al. (1972) and Darwin and Pecknold (1977) are developed as two-dimensional
stress-strain relationship while the other constitutive models are developed as three-dimensional
stress-strain relationship. The two-dimensional stress-strain relationships are much simpler for
implementation into a computer program and adequate for models consisting of the shell element
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types; therefore, these types of models would be more widespread in the analytical studies. In this
regard, the constitutive law proposed by Darwin and Pecknold (1974) is well recognized among the
researchers; although, almost three decades have passed from its invention, but some of the
researchers still take the advantage of the model, e.g., refer to a set of studies carried out by Kwak
and Kim (2001, 2004a, 2004b). Here, some alterations are proposed to improve the abilities of the
constitutive relationship developed by Darwin and Pecknold (1974). 

3. Analytical model

3.1. Constitutive model for uncracked concrete

Generalized incremental Hooke’s law for an orthotropic material under biaxial loading is as
follows:

(1)

Eq. (1) is modified according to the following assumptions: To satisfy the energy conservation
principle, the elastic material stiffness matrix should be symmetric, so: . To define the
Poisson’s ratios ( ), it is imposed: , where  is the initial stiffness
modulus and ν is the equivalent Poisson’s ratio. Because of lack of information related to the shear
modulus of elasticity of the concrete, G, it is also assumed to be independent of the axis orientation.
These assumptions result in . At last, the incremental
stress-strain relationship in Eq. (1) takes the following form (Shayanfar 1995):

(2)

The above constitutive matrix contains four material constants which are the instantaneous
tangent stiffness moduli in the principal directions 1 and 2, i.e., E1 and E2, the equivalent Poisson’s
ratio, ν, and the initial modulus of elasticity, E0. The evaluation of these parameters at each load
stage is presented in next sections.

The constitutive matrix should be transformed into the global coordinate system. The
reinforcement steel contribution should be added to it; and, finally the element stiffness matrix has
to be obtained; formulations of such subjects are discussed in detail elsewhere by Shayanfar (1995).
If the angle between the local coordinate system (old system) and the principal coordinate system
(new system) is denoted by θ, the constitutive matrix in local coordinate system can be obtained
using:
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(3)

3.1.1. Equivalent uniaxial strains
The “equivalent uniaxial strain” idea has been adopted as described here. For an increment of

stress or strain, the material can be assumed to behave as a linear elastic material and the principle
of superposition can be considered to be applicable. Thus, the state of “real” stress at any point of
the element in its principal plane is composed of two distinct cases (see Fig. 1):

(i) Stress is applied only along the axis 1 (  and ), and the resulting incremental
strains in the principal directions 1 and 2 are  and , respectively (see Fig. 1(b));

(ii) Stress is applied only along the axis 2 (  and ), and the resulting incremental
strains in principal directions 1 and 2 are  and , respectively (see Fig. 1(c)).

(iii) The condition for equivalence of the systems (a) and (b+c) is (see Fig. 1):

(4)

After some mathematical manipulations and using proposed constitutive matrix, the incremental
equivalent uniaxial strains, , based on the current incremental “real” strains, , (i=1,2)
relationships can be derived: 

(5)

By following a similar procedure, Eq. (5) takes the following form based on Darwin and
Pecknold (1974)’s constitutive matrix:
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Fig. 1 Schematic representation of real strains and equivalent uniaxial strains
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(6)

 It is obvious that the use of Eq. (6) is limited to the case where the moduli of elasticity (E1 and
E2) have positive non-zero values. This condition (non-zero value for the modulus of elasticity)
occurs when the state of stress in two principal directions is located on the ascending branch of the
stress-strain curves. Based on several analyses, it was noticed that when the tangential stiffness, Ei,
becomes nearly zero, the error of the incremental equivalent uniaxial strain, , resulting from
Darwin and Pecknold (1974)’s method ( ) becomes larger, and compression failure of
the concrete occurs suddenly with a rapid increase of the equivalent uniaxial strain. On the other
hand, the equivalent uniaxial strains evaluated using Eq. (5) does not suffer from the difficulty
arising from the division by zero, or a very small value. Therefore, the incremental stress-strain
relationship in Eq. (5) is applicable for the entire stress or strain history (in both pre- and post-peak
regions), while Eq. (6) can only be used for the pre-peak regime. With the crucial assumption of
concrete being an isotropic material, i.e., , Eq. (5) takes the similar form as proposed
by Noguchi (ASCE 1985).

