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Modeling of sulfate ionic diffusion in porous cement 
based composites: effect of capillary size change
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Abstract. The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media
- cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries
(pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect
on the distribution of ion concentration within the specimen are investigated. Relations for the distribution
of the capillary relative radius and volume within the composite under consideration are found. The
numerical algorithm used is further completed to consider capillary size change and the effects accompanying
sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from
mineral composites is numerically studied, accounting for the change of material capillary size and
volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both
assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the
composite as a result of sulfate ion diffusion. 

Keywords: diffusion; sulfate corrosion; cement paste; porous composite; mathematical model; numerical
analysis.

1. Introduction 

The investigation of ion transport in cement-based mineral composites is an essential part of the

overall study of sulfate corrosion of concrete structures undergoing an attack of liquid aggressive

media. Mathematical models based on Nernst-Planck equations of ion transport in saturated cement-

based materials are given in Samson, et al. (1999a), Marchand, et al. (2001). A comprehensive

overview of the various types of chemical reactions that can occur in reactive porous solids is

presented (Samson, et al. 2000). In Samson, et al. (1999b), the transport and mass conservation

equations are first written at the microscopic scale to describe the movement of particles in the fluid

phase of the material. These equations are then averaged over the entire volume of the material. The

main features of the numerical model developed to predict the microstructural alterations of

concrete subjected to external sulfate attack are presented in Marchand, et al. (1999). The model

accounts for transport by diffusion and advection of five different ionic species. A digital-image-

based model of the microstructure of the cement paste, coupled with exact transport algorithms, are

used to study the diffusivity of portland cement paste. The principal variables considered are water/

cement ratio, degree of cement hydration, and capillary porosity (Garboczi and Bentz 1992).

Considering processes based on diffusion transport, the chemical reactions and filling of the voids
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of a porous catalyst with chemical products significantly affects that transport (Matros 1988).

A model of sulfate ion transport in a porous composite - cement paste (cement stone), is designed

in previous papers (Gospodinov, et al. 1999, Mironova, et al. 2002, Gospodinov 2005). The process

of ion transport is treated as diffusion accompanied by pore filling and liquid motion within pores.

The model assumes that ion transport within the liquid that fills the microcapillaries (capillaries) of

the composite takes place in a saturated system. Ion penetration from the surrounding liquid into the

cement paste specimen immersed in it, takes place under a constant concentration of the

surrounding sulfate solution. Due to the concentration driving force, ions penetrate the liquid that

fills the cement paste pores. Pores are treated as capillaries shaped as straight circular cylinders with

symmetry axes parallel to the coordinate axes. Capillaries of the composite material are filled with

drinking water prior to the specimen immersion into the solution.

As a result of the heterogeneous chemical reaction occuring in the solution, its products

precipitate on the capillary walls and partially fill the capillaries. This phenomenon initiates

decrease of the capillary cross section and liquid push out of the capillary, in a direction opposite to

that of the ion diffusion flux. 

2. Mathematical model

The following mathematical model of ion transport is derived on the basis of the balance of

inflowing and outflowing mass fluxes, considering an elementary volume with dimensions dx, dy, dz

(Gospodinov, et al. 1999, Mironova, et al. 2002, Gospodinov 2005).

(1)

Spatial operators div( ) and grad( ) in the above equation have the form

(2)

The number of dimensions of the area in Eq. (2) is S. Obviously, , and x1=x; x2=y; x3=z

denote the spatial coordinates. Quantity c(x1, …, xS, t) in Eqs. (1)-(2) is the concentration current

value and q(x1, …, xS, t) is the quantity of chemically reacted ion at point (x1, …, xS) and at a

moment t. k is coefficient of chemical reaction rate and kz is the coefficient of capillary filling. The

last term at the RHS of Eq. (1) is a source term which models the heterogeneous chemical reaction

between the sulfate ions within the solution and the material. It also accounts for the change of the

capillary reacting surface.

