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Effect of strain ratio variation on equivalent stress block 
parameters for normal weight high strength concrete
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Abstract. Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with
a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force,
is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In
recent years, high strength concrete (HSC) has been introduced and widely used in modern construction.
The stress block parameters require updating to account for special features of HSC in the design of
flexural members. In future, more varieties of concrete may be developed and a corresponding design
procedure of RC flexural members will be required. The usual practice is to conduct large number of
experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a
numerical procedure through which the stress block parameters can be numerically derived for a given
strain ratio variation. The material model for concrete is presented and computational procedure is
described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical
procedure are that it costs less and it can be used with new material models for any new variety of
concrete.

Keywords: beam; bending; computer methods; flexure strength; high strength concrete; reinforced con-
crete; safety factor; stress block; structural analysis; ultimate strength.

1. Introduction

Concrete is a widely used construction material. The conventional ultimate strength calculations of

flexural members with non-rectangular cross section based on basic principles of structural

mechanics becomes cumbersome and lengthy. This problem is further compounded when high

strength concrete (HSC) is involved because its analytical representation in itself is a very complex

problem. These problems mask the physical basis of design and result in lack of understanding. The

equivalent rectangular stress block (ERSB) formulation is a conceptual trick through which the

general analysis is easily applied to cases of greater complexity. This formulation creates greater

visibility without violating fundamental principles of structural mechanics.

The actual geometrical shape of compression stress distribution may be complex as well as

variable. However, its complete and precise knowledge is not required if the magnitude of the

compression force F
c
 and its location are known. Now any other convenient geometrical shape may

replace the actual distribution. If the new geometrical shape maintains magnitude and location of F
c
,

the final answer is not affected. 
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The ERSB concept originated in USA and it was meant for flexural members of normal strength

concrete. It is covered in ACI code of practice (ACI 2004). It is adopted throughout the world in

one form or another. Usually ERSB parameters are experimentally derived, which is expensive and

time consuming. This paper presents an analytical approach as against the existing empirical

method. The ERSB parameters are derived for several different distributions of ultimate to peak

concrete strain ratio, which is termed in this paper as strain ratio. Although, this paper deals with

HSC, the analytical procedure applies equally conveniently to any new material, the stress-strain

relation of which can be numerically represented. The numerical results derived in this paper are in

excellent agreement with published information on the subject.

2. Research significance

The concept of Equivalent Rectangular Stress Block (ERSB) is widely used in the design and

analysis of reinforced concrete members. After introduction of high strength concrete (HSC), several

versions of empirical ERSB provisions are in current use. This ambiguity defeats the basic purpose

of ERSB formulation. A numerical procedure, which applies over a wide range of concrete strength,

is used in this paper to derive ERSB parameters. The results of computation are highly sensible. A

comparison of empirical and numerical values of ERSB parameters may eliminate ambiguity,

uncertainty and diversity of opinion. It may also re-establish uniqueness and simplicity of ERSB

formulation, which was the basic idea behind its formulation. This numerical procedure costs less

and it can always be updated with new material model for concrete. This paper shows that

specification of ERSB parameters implicitly assumes variation of ultimate to peak strain ratio. But

the empirical procedures fail to describe it and it will never be known. The numerical procedure

presented in this paper eliminates this gap. Further, ERSB parameters define balanced reinforcement

ratio, which separates under and over reinforced beams. Therefore, a proper definition of ERSB

parameters is necessary for a safe design of flexural members. 

3. State-of-the-art 

3.1. Material models of concrete

The parabolic model (Hognestad 1951), exponential model (Smith and Young 1955) and Desai

and Krishnan model (Desai and Krishnan 1964) are applicable to concrete below 40 MPa strength.

Relatively more recent material models (Attard and Setunge 1996, Wee, et al. 1996) contain several

empirical constants and are not convenient for use in analytical studies. Another more recent

material model (Kumar 2003) is free of such defects but it requires solution of a simple nonlinear

equation. This solution can be quickly derived on a simple pocket calculator. 

3.2. ERSB parameters

The ERSB parameters have been experimentally determined. It requires test specimen of a

particular shape and a special test procedure. This subject has been discussed in several recent

publications (Hognestad, et al. 1955, Mattock, et al. 1961, Karr, et al. 1978, Kahn and Meyer 1995,
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Ibrahim and MacGregor 1997, Mansur, et al. 1997, Attard and Steward 1998, Ozbakkaloglu 2004).

The major code provisions on ERSB are summarized in Table 1. It is obvious that the original

ERSB concept was introduced for normal strength concrete (NSC) and it was unambiguous. The

diversification noticed in Table 1 is mainly due to adoption of HSC.