3.1.2. Rotation of material axis
During the subsequent iterations/load steps, because of the presence of shear stresses the principal

and material axes rotate. The material axes are assumed to coincide with the principal axes. A
schematic representation of the material principal axes during two subsequent iterations/load steps is
shown in Fig. 2. The orientation of each principal coordinate system is measured with reference to
the local coordinate system of the element.

In each iteration/load step, the angle between the current principal coordinate system and the
previous coordinate system, , is obtained and then the previous equivalent uniaxial
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Fig. 2 Schematic representation of different coordinate systems at any point of an element
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strain vector is transformed by the angle to obtain its projection in the new principal coordinate
system. At last, by performing some mathematical transformations as described by Shayanfar
(1995), the new equivalent uniaxial strain vector is calculated. It can be proved based on the above
concept, the equivalent uniaxial strain is obtained from the “real” principal strains and the material
parameters (and) corresponding to the previous load stage. In Darwin and Pecknold (1974)’s model,
the material axes are not transformed if the principal axis rotates within ±45 degrees from their
original position; beyond this limit, the material axes are transformed. This method introduces a
discontinuity in the computed equivalent uniaxial strains and causes more errors in the computation
process (ASCE 1985). The method adopted in this study as outlined earlier, ensures the continuity
of the computed equivalent uniaxial strains and gives more reliable results.

3.2. Constitutive model for cracked concrete

Cracking of concrete is one of the important aspects of material nonlinear behavior of concrete.
Intensive research effort has resulted in a large number of cracking models, which can be divided
broadly into two categories, namely, discrete cracking models and smeared cracking models.
Furthermore, within each category, these models can be applied either with a strength-based, or
fracture mechanics based crack propagation criterion. The relatively simple strength-based smeared
cracking model is a good choice for modeling of cracked RC elements when the global behavior of
the structure is to be studied. Also, this model could be used successfully in studying the local
behavior of the reinforced concrete elements.

3.2.1. Smeared crack model
The smeared crack model developed by Rashid (1968) has been adopted by the majority of

investigators in the area of nonlinear finite element analysis of reinforced concrete structures. This
model offers automatic generation of cracks, without a redefinition of the finite element topology
and complete generality in possible crack direction. Based on this procedure, the cracked concrete is
represented as an orthotropic material with an infinite number of parallel fissures across that part of
the finite element. After cracking has occurred (usually defined when the principal tensile stress or
strain exceeds a predefined limiting value), the constitutive matrix is defined as:

(7)

In which  and E2 are the tangential stiffnesses perpendicular and parallel to the crack
direction, respectively. Once the second crack is detected in the direction perpendicular to the first
crack, the tangential stiffnesses E2 is also set to zero. The factor  is the multiplier of
the uncracked concrete shear stiffness, G, which accounts for the reduced shear stiffness after
cracking has resulted from dowel action and aggregate interlock, and is called the “shear retention
factor”. It should be noted that in the rotating crack model of concrete, the numerical simulation of
cracking is not greatly influenced by shear retention factor. To model the tension-stiffening effect
using the descending branch of the tensile stress-strain curve, E1 is determined as the secant
modulus of elasticity.

The cracking models employed in conjunction with the smeared crack procedure can be
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categorized into the following three groups: (1) Fixed crack models, (2) Rotating crack models, and
(3) Multiple orthogonal crack models. The analysis of shear wall specimens represented herein,
have been performed utilizing rotating crack model. In rotating crack models, the cracking direction
is taken to be perpendicular to the current major principal strain at any stage of loading. The stiff
response resulting from fixing the principal directions is eliminated by using this model. 

3.2.2. Compressive strength degradation after cracking 
While cracking takes place, the concrete parallel to the crack direction is still capable of resisting

tensile or compressive stresses. If it is subjected to tension, a linear elastic behavior for concrete is
assumed up to a tensile stress level equal to the tensile strength of concrete, , which represents
the onset of the linear softening branch of tensile stress-strain curve of concrete.

