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Abstract. The seismic safety of reinforced concrete containment building can be evaluated by probabilistic
analysis considering randomness of earthquake, which is more rational than deterministic analysis. In the
safety assessment of earthquake-resistant structures by the deterministic theory, it is not easy to consider
the effects of random variables but the reliability theory and random vibration theory are useful to assess
the seismic safety with considering random effects. The reliability assessment of reinforced concrete
containment building subjected to earthquake load includes the structural analysis considering random
variables such as load, resistance and analysis method, the definition of limit states and the reliability
analysis. The reliability analysis procedure requires much time and labor and also needs to get the high
confidence in results. In this study, random vibration analysis of containment building is performed with
random variables as earthquake load, concrete compressive strength, modal damping ratio. The seismic
responses of critical elements of structure are approximated at the most probable failure point by the
response surface method. The response surface method helps to figure out the quantitative characteristics
of structural response variability. And the limit state is defined as the failure surface of concrete under
multi-axial stress, finally the limit state probability of failure can be obtained simply by first-order second
moment method. The reliability analysis for the multiaxial strength limit state and the uniaxial strength
limit state is performed and the results are compared with each other. This study concludes that the
multiaxial failure criterion is a likely limit state to predict concrete failure strength under combined state
of stresses and the reliability analysis results are compatible with the fact that the maximum compressive
strength of concrete under biaxial compression state increases

Keywords: seismic safety; containment building; response surface method; limit state function.

1. Introduction 

The safety of nuclear power plant structures is of concern to regulatory agencies, the nuclear

industry and the general public because of the serious socioeconomic consequences that could result

from structural failure. In 1998, the US NRC introduced its new Reactor Oversight Process, with

the concept of seven cornerstones as a basis for defining the safety scope in its new safety oversight

model to be consistent with its mission of protecting the public health and safety with respect to

civilian nuclear power plant operation (William 2005). Among the seven cornerstones barrier

integrity derived from the probabilistic risk assessment approach to plant safety is included. The

effects of aging infrastructure, treatment of uncertainties and containment modeling under a variety

of accident conditions are related with containment building and facilities. 

To ensure structural safety, nuclear power plant structures must be able to withstand all kinds of
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loads and load combinations that may be expected to occur during the lifetime of the plant. These

loads include various static and dynamic loads, which are caused by operational, environmental and

accidental conditions. It is recognized that the loads involve randomness and other uncertainties in

nature. For example, we not only cannot predict the occurrence of an earthquake in advance, but

also cannot precisely its intensity and duration. Similarly, the structural resistance cannot be

determined precisely since the basic parameters such as material strength always exhibit statistical

variation. In addition, the failure mechanism of a structure, which is needed to define the structural

resistance, usually is very complicated and cannot be defined with certainty. Furthermore, structural

behavior is always idealized to simplify the analysis. In view of randomness and uncertainty in

loads, structural resistance and structural behavior, etc., a probabilistic approach for assessment of

structural safety is a rational choice, since the theory of probability provides a framework for the

formal treatment of uncertainties (Shinozuka 1981). 

Structural reliability is generally defined as the probability that a structure will achieve a specified

life without failure under a given loading. The life of structure is thus recognized as being a random

variable. The prediction of structure life should be based on the probabilistic approach. Reliability

theory is simply a probabilistic design approach to the problem of the design characteristic life. 

A probability-based reliability analysis method for structures, particularly for containment structures,

has been developed at the Brookhaven National Laboratory. This method, which incorporates the

finite element analysis and random vibration theory, makes it possible to evaluate the reliability of

structures under various static and dynamic loads in terms of limit state probabilities (Hwang 1983).

Let the load and the resistance be random variables. Then, the estimation of the response involves

solutions of propagation of uncertainty. Basic methods for uncertainty-propagation analysis are the

integration techniques and the procedures based on the evaluation of the moments of the probability

distribution. They cannot be easily used for large structural systems. Complexity here arises from the

large number of variables, from the time dependence of the random excitations and spatial variation of

the system parameters. The Monte Carlo approach can be utilized under these circumstances, but it

may not be practical for complex structural systems primarily because of the high computational costs

and times. A stochastic finite element technique, especially response surface method, makes use of a

polynomial expansion of the structural response in terms of the spatial averages of the design

variables. The method can provide information on the contribution to the response uncertainty from

different sources of uncertainty. This procedure was studied by Bucher (1987), Faravelli (1989),

Haldar (2000), and Veneziano (1983).

In this paper, the reliability analysis for a reinforced concrete containment building is performed

using stochastic finite element technique and random vibration analysis. Especially to calculate the

limit state probability of structure, failure criteria for concrete under combined state of stresses is

defined as limit state (Lee 2004). The reliability analysis for the multiaxial strength limit state and

the uniaxial strength limit state is performed and the results are compared with each other.