3.3. Theory

Fig. 1 introduces the basic ERSB concept for a rectangular beam and most of the notation used in

this paper.

3.4. Material model

The following concrete material model is used in this paper (Kumar 2003). The stress f and strain

ε are used in non-dimensional form as Y = f/fP and X = ε/εP where subscript ‘P’ denotes peak values.

Table 1 Code provisions of ERSB parameters

Source α β

ACI 318-2004 
0.85

0.85 − 0.008( – 30)
0.85 ≥ β ≥ 0.65

Ibrahim and MacGregor (1997)
0.85 − 0.00125  
α ≥ 0.725

0.95 – 0.0025 
β ≥0.70

Ozbakkaloglu and Saatcioglu (2004) 0.85 − 0.0014 ( −30) ≥ 0.72 0.85 – 0.002 ( – 30) ≥ 0.67

AS 3600-1994 
0.85

0.85 – 0.007( – 28)
0.85 ≥ β ≥ 0.65

CAN3-M, 1994 
0.85 – 0.0015 
α ≥ 0.67

0.97 – 0.0025 
β ≥ 0.67

NZ 3101-1995 
1.07 – 0.004 
0.85 ≥ α ≥ 0.75

1.09 – 0.008 
0.85 ≥ β ≥ 0.65
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Fig. 1 Concept of equivalent rectangular stress block
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(1)

Starting with Eq. (1) and imposing boundary conditions at origin (X=0, Y=0 and m = dY/dX=

Eo/EP), at peak point (X=1, Y=1 and dY/dX=0) and at inflexion point (X=XI Y=YI and d 2Y/dX 2=0),

Eq. (2) is obtained.

(2)

The subscripts o and I denotes origin and inflexion point, respectively. Where m is the ratio of

initial tangent modulus to peak secant modulus, which enforces slope compatibility at origin. For

condition [m(n − 1) = n], Eq. (2) reduces to Eq. (3). 

(3)

The curvature above and below the inflexion point on the descending branch of the stress strain

curve are of opposite sign, therefore, the curvature must vanish at inflexion point. This condition

gives Eq. (4), which is used to determine value of parameter n. 

(4)

Eq. (5) is an approximate solution of Eq. (4) for concrete strength up to 100 MPa.

n = 1.7512 EXP(0.0286 fP) (5) 

The inflexion point may be located from Eqs. (6) and (7) (Attard and Setunge 1996).

XI = 2.50 – 0.30 Ln ( fP) (6)

YI = 1.41 – 0.17 Ln ( fP) (7)

Wang, et al. (1978) give Eq. (8) for stress at inflexion point but corresponding equation for strain

is not given. 

YI = 4.0 (10.0 + fP)/7.0 (8)

Results of Eqs. (7) and (8) are quite comparable. Eq. (6) is used in the present study for solution

of Eq. (4).

3.5. ERSB parameters

The equivalence of magnitude and location of the compressive force between actual and its

equivalent stress blocks for a general non–rectangular cross section (Fig. 2) are mathematically

stated in Eqs. (9) and (10) (Collins and Mitchell 1991). 
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(10) 

A rectangular as well as a triangular section can be derived from the section considered in this

analysis. The coordinate ‘s’ is measured from neutral axis (NA) into the compression block; Aβ and

dβ are the area and depth of center of gravity of general beam cross section of βd
n
 depth (Fig. 2),

which are βbd
n
 and βd

n
/2, respectively for a rectangular cross section. Parameter α governs strength

mobilized at the ultimate stage and accounts for difference in shape, size and rate of loading in the

actual structure and the control specimen. Parameter β determines lever arm to be used in the

calculation of flexure strength. The product of these parameters governs magnitude of the compressive

force F
c
. 

3.6. Self-adaptive numerical integration

A self-adaptive Simpson numerical integration scheme is devised in which the number of sub-

divisions of the integration interval is progressively doubled till two successive results match within

a prescribed tolerance. A part of information required at a step is derived from the already available

results of the previous step. This is achieved without proportional increase in the computation effort

(Kumar 2004b) because duplication is avoided. 