However, when concrete is subjected to compression, the damages caused to the concrete with
the transverse post-cracking tensile strains, have a degrading effect not only on the compressive

f t
′

Fig. 3 Uniaxial stress-strain curve
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strength of the concrete, but also on its compressive stiffness. The following formulas (Vecchio and
Collins 1986) are used to determine the degraded compressive strength of the concrete, , and
the associated compressive strain, :

(8)

Here,  is the current tensile strain in principal direction 1 and  is the uniaxial concrete strain
at the peak stress.

3.3. Stress-strain curve of concrete 

An analytical expression which represents the stress-strain curve of a cylinder of concrete
subjected to monotonically increasing compressive loads up to failure should be employed in the
model. The following relationship (Thorenfeldt, et al. 1987) is able to accurately represent the
family of stress-strain curves for different strength concretes including the high strength concrete is
adopted. This expression relating the stress, , and the equivalent uniaxial strain caused by this
stress, , is introduced as (Fig. 3(a)):

(9)

Where: = current compressive principal stress in principal direction i, = equivalent uniaxial strain
resulted from , = compressive strength of biaxially loaded concrete resulting from the failure
envelope curve, = equivalent uniaxial strain when  reaches = curve fitting factor in principal
direction i, and = factor to increase the post peak decay in stress. Here,  is equal to 1 when 
is less than 1, and it is a number greater than 1 when   exceeds 1. Collins and Porasz (1989)
suggested the value of  for  as . The parameter  takes a value greater
than 1 and is evaluated using the equation: . In the computer program if the calculated
value for  is less than or equal to 1, it is assigned a value of 1.1. Eq. (9) makes the relationship
between  and  as a function of four constants: ,  and . These four constants can all be
obtained from the compressive strength of the concrete, , which is evaluated from the failure envelope
curve suggested by Kupfer and Gerstle (1973) depending on the biaxial loading ratio ( ). If the
initial slope  of the stress-strain curve (initial modulus of elasticity) is known, or it can be estimated,
the strain at peak stress  can be found from . The initial tangent stiffness of
the concrete, E0, lies between the stiffness of the aggregate and the stiffness of the paste; it can be
estimated by using experimental relationships. The values of E1 and E2 required in Eq. (2) for a given
stress ratio ( ) are found as the slopes of the  and  curves, respectively. The
tangent to the ascending branch of the stress-strain curve, Eq. (9), is given by . For the
elastic tension region (ascending branch of tensile stress-strain curve), Ei is assumed to be equal to E0 and
for the descending branch of the compression zone, Ei is set equal to zero to avoid computational
difficulties associated with a negative value for Ei. The value of Ei in this region is given by the user and
the unbalanced stresses are released in a step-wise fashion. In descending branch of the tension zone, the
secant stiffness model was employed. See Fig. 3(a). 
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3.4. Equivalent Poisson’s ratio

Concrete under uniaxial and biaxial compression first compacts and then dilatates due to the
internal microcracking. To take this dilatancy of concrete into account the value of the equivalent
Poisson’s ratio is assumed to be of the following form (Ottosen 1979):

(10)

in which, νi is the initial Poisson’s ratio; γ2 is the nonlinear index which represents the ratio of the
actual compressive stress, σ2, to the corresponding value of that stress at failure (ultimate strength), σ2c,
( );  is the Poisson’s ratio at failure and set equal to 0.36; and  is the nonlinear index
corresponding to the onset of dilatancy which is set to be 0.80; because the Poisson’s ratio starts to
increase at the stress level corresponding to  (Kupfer, et al. 1969). In the model, an upper
bound  is set to eliminate problems associated with the Poisson’s ratio approaching 0.5;
theoretically, material with  are uncompressible. For the tension-tension stress condition, ,
is applicable. The initial Poisson’s ratio, , is assumed to be equal to 0.20.