2. Earthquake load 

Accelerograms of strong-motion earthquakes recorded on firm ground and at moderate epicentral

distances are generally extremely irregular, and have the appearance of random-time functions. Fig.

1 shows the different structural responses, which are obtained from the dynamic analysis of

containment building subjected to the same magnitude of earthquake load. Displacement at the apex
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of containment building and meridional stress at the bottom of containment building from the

numerical example performed in this paper are shown in the figure respectively. From the numerical

example, the differences of responses at the same input loading are up to 8% in displacement and

25% in stress.

So the structural response may be obtained in probabilistic terms using random vibration analysis.

This has led to a number of studies in which earthquakes are modeled by white noise and filtered

white-noise processes. 

The structural response to dynamic loads is a function of the amount and type of damping and

therefore it is essential for obtaining realistic results in dynamic analysis to get the realistic damping

values. The selection of an appropriate damping value then depends on the type of structure, the

support conditions, and the magnitude of excitation. And the damping of structures under dynamic

loading influences significantly the structural responses. 

In a probabilistic approach to seismic-resistant design, a quantity of major interest is the

probability that the random response to an earthquake of specified intensity will remain within

specified barriers during the excitation. With few exceptions, the estimation of this probability of

structural safety requires simulation of a large number of artificial earthquake motions. The

mathematical modeling of earthquake motions, therefore, provides descriptions of the physical

process for the purpose of predicting structural safety against earthquakes. 

The ground acceleration is assumed to be idealized as a segment of finite duration of a stationary

Gaussian process with mean zero and a Kanai-Tajimi spectrum. 

The ground acceleration ahas the spectral density S
a
(ω) as

 

(1)S
a

ω( ) S
o

1 4ξ 
g

2 ω
ω

g

------
⎝ ⎠
⎛ ⎞

2

+

1
ω
ω

g

------
⎝ ⎠
⎛ ⎞

2

–
2

4ξ 
g

2 ω
ω

g

------
⎝ ⎠
⎛ ⎞

2

+

--------------------------------------------------------=

Fig. 1 The seismic responses of containment building for the same earthquake load
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where the parameter So represents the intensity of white noise acceleration at bedrock, and ωg and

ξg are the dominant frequency and the damping ratio of the overlaying layers of soil, respectively.

The values of ωg and ξg depend on the soil conditions of the site.

The statistics of ωg and ξg for different soil conditions have been reported in the previous studies

(Ellingwood 1982, Hwang 1983). For soft soil sites, ωg is estimated in the range of 2.4π to 3.5π,

whereas for rock sites, ωg ranges from 8π to 10π. As for the stiff soil sites, ωg is between the values

estimated for rock and soft soils. And the mean value of ξg is estimated as 0.6 and coefficient of

variation (COV) is about 0.4. 

The values of So in Eq. (1) can be determined based on the peak ground acceleration of earthquake, A1,

as follows: 

A1 = pg σg (2)

where pg = peak factor (assumed to be 3.0 in this study).

Standard deviation of the ground acceleration, σg is given by 

 

(3)

Fig. 2 shows K-T spectrum for pga=1.0g, ωg = 8.5π, ξg= 0.6 for rock site.

3. Stochastic finite element analysis for the containment

3.1. Containment modeling

The concrete containment building considered in this study is shown in Fig. 3 and the three-

dimensional finite element model is shown in Fig. 4. The containment consists of a circular

cylindrical wall with a hemispherical dome on the top. The containment building is reinforced with

hoop and meridional rebars in two internal and external layers with each 7.5 cm concrete cover.
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Fig. 2 Single-sided Kanai-Tajimi spectrum 
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Also diagonal rebars is reinforced to resist the shear forces and steel liner is used to ensure against

leakage. However, diagonal rebars and steel liner are not included in this study. Only hoop and

meridional rebars are included in the modeling of reinforced concrete containment building. For the

cylindrical portion of the containment, both the hoop and meridional reinforcing rebars are D57

with 30.5 cm spacing. The hemispherical dome is also reinforced with D44 by 30.5 cm spacing. 

The finite element used in modeling is three dimensional shell element for concrete and one

dimensional rebar element for rebars as described in the ABAQUS (2003) computer code. The

boundary condition is modeled as fixed base. As can be seen from Fig. 4., the containment is

divided into twenty-seven layers and each layer has thirty-two elements.