Deriving the model set forth by Eqs. (1)-(2), it is assumed that the thickness of the layer δ (x, t)

deposited on the capillary walls - Fig. 1, is proportional to the capillary initial mean radius R0 and to

the quantity of chemically reacted ions according to the relation:

(3)

The effective coefficient of ion diffusion includes the effect of capillary filling as a result of the

occurrence of a heterogeneous chemical reaction. Consider diffusion in a single capillary (Fig. 1).

Then:
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(4)

where x is the coordinate along the capiilary length, F0 is the capillary cross section at zero time

and F(x, t) is the current cross section at a moment t and at a distance x. Obviously F(x, t)=π(R0−
δ (x, t))2. The insertion of Eq. (3) in Eq. (4) yields the following expression 

(5)

where 

(6)

The capillary filling effect over the source term at the RHS of Eq. (1) is similarly considered.

kdiff in Eq. (6) is the coefficient of diffusion sulfate ions for the volume consisting of a cement

matrix and voids filled with liquid. It reflects material porosity, structure and capillary shape.

Constant β is a parameter and c0 is a concentration characteristic value, i.e., the concentration of the

solution which the specimen is immersed in. Note that experimental evidence is used to find the

form of Eq. (6), as described in Gospodinov, et al. (1999), Mironova, et al. (2002). 

Projections Vi, i=1, …, S, of velocity V in Eq. (1) are the mean velocities of liquid motion within

the capillary along axes xi, i=1, …, S.

The quantity of chemically reacted ions q, at a moment t and at a point with fixed coordinates (x1,

…, xS), can be found by integrating the concentration value at that point as a function of time t: 

(7)

The studied prismatic specimens are symmetric with respect to the coordinate axes Ox, Oy and

Oz. The specimen geometrical center O is the origin of the coordinate system, while axes Ox, Oy

and Oz coincide with the symmetry axes. Specimen dimensions along x, y and z are denoted by L1,

L2, L3 , respectively. 

To find the velocity component Vi for a fixed coordinate value xm,  along a capillary which

symmetry axis coincides with xi, the following integral should be calculated: 

Deff D
F x t,( )

F0

--------------=

Deff D 1 kzq–( )2=

D kdiff β c x1 … xS t, , ,( ) 0.5c0–( )[ ]exp=

q x1 … xS t, , ,( ) kc
o
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∫ x1 … xS τ, , ,( )dτ=

m i≠

Fig. 1 A scheme of the process of capillary filling 
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(8)

Since the origin of the coordinate system coincides with the specimen symmetry center, velocity

Vi is zero for xi=0 and maximal for xi=Li/2. The lower integration limit in Eq. (8) is Li/2−xi, while

the upper one is Li/2. Thus, velocity Vi(x1, …, xS, t) can be found at each point of the area under

consideration. Velocity components Vm(x1, …, xS, t),  are similarly found. A

detailed calculation of the velocity field of the solution within the capillaries, including diffusion

into more complex samples (e.g. a sample with inert filler), is given in Gospodinov (2005).

The above presented model is a continuation of a model designed in our previous papers, where

its reliability is verified.

3. Effect of capillary size change

The model thus designed treats transport processes within the solution filling the pores of the composite

material, and the results found consider the change of the concentration within that solution. An important

part of the process is the change of the microcapillary volume as a result of microcapillary filling with

products of the heterogeneous chemical reaction. This results in change of material porosity and

additional change of the ion concentration with respect to the capillary initial volume.

Consider the case of 1D diffusion, as shown in Fig. 1. A cylindrical microcapillary with radius R0

occupies the elementary volume between planes x and x+dx at a moment t=0. 

For time interval [0, t] the radius of a microcapillary in a cross section x changes from R0 to R0−
δ(x, t), and the elementary volume considered changes, too. Thus, the following ratio between the

elementary volumes can be written at moments t=0 and t 

 

(9)

The ratio in Eq. (9) presents the relative capillary volume in cross section x and at moment t.