3.5. Failure criteria for concrete

Behavior of concrete under biaxial stress states, as reported by a number of investigators is
remarkably different from that under uniaxial conditions. Based on the experimental observation
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Fig. 4 Typical biaxial failure envelope for concrete (Ghoneim 1978)
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under biaxial compression, the compressive strength of the concrete increases because of the
internal friction and aggregate interlock. Conversely, a lateral compressive stress decreases the
tensile strength of the concrete because the compressive stress introduces tensile stresses at the
micro-level due to the heterogeneity of the material which increases the process of internal damage
as reported by Vonk (1990). A lateral tensile stress has no major influences on the tensile strength
of concrete. To account for these phenomena, the failure envelope proposed by Kupfer and Gerstle
(1973), is employed to obtain the compressive and tensile strength of concrete under the biaxial
stress state. The lateral tensile stress beyond cracking can also decrease the compressive strength of
concrete as obtained by Vecchio and Collins (1986), and Feenstra and de Borst (1993). To account
for this, the model proposed by Vecchio and Collins (1986) is used in the proposed formulation as
discussed earlier. The biaxial strength envelope curve developed (Fig. 4) by Kupfer, et al. (1969) is
used in the program built up in the present study.

3.6. Constitutive relationship for steel reinforcement

The behavior of steel reinforcement is basically uniaxial and consequently modeling of its behavior is
relatively simple compared to that of the concrete. Two aspects of steel models are relevant here; the
representation of steel in the finite element model and the constitutive relationship. The three most
common methods used to represent reinforcing steel in finite element models are: (1) Distributed
(smeared) model, (2) Embedded model, and (3) Discrete model. Program can use both distributed and
embedded model for steel reinforcements. The steel reinforcement is treated in HODA program as an
elasto-plastic-strain-hardening material as shown in the Fig. 3(b). 

3.7. Nonlinear finite element formulation

The history and capabilities of HODA program are extensive and can be found in literature, e.g.
see Shayanfar (1995). But in quick view, this program can depict, through the entire monotonically

Fig. 5 Facet shell element and associated degree of freedoms
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increasing load range, the static and reversed cyclic response of any plain, reinforced or prestressed
concrete structure that is composed of thin plate members. This includes beams, slabs (plates),
shells, folded plates, box girder, shear walls, or any combination of these structural elements. Time-
dependent effects such as creep and shrinkage can be also studied. The element library includes

Fig. 6 Solution procedures flowchart
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membrane, plate bending, facet shell, one-dimensional bar, and boundary elements. Fig. 5 shows
facet element which has been used for modeling the RC walls. The program employs a layered
finite element approach. The structure is idealized as an assemblage of thin constant thickness plate
elements with each element subdivided into a number of imaginary layers. Each layer is assumed to
be in plane stress condition, and can be in any state - uncracked, partially cracked, fully cracked,
non-yielded, yielded, and crushed - depending on the stress or strain conditions. Analysis is
performed using an incremental-iterative tangent stiffness approach, and the stiffness of the element
is obtained by adding the stiffness contributions of all layers at each Gauss quadrature point. The
incremental-iterative procedure with a tangent stiffness scheme has been adopted in HODA
program. Convergence criteria are utilized to stop the iterations in each load step as soon as a
required degree of accuracy has been attained. In the HODA program, two convergence criteria are
adopted: (1) absolute values of input convergence/divergence data, and (2) convergence/ divergence
criteria that uses input percentage factors to be multiplied by the solutions computed in the first
iteration of each load step. For any of these procedures two possible convergence criteria are used:
“the force convergence criterion” and “the displacement convergence criterion”. As for the
convergence criteria, two possible divergence criteria are also available in the HODA program. The
program solution procedures are explained by a flowchart in Fig. 6. This program was recently
developed further to account for reinforced concrete members with corroded reinforcements
(Shayanfar, et al. 2007, Shayanfar and Safiey 2008).

4. Comparison of predictions and experimental results

4.1. Reinforced concrete shear panel, W-2

The shear panel W-2, tested by Cervenka (1970) under monotonically increasing load, is
investigated in this example. The panel consists of orthogonally reinforced square plates, 762×762
mm2 (30×30 in2) in size, and 76.2 mm (3 in) in thickness. Two panels are combined to form one
beam like the specimen shown in Fig. 7. The material properties of the shear panel are summarized
in Table 1. Because of symmetry, only one-half of the specimen is idealized for the finite element
analysis. The wall is divided into 80 rectangular finite elements for analysis using the HODA
program (see Fig. 8). Plane stress conditions are assumed, and therefore, a finite element consisting
of one layer of concrete is sufficient. The total load is applied at the two points on the outer rib as
shown in Fig. 8. The horizontal and vertical reinforcements are represented by smeared steel layers;
but, the vertical reinforcements of the ribs are modeled using discrete bar elements and are lumped
in single bars at the reference surfaces. A 4×4 Gauss quadrature is used for estimating the
integrations involved. The material properties of the concrete and the reinforcing steel used are the
same as those used in the experiment and are presented in Table 1. The value of  for each mesh
size is calculated by the program using the proposed model to eliminate the mesh size dependency
draw back; the details of the model are discussed elsewhere by Shayanfar, et al. (1997). 