3.2. Random vibration analysis

The random vibration analysis is performed to get the information on the random structural

responses of the concrete containment building subjected to random excitation such as earthquake

generated ground acceleration. The dynamic characteristics of the structures are represented by the

natural frequencies and associated mode shapes. The set of eigenmodes extracted in the eigenvalue

analysis of structure are used to calculate the corresponding power spectral densities (PSD) of

response variables(stresses, strains, displacements, etc.) and the variance and root mean square

(RMS) values of these same variables. The first twenty natural frequencies shown in tabulated form

Fig. 3 Cross-section of containment building Fig. 4 FEM model for the containment

Table 1 Natural frequencies of the containment 

Mode 1 2 3 4 5 6 7 8 9 10

Hertz 4.29 4.29 5.78 5.78 6.72 6.72 7.69 7.69 9.10 11.78

Mode 11 12 13 14 15 16 17 18 19 20

Hertz 11.78 11.95 11.95 12.04 12.04 12.59 12.59 13.10 14.56 14.56
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in Table 1 are considered to obtain the random structural responses. Fig. 5 shows mode shapes and

most of them have the pairs in the axi-symmetric shell structures. The RMS of response variables is

computed by integrating the single-sided power spectral density of the variable over the frequency

range. This integration is performed numerically by using the trapezoidal rule over the range of

frequencies. The RMS of random responses is utilized to calculate the probabilistic properties (mean

and variation) of maximum responses.

3.3. Random variables

To perform a reliability analysis, it is necessary to determine the probabilistic properties of loads

and resistances. For concrete containments, several loads such as dead loads, live loads, prestress

loads, thermal loads, pressure loads, wind loads, earthquake loads and impact loads, etc., are

included in the design specifications. These are characterized by their sources, increasing magnitude

or severity, and decreasing probability of occurrence, or increasing recurrence period. The present

study disregards the randomness of loads except the earthquake load, which is modeled as a random

process shown in chapter 2. 

The structural resistance is the function of basic variables, which would include material

properties (e.g. yield or ultimate stress of steel, crushing strength of concrete), and structural

dimensions or section properties. The basic variables are random and contribute to the uncertainty in

the structural resistance. Additional uncertainties in the structural resistance would arise from the

analytical modeling of the structural system. 

The weight density of the concrete is 23.5 kN/m3, Young’s modulus and Poisson’s ratio are 2.45

Fig. 5 Mode shapes (from the upper left ; No.1, 2, 3, 5, 7, 9, 10, 12, 14, 16, 18, 19)

Table 2 Statistical description of random variables 

Random variables Mean value C.O.V Distribution type

Compressive strength, x1 37.7 Mpa 0.14 Normal

Modal damping, ξ x2 0.05 0.15 Normal

K-T spectrum, ξg x3 0.6 0.4 Normal

f 
c

′
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× 104 Mpa and 0.17, respectively. The mean value of concrete compressive strength is 37.7Mpa and

the coefficient of variation is 0.14 with the Gaussian distribution. As for the steel, the Young’s

modulus and Poisson’s ratio are 1.96 × 105 Mpa and 0.3, respectively. The mean value of yield

strength is 480.2 Mpa and the coefficient of variation is 0.093 with the Gaussian distribution.

The three dominant random variables considered in the analysis are shown in tabulated form in

Table 2 and the other random variables are not included in the study. 

3.4. Response surface analysis

The seismic responses of containment are obtained from the response surface analysis. Three

variables as shown in Table 2 are chosen to incorporate the randomness of the design variables in

the response uncertainty. The response approximation used in this study is a second-order

polynomial type presented by Bucher, et al. (1987). It can be represented as
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Fig. 6 Selection of sampling points

Table 3 Sampling points for response surface method 

Random variable  (Mpa) ξ ξg

Center point S1 37.7 0.05 0.6

Axial points

S2 48.3 0.05 0.6

S3 27.1 0.05 0.6

S4 37.7 0.065 0.6

S5 37.7 0.035 0.6

S6 37.7 0.05 0.84

S7 37.7 0.05 0.36

f 
c
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where xi = ith random variables as shown in Table 2; and ao, ai, and aii = unknown coefficients to

be determined by solving a set of simultaneous equations. 

The minimum number of simultaneous equations to get the unknown coefficients is (2n+1) for n

random variables. Seven sampling points are evaluated at the center point of random variables and

at the axial points which are ± kσ apart from center point. The center point can be the best

estimated value (mean value) of random variable and s is the standard deviation of random variable.

The determination of k value to evaluate axial points has no restriction and 2 or 3 are recommended

for the good results.

The sampling points for response surface analysis are selected on the axis of random variables(see

Fig. 6) and shown in tabulated form in Table 3.

The random vibration analysis at each sampling point is performed for the peak ground

acceleration 0.2 g and the RMS of maximum seismic responses of the critical element, at which the

failure is expected to occur first in the containment are shown in tabulated form in Table 4. The

other load effects are assumed to be deterministic in nature and they don’t be included in the

random vibration analysis and in the response surface analysis. The results shown in Table 4 are

only due to an earthquake load. The critical elements (elements 1,16,17,32 in this study) are

assumed to be elements at the bottom layer in cylindrical wall, because the flexural mode is

considered to be dominant for the containment subjected to the lateral excitations as an earthquake

load. The RMS of maximum displacement in Table 4 is at the apex of the containment.