The ion concentration c(x, t) within the capillary-filling liquid is found via the solution of the

model proposed. Pore volume decrease yields decrease of the liquid volume within the pores and

hence, decrease of the total quantity of ions within the initial volume . Ion concentration with

respect to the capillary initial volume can be recalculated as follows:

 

(10)

Change of the microcapillary volume does not affect the quantity of chemically reacted ions that

precipitate on the capillary walls. 

The distribution of the relative mean pore radius RR within the specimen cross section is also of

interest. It can be found as 

(11)
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Note that Eqs. (9)-(11) keep their form for 2D and 3D diffusion transport of sulfate ions. 

4. Numerical solution 

The model presented by Eqs. (1)-(8) is numerically solved. It has been completed by a symmetry

boundary condition on the coordinate planes xi=0, i=1,
…

, S. A condition for equality between the

concentration of ions having penetrated into the specimen and the concentration of the surrounding

solution is given on specimen planes xi=Li/2, i=1,
…

, S which are solution/composite interfaces. It is

assumed that the initial ion concentration within the liquid in capillaries of the specimen is zero,

since the specimen has been previously kept in drinking water. 

The equation of transport (1)-(2), together with the initial and boundary conditions, set forth the

non-steady boundary value problem. It is completed by the integral relations (7) for the calculation

of the quantity of chemically reacted ions and by the integral relations (8) needed to calculate the

velocity field of the liquid pushed out of the capillaries. An implicit difference scheme is used to

solve the problem which is reduced to solving a linearized system of algebraic equations with a

semi-diagonal and weakly filled matrix. The algorithm allows modeling numerically sub-areas with

different conductivity - inert fillers, inclusions, reinforcement etc. Details on the discretization

scheme and numbering of the knots of the orthogonal grid introduced, as well as details regarding

the calculation of the velocity field of the solution within the capillaries, including cases of more

complex bodies, are given in Gospodinov (2005). 

The following values of the dimension and dimensionless constants are used in the calculations:

coefficient of ion diffusion in the water solution kdiff=0.361 · 10−13 m2/s; fitting parameter

participating in Eq. (4) β=0.2917 m3/kg; constant of the chemical reaction rate k=0.305×10−7 s−1;

coefficient of pore filling kz=0.05 m3/kg. Those values are specified in Gospodinov, et al. (1999) ,

where data on sulfate resistant Portland cement, used for the preparation of the cement mineral

composition are also submitted.

5. Results and discussion

This paragraph presents results of the study of sulfate ion diffusion in cement stone specimens

having been immersed in 5% solution of sodium sulfate which concentration of sulfate ions is

c0=33.803 kg/m3. 

Fig. 2 shows results for the distribution of the concentration of sulfate ions within the cross

section of a prismatic specimen. The cross section dimensions are 0.8×10−2×1.5×10−2 m, and the

specimen length is significantly larger than the cross section dimensions. Thus, plane diffusion is

assumed. The cross section is symmetric with respect to axes Ox and Oy. 

Results of the left column of plots in Fig. 2 show the distribution of the ion concentration within

the liquid phase while those of the right column - the ion concentration regarding the effect of

capillary size change. A central area of zero concentration, as well as and a layer of significant

concentration nearby the composite/surrounding liquid interface are present. Due to the change of

capillary volume, the recalculated values of the concentration within that layer are smaller than the

values of the concentration of the solution that fills the pores.

Comparison of the locations of the two isolines in Fig. 2(b) is shown in Fig. 3. The consideration
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Fig. 2 Comparison of the distribution of sulfate ions within the cross section of the specimen: left column of
plots - distrbution within the solution that fills capillaries; right column of plots - considering the effect
of capillary size change. Time of immersing the specimens in the solution: (a) 1 month, (b) 3 months,
c) 6 months, (d) 10 months
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of the effect of capillary size change (Fig. 3b) does not yield change of line location as compared to

lines in Fig. 3(a). This is so, since the isolines are located in an area where capillary filling and

volume change has not taken place yet. Moreover, as shown in Mironova, et al. (2002), a two

layered structure of the cross section is formed under the sulfate attack. The structure consists of a

central intact core and an external corrupted layer where partial capillary filling has taken place. The

results in Fig. 4 and Fig. 5 also confirm this conclusion where following Eqs. (8)-(10), the change

of the capillary relative radius and volume within the specimen cross section are shown for different

periods of time.