The analytical load-deflection curve for the shear panel W-2 is compared with experimental
results in Fig. 9. The initiation of cracks predicted by the analytical model agrees well with the
experimental findings as shown in Fig. 9. It can be observed from the load-deflection curves shown
in Fig. 9 that the analytical responses exhibit flexible behavior in comparison to the experimental
response at load levels beyond 85 kN after initiation of cracks. It is very difficult to attribute this

εtu
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decreased stiffness to any single parameter, but it is likely to be caused by the employed “tension
stiffness” model; the descending branch of concrete tensile stress-strain curve in a simple manner
was assumed as a straight line. However, upon the initiation of the yielding of specimens, the load-
deflection curve follows the experimental response closely until the failure of the panel. The
ultimate load predicted by the HODA program is 117 kN, which is only 0.76% lower than the
experimental ultimate load of 117.9 kN. The ultimate mid-span deflection predicted by the HODA
program is 11.7 mm, which is 23% higher than the experimental ultimate deflection of 9.5 mm (See
Table 2). The initial stiffness of the analytical load-deflection curve is 157.93 kN/mm, which is
5.6% softer than the experimental value (167.32 kN/mm). 

Fig. 7 Details of reinforcements and geometry for shear panel W-2 (Cervenka 1970)
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Fig. 8 Mesh configuration for shear panel W-2 (80 elements)

Table 1 Material properties of reinforced concrete walls 

Material 
Properties W-2

DP1 DP2

SW21 SW22 SW25 SW26Web and
Flange 
Walls

Top Slab Web and
Flange 
Walls

Top Slab

, MPa 25.16 21.7 43.9 18.8 38.0 36.38 43.01 38.25 25.59
, MPa 3.654 2.5 4.0 1.7 2.1 1.99† 2.16† 2.04† 1.67†

E0, MPa 19996.0 25900.0 36800.0 18580.0 26414.0 30158.0† 32791.0† 30923.0† 25291.0†

εc 0.0025 0.00212 0.00196 0.00212 0.00196 0.003† 0.003† 0.003† 0.003†

εu 0.0035† 0.0035† 0.0035† 0.0035† 0.0035† 0.01† 0.01† 0.01† 0.01†

fy, MPa

353.02 605.0 550.0 605.0 550.0 470.0
(d1=8.0)
520.0
(d2=6.25)
420.0
(d3=4.0)

470.0
(d1=8.0)
520.0
(d2=6.25)
420.0
(d3=4.0)

420.0
(d1=4.0)
520.0
(d2=6.25)
470.0
(d3=8.0)

470.0
(d1=8.0)
520.0
(d2=6.25)
420.0
(d3=4.0)

Es, MPa 188230.0 190250.0 219120.0 190250.0 219120.0 213745.0† 213745.0† 213745.0† 213745.0†

εsu 0.036 0.0883 0.1† 0.0883 0.1† 0.13† 0.13† 0.13† 0.13†

†=assumed value

f c′
f t′
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4.2. The squat shear walls, DP1 and DP2

The reliability of the proposed material model under monotonic load conditions once more is
examined by analysis of more complicated specimens. For this purpose, the shear walls, namely,
DP1 and DP2, tested by Palermo and Vecchio (2002) under reversed cyclic loading are undertaken.
The walls system consisted of three isotropically and orthogonally reinforced square plates to form
an I-shape shear wall which are connected to a slab and a foundation in top and bottom,
respectively. The geometry of the walls is shown in Fig. 10; as it can be seen, the wall systems
consist of two flange walls and one web wall. The horizontal cyclic displacement is applied to top
slab which is transmitted to the walls. Two walls were tested in a similar way, but DP1 test was
designed with constant vertical loading and DP2 without it. The material properties of the concrete
and the steel reinforcement are given in Table 1. Also, the reinforcement layout of wall systems can
be found in Fig. 11; the slabs were reinforced with No.30 deformed reinforcing bars at a spacing