3.7. Depth of neutral axis at ultimate stage

The measurement of depth of neutral axis at ultimate stage is not easy because extensive cracking

in the test specimen may influence readings of the strain gages. Sarkar, et al. (1997) and Bernardo

and Lopes (2004) reported depth of neutral axis at ultimate stage of their test specimen of

y
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Fig. 2 Shape of beam cross section (half)
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rectangular cross section. Fig. 3 shows variation of depth of neutral axis (ratio of depth of neutral

axis with the effective depth) as a function of parameter q (= As fy /bd fc). A special feature of

parameter q is that it includes most of the important factors, which may influence strength of a RC

beam. Fig. 3 also shows the equation of linear fit through the data. It is found that for fixed beam

and reinforcement properties, depth of neutral axis reduces as concrete strength increases (q

decreases). Thus, parameter β decreases and lever arm increases. 

3.8. Strain ratio

The ratio of ultimate to peak concrete strain defines strain ratio Xo. Experimental evidence

suggests that the peak concrete strain increases, whereas ultimate concrete strain decreases, with

increasing concrete strength (Karr, et al. 1978, Ibrahim and MacGregor 1997, Mansur, et al. 1997).

Therefore, the strain ratio should also decrease as concrete strength increases. 

Eqs. (9) and (10) can be analytically solved provided the concrete material model is expressed in

a form suitable for integration. Previous analysis (Kumar 2004a) showed that dimensions do not

govern value of ERSB parameters when beam section is either rectangular or triangular. Even the

individual values of ultimate and peak strains are not required. Their ratio Xo is the primary

governing factor. For parabolic (Hognestad 1951) material model Y = f (X) = 2X – X 2, αβ = Xo (3−
Xo)/3 and β = (4 – Xo)/(6 – 2Xo). It checks with the solution given in Collins and Mitchell (1991).

For more complex material models such as the one used in present study (Kumar 2003), numerical

integration is required even for beams of rectangular cross section but individual strain values are

still not required. 

In the present research, value of Xo = 1.75 applies to 20 MPa concrete (ultimate strain 0.0035 and

peak strain 0.002) and this value reduces to 1.0 for 140 MPa concrete (ultimate strain practically

equal to peak strain). This selection automatically ensures that the shape of actual stress block is

triangular for ultra high strength concrete. Fig. 4 gives different strain ratio variations, which are

Fig. 3 Variation of neutral axis with geometrical and strength properties of beams 
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used in this study. These variations are derived as follows: Linear Xo = (300 – fP)/160; Parabola Xo

= (33900 – 0.75 )/19200 and Hyperbola Xo = 280/(140 + fP). Any other variation of strain ratio as

a function of concrete strength is equally acceptable. This aspect is under investigation at present

and several different opinions exist Eurocode 2 (CEB 1995). Triangular beam section can be

similarly analyzed but this paper presents results of only rectangular beam sections. 

4. Analysis

The analytically computed ERSB parameters α, β and αβ for beams of rectangular section are plotted

in Figs. 5 to 7. The existing and modified ERSB provisions, along with experimental results

f P
2

Fig. 4 Variations of strain ratio used in analysis

Fig. 5 Analytical and empirical variation of parameter
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(Hognestad, et al. 1955, Karr, et al. 1978), are also shown in Figs. 5 to 7 for the purpose of comparison.

The analytical values of parameters α and β are consistent with the existing provisions at the extreme

ends, however, the distribution in between depends upon the strain ratio variation. The distribution of

parameter αβ (Fig. 7) agrees with the existing ACI provision in the normal concrete strength range, and

with the modified provision (Ibrahim and MacGregor 1997) in the high strength range.

When either the loading is within the elastic range, or concrete strength is very high, the

compression stress distribution is very nearly triangular. Theoretical values of ERSB parameters for

triangular stress block are α = ¾ and β = 2/3 (for a rectangular cross section), and α = 16/27 and β
= ¾ (for a triangular cross section). These values are achieved in the analysis for concrete strength

of 140 MPa. These features of this analytical study may validate the analysis and its results. 

Collins and Mitchell (1991) also solved Eqs. (9) and (10), but did not mention any specific strain

ratio variation. The results of parabolic strain ratio variation in Figs. 5 and 6, and results of Collins

and Mitchell (1991) are compatible. These clearly are unacceptable as value of parameters α and β
deviate from the existing and modified specifications. However, it verifies the analysis presented in

this paper. 

5. Discussion

It should be noticed in Figs. (5) to (7) that the hyperbolic variation of strain ratio gives the best

agreement with the published results on this subject. This fact was not highlighted in proposing

modifications based purely on the analysis of experimental data. Another important feature of

analytical results is that these are closer to the proposed modifications than the ACI recommended

values. These facts must be remembered in future revisions of codes of practice. 