The cross section together with the surface of spatial distribution shown in Fig. 4 and Fig. 5 are

Fig. 3 Comparison between two characteristic isolines within the cross section of a specimen after 3 months
of immersion 5% solution of Na2SO4: (a) within the solution that fills capillaries; (b) when accounting
for the effect of capillary size change

Fig. 4 Change of the relative radius of the capillaries within the specimen cross section. Time of immersion
(a) 1 month, (b) 3 months, (c) 6 months, (d) 10 months
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plotted after rotation around the vertical coordinate axis Oz at and angle 1800. This is done for

better visualization of the results. Results for the distribution of the relative radius of the pores

within the cross section of the prismatic specimen shown in Fig. 4 are for different immersion times

and in accordance with the results in Fig. 2. As outlined, an expressed two-layered structure of the

cross section is formed. Capillaries in the corrupted layer are partially filled, and this hampers ion

access to the central core. Similar is the conclusion drawn from the results shown in Fig. 5 where

the change of the relative volume of the pores within the cross section is shown. It can be assumed

that a certain packing of the structure has taken place in the corrupted layer as a result of capillary

filling with products of the chemical reaction, yielding significant decrease of the capillary volume.

These structure modifications result in hamper of the ion transport from the external solution to the

specimen central area (core). Thus, more and more expressed two-layered structure is formed under

the sulfate corrosion development. 

Using the algorithm designed, isosurfaces of the mean capillary radius for a specimen with inert

and impermeable inclusion with a more complex shape, immersed for 3 months in 5% solution of

sodium sulfate, are calculated. The specimen has the following dimensions: L1=1.5×10−2 m,

L2=0.8×10−2 m, L3=0.9×10−2 m. The ion transport is 3D for these dimensions. Fig. 6 shows results

for 1/8th of the specimen volume, containing two cylindrical inert bodies. Coordinate planes xi=0,

replace with,  are also planes of symmetry. Body radii are R1=0.1×10−2 m,

R2=0.085×10−2 m, and body symmetry axes are parallel to the coordinate axes x and y, respectively,

lying in the plane zc=0.25×10−2 m. Several isosurfaces of the distribution of the capillary mean

radius are plotted. Results show the existence of a corrupted layer nearby the solution/composite

interface. Isosurfaces of lower value of the mean radius are located closer to the specimen external

i 1 … S, ,[ ]∈

Fig. 5 Change of the relative volume of the capillaries within the specimen cross section. Time of immersion
(a) 1 month, (b) 3 months, (c) 6 months, (d) 10 months
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boundary, and they shift inwards towards the intact core with the mean radius increase. 

 

6. Conclusions

The mathematical model of diffusion of sulfate ions transport incorporates the effect of capillary

size change. This expands the capabilities of the theoretical study of sulfate corrosion of cement

based mineral composites. The numerical solution and the procedure for recalculation of the

capillary relative radius and volume under diffusion accompanied by a chemical reaction allows to: 
● assess the change of dimensions and volume of the pores in the area under consideration and

thus, to assess porosity change of the composite material as a result of the sulfate corrosion;
● calculate the concentration within the capillary-filling liquid phase;
● calculate the change of the concentration, accounting for capillary size change;
● assess pore (microcapillary) volume change and change of the cement paste relative density. 

The numerical results are found within the frames of the model proposed, considering sulfate ion

transport as diffusion accompanied by a heterogeneous chemical reaction and not accounting for

structure modifications due to the occurrence of phase transformations within the composite. 

Fig. 6 Isosurface of the mean relative radius of the microcapiullaries after 3 months immersion of the
specimen in 5% solution of Na2SO4.
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