Fig. 9 Load-deflection curve for shear panel W-2

Table 2 Comparisons between the analytical and the experimental results

Ultimate lateral load bearing capacity Final lateral displacement

Experimental, 
kN

Analytical,
kN

Error, % Experimental, 
mm

Analytical,
mm

Error, %

W-2 117.9 117.0 0.76 09.5 11.7 23.00
DP1 1298.0 1200.0 7.6 15.0† 15.2 1.30
DP2 904.0 840.0 7.1 10.0† 10.7 7.00
SW21 127.4 117.0 8.2 22.0 21.8 0.90
SW22 152.0 152.0 0.0 16.38 13.8 15.75
SW25 149.5 148.0 1.0 9.87 12.8 29.69
SW26 122.0 116.0 5.0 22.0 28.5 29.5

†=at this displacement, the test was halted.
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350 mm in top and bottom layers in two ways. The walls are discretized into 220 shell elements as
shown in Fig. 12. Three types of elements can be considered, namely: web, flange, and top slab
elements. The slab of foundation was not considered in modelings due to the small effect of this
part to the total behavior of the wall systems; but, not considering such a thick mat foundation in
the finite element representative model could affect the location of the failure. Since layered finite
element technique has been employed; therefore, four layers of concrete for walls and one layer for
top slab are considered. The distributed reinforcement in the web and flanges and top slab are

Fig. 10 Details of DP series specimens (Palermo and Vecchio 2002)

Fig. 11 Reinforcing layout of walls (Palermo and Vecchio 2002)
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idealized as two smeared steel layers. A 4×4 Gauss-quadrature grid are used for numerical
computation of the involved integrations. The total applied axial load for DP1, including weight of
the top slab, was 1200 kN. 940 kN was applied on the top slab which is identically simulated in
modeling as shown in Fig. 12; this load was spread on two lines which represents the positions of
load spreader beams in experiment. No Axial load was applied to DP2 model according to
experiment design. The total horizontal loads are applied at the two rows of points on mid plane of
top slab as shown in Fig. 12, in monotonic form; the loadings were not applied in concentrated
form to evade some possible local failures resulting in sudden total failure of specimen. The
monotonic loads are applied in maximum 30 load steps with a maximum of 15 iterations per load
step. As suggested by Palermo and Vecchio (2004), the compressive cylinder strength of last row of
elements both in web and flanges near to top slab and the other associated characteristics are
reduced by a factor of 30% for the specimen DP2. The monotonic analytical envelope curves have
been compared with first excursion positive displacement experimental envelope curves as shown in
Fig. 13. The ultimate load bearing capacities of the DP1 and DP2 are computed by program as
1200.0 and 840.0 kN, respectively. The estimated capacities have only 7.6% and 7.1% differences
from the experimental ones, as indicated in Table 2. The initial stiffness of analytical load-deflection
curves for specimens DP1 and DP2 are 461.25 kN/mm and 347 kN/mm, respectively; which, have
4.6% and 0.6% toleration in comparison to the experimental stiffness (441.0 kN/mm for DP1, and
349.0 kN/mm for DP2). It was observed from experimental results that the presence of an axial
constant load significantly enriches the ductility of the shear dominated reinforced concrete wall
(Palermo and Vecchio 2002). This may be attributed to the beneficial effects of axial compressive

Fig. 12 Details of DP series finite element idealization
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load on the shear capacity of these types of the specimens-although it should be noted that the
specimen DP2 failed prematurely due to weaker concrete near the top of the wall. A comparison
between computer program predictions of load-deformation curve for specimens (DP1 and DP2)
and experimental findings show that this phenomenon has been anticipated reasonably by the
proposed constitutive model. 

The results presented for the shear walls DP1 and DP2 further represent the reliability of the
computer program in handling the nonlinear finite element analysis.