The variation of parameter α in Fig. 5 is slightly oscillatory with average value of 0.776-0.8. The

analytical values are closer to the proposed modifications than the ACI recommended value. Value

Fig. 6 Analytical and empirical variation of parameter Fig. 7 Analytical and empirical variation of parameter
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of parameter α decreases with increasing concrete strength. From Eq. (9), it is easy to see that value

of α depends upon the area under the stress strain curve between origin and the cut off strain. For

rectangular section, value of α is proportional to the area under the stress strain curve. Effect of

increase in concrete strength is to increase the vertical dimension and to reduce lateral extent of

stress strain curve. The net effect is to decrease the area under the curve. So the analytical results

and the proposed modifications appear to be reasonable. 

The analytical value of parameter β in Fig. 6 is in remarkable agreement with the recently

proposed modifications. Published modifications and the results of this study suggest an increase in

the value of β over the current ACI recommended value. Selection of appropriate value of

parameter β is important in design of flexural members. For heavily reinforced flexural members,

the tensile force Ft at ultimate stage of loading is large. The equilibrium of forces requires equally

large compressive force Fc. This demands a larger value of parameter β, which cannot be attained

due to restrictions of the existing code provisions. It may results in over-estimation of the ultimate

strength (Ibrahim and MacGregor 1997). This problem is not likely to arise in lightly reinforced

flexural members because appropriate value of parameter β is attainable. 

The results of parameter αβ in Fig. 7 show much less variation than the results in Figs. 5 and 6.

Effect of small α and large β does not appear in their product. All results agree well for concrete

strength below 55 MPa. The ACI recommended values are smaller in the range of 55 MPa to 100

MPa. Whereas ACI recommended values are higher for ultra HSC. 

6. Application example

Consider the beam number 9.0-1.5 from the experimental program of Leslie, et al. (1976). Its

ultimate moment capacity is 108.8 KN-M. Its calculated strength according to the current ACI

provisions is 76.13 KN-M. For beam number 8.0-2 from this experimental program, the ultimate

moment capacity is 104.3 KN-M, whereas the calculated moment capacity is 104.33 KN-M. The

safety factor (ratio of experimental to calculated value) drops from 1.43 to 1.0 as reinforcement

ratio increases from 1.34% to 1.9%. This example highlights deficiency of lever arm parameter β in

the current ACI provisions. 

7. Conclusions

● The ERSB parameters are analytically derived on the assumption that the strain ratio decreases

from 1.75 to 1.0 as concrete strength increases from 20 to 140 MPa. Several variations are

considered. The salient features of this study are, 
● The numerical procedure of this paper follows fundamental principles of structural mechanics,

which are used for the first time to calculate the ERSB parameters.
● The ERSB parameters were originally derived from extensive test results for normal concrete

strength. The present analytical procedure establishes its accuracy.
● The hyperbolic variation of strain ratio gives best agreement with the results available in the

published literature. Thus, the present study exposes an implicit assumption, which could not

have been discovered through the analysis of test results and empirical relationships.
● The variation of parameters α, β, and product αβ agrees with the current ACI provisions in the
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normal concrete strength range, but deviate in the high and ultra high strength range.
● The analytical values of ERSB parameters for 140 MPa concrete agree with the theoretical

values for a triangular compression stress block. 
● In general, analytical results are closer to the proposed modifications published in recent

technical literature than with the ACI recommended values. This verifies the proposed material

model as well as the computational strategy proposed in this paper.

Numerical results show that parameters α, β, and product αβ should decrease with increase in

concrete strength. Analysis of experimental data supports this finding. The ACI recommendation

on the value of parameter β in the high strength range needs to be re–evaluated. 
● The information of this paper provides greater insight in to the ERSB concept. Code writers

have to choose a suitable variation in Xo as a function of concrete strength. The procedure of

this paper then easily produces ERSB parameters. This numerical procedure applies to any other

variety of concrete provided its stress-strain relation is suitable for numerical simulation.
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Notation

A, B, C, D = Model parameters

Aβ = Area of compression zone

Ast = Area of tension steel

b = Width of beam

d = Effective depth of beam

dn = Depth of neutral axis (NA)

dβ = Depth of compression zone centroid from top face

E = Modulus

Fc = Compression force

Ft = Tension force

f = Stress

fc = Concrete strength

fst = Steel strength

k1, k2, k3 = Real stress block parameters

m = Ratio of initial tangent to peak secant modulus

n = Exponent

s = Coordinate measured from NA

X = Dimensionless strain

Y = Dimensionless stress

y = Depth of compression zone centroid from NA

α, β = ERSB parameters

ε = Strain
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b = Bottom face

I = Inflexion point

P = Peak point

t = Top face
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