4.1. Reinforced concrete shear walls, SW 21, SW22, SW25, and SW26

Four experimental shear wall specimens, tested by Lefas, et al. (1990), at Imperial College under
monotonically increasing load, were selected for analysis. The four test specimens are referred to as
SW21, SW22, SW25 and SW26. Material properties are given in Table 1. Typical details of
reinforcing, geometry, mesh configuration and experimental loading diagram for all specimens are
shown in Fig. 14. The SW22 and SW25 specimens are affected by constant axial loads (N) in

Fig. 13 Comparisons between the monotonic response of program and first excursion experimental envelope
curve
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addition to lateral load (P), which are equal to 182 and 325 kN, respectively. An upper beam with
depth of 150.0 mm had been adjoined to the top of the shear walls in the experimental test setup,
and the monotonically increasing lateral load had been applied to the middle of it. It is ignored in
the modeling, and consequently a moment had been applied simultaneously with lateral load as
shown in the Fig. 14. The steel reinforcing was modeled with smeared steel layers in two directions.
The analytical results are compared with experimental results in Table 2. This reveals the good
correlations between the experimental results and the program predictions. 

5. Conclusions and summary 

The analytical study undertaken in this research program is aimed at developing a simple
material model applicable for any types of concrete structures under different types of loadings.
All of the features for concrete are included in the material model developed during the course of
this study. A new hypoelasticity model is developed based on the concept of equivalent uniaxial
strain utilizing the rotation of the material axis during subsequent iteration/ load step. The
Popovics’ stress-strain curve is modified for application into the above hypoelastic material
model. A simple model is utilized to remedy the mesh dependency drawback from nonlinear FE
analysis of RC structures. A study is carried out on modeling and analysis of DP series structural

Fig. 14 SW shear walls; structural details, and finite element representative model 
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shear walls and W-2 shear panels to verify the performance of the proposed models. Finally, the
accuracy of the established relationships is further validated by modeling and analyses of SW
shear walls.

Notation

[C] = constitutive matrix in local coordination
di = reinforcement diameter, i=1,2, and 3
E0 = intial moduli of elasticity of concrete
Ei = tangent moduli in prinicipal direction i; i=1,2
Es = intial tangent moduli for reinforcing steel

= tangent modulus for reinforcing steel in strain hardening region
fy = yield strength of reinforcing steel

= concrete uniaxial compressive sterngth
= concrete uniaxial tensile strength

G = shear modulous
ki = factor to increase post-peak decay
ni = curve fitting factor
N, P = load
u, ν, w = translational degrees of freedom
α = stress ratio
β = a parameter associated to compressive strength degragation model

= shear retension factor
ε = strain
εc = concrete starin at peak stress
εcr = cracking strain of concrete
εi = strain corresponding to σi

εic = equivalent uniaxial strain corresponding σic

εij = normal strains i=j, i=1,2
εiu = equivalent uniaxial strain in ith direction; i=1,2
εi, ju = equivalent uniaxial strain in ith direction due to stress in jth direction; i, j=1,2 and i≠ j
εs = steel reinforcement strain
εsu = ultimate strain at rupture for reinforcing steel
εy = steel strain at yield
εtu = ultimate uniaxial tensile strain of concrete
εu = ultimate uniaxial compressive strain of concrete
γ12 = enginnering shear strain
γ2 = nonlinear index used in equivalent Poisson’s ratio
γa = nonlinear index corresponding to the onset of dilatancy used in equivalent Poisson’s ratio
θ = angle between the old coordinate system and the new coordinate system
θold, θnew= old or new angle between the local coordinate system and the principal coordinate system
Δθi = the angle between the current pricipal coordinate system and the previous coordinate system
θx = plate normal rotation about x-axis
θy = plate normal rotation about y-axis

Es
*

f c′
f t′

β′
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ν = equivalent Poisson’s ratio
νi = initial Poisson’s ratio
νij = Poisson’s ratio in ith direction due to uniaxial loading in jth direction; i, j=1,2
νf = final Poisson’s ratio
σ = stress
σ1(σ2) = major(minor) principal stress
σi  =principal stress, i=1, 2
σic = compressive strength of biaxially loaded concrete in direction i, i=1,2
σij = normal stresses i=j, i=1,2
τ12 = shear stress
ω = drilling degree of freedom in membrane element
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