3.5. Maximum responses

The maximum structural response is one of the most important quantities in the analysis and

design of structures under earthquake excitations. Total displacements of the structure under cyclic

loading are divided into the elastic components and inelastic components. Generally, when the input

motion is stationary, Gaussian, narrow-band random process, the peak response (displacement)

distribution of linear system is Rayleigh. But it is reported that the peak response is Weibull-like

behavior, when the input is nonstionary, Gaussian random process (Shinozuka and Yang 1969). 

It has often been assumed that the strong shaking portion of typical earthquake accelerograms is

stationary and that the corresponding structural response is, as well. In this case, standard deviations

of responses are assumed to be constant with varying time.

Table 4 Results of random vibration analysis for each sampling point 

Sampling
points

RMS of concrete stress (Mpa)
RMS of steel stress 

(Mpa) RMS of
max. disp. (mm)

f11 f22 f12 f11

S1 0.16 0.98 0.044 7.25 3.80

S2 0.17 1.03 0.046 6.78 3.54

S3 0.15 0.91 0.042 8.01 4.25

S4 0.13 0.76 0.035 5.61 2.95

S5 0.23 1.39 0.063 10.31 5.40

S6 0.15 0.92 0.042 6.80 3.57

S7 0.16 0.98 0.045 7.23 3.79
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Let Ym be the absolute global maximum of Y(t) in the time interval (T1, T2), then the mean value,

μYm, and the standard deviation, σYm, of the absolute global maximum response follow as (Yang

1981).

μYm = (K + 0.5772 K1−α)σ (5)

σYm = 1.28σ/Kα−1 (6)

where α = 2.0 (Rayleigh distribution), K = [α ln[ωa(T2 – T1)/π]]1/α, ωa = the predominant frequency

of the power spectral density of Y(t). 

In this study, K  2.3 with (T2 – T1) = 10 sec, ωa = 4.29 Hz. 

The statistical measures of the maximum responses at the sampling points are calculated by virtue

of Eq. (5) and Eq.(6) and are shown in Table 5.

4. Reliability analysis of the containment

4.1. Limit state

For the reinforced concrete containment structures, the failure will occur when the reinforcing steels

begin to yield or the concretes at the extreme fiber of the containment wall cross-section begin to

crush. Thus the limit state condition can be expressed in terms of uniaxial strength as follows

(7)

(8)

where fs is the stress in the rebars, fy the yield stress of steel, fc the compressive concrete stress at

the extreme fibers, and  the compressive concrete strength.

But the strength of concrete under multiaxial stresses is generally a function of the state of stress

and cannot be predicted by limitations of simple tensile, compressive, and shearing stresses

independently of each other (Chen 1982). Therefore, the strength of concrete elements can be

properly determined only by considering the interaction of the various components of the state of

≅

f
s

f
y

≥

f
c

0.85 f 
c

′≥

f  
c

′

Table 5 Mean and standard deviation of maximum responses for each sampling point 

Sampling
points

Concrete stress (Mpa) Steel stress (Mpa) Max. of disp.
(mm)f11 f22 f12 f11

S1 0.42(0.082) 2.50(0.49) 0.11(0.023) 18.49(3.64) 9.69

S2 0.44(0.085) 2.62(0.52) 0.11(0.024) 17.30(3.40) 9.03

S3 0.39(0.076) 2.32(0.46) 0.11(0.022) 20.44(4.02) 10.84

S4 0.32(0.064) 1.93(0.38) 0.09(0.018) 14.31(2.81) 7.53

S5 0.59(0.117) 3.56(0.70) 0.16(0.031) 26.30(5.17) 13.78

S6 0.39(0.077) 2.35(0.46) 0.11(0.022) 17.35(3.41) 9.11

S7 0.41(0.081) 2.50(0.49) 0.11(0.023) 18.44(3.63) 9.67

*standard deviation in parentheses
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stress. A failure criterion of isotropic materials based upon state of stress must be an invariant

function of the state of stress, i.e., independent of the choice of the coordinate system by which

stress is defined. The Drucker-Prager failure criterion as a smooth approximation to the Mohr-

Coulomb failure surface or an extension of the von Mises failure surface is utilized to define the

limit state for concrete under combined states of stress. 

The Drucker-Prager failure surface, Fc is given by

(9)

where I1= fx + fy + fz, J2=[( fx−fy)
2+( fy−fz)

2+( fz−fx)
2]/6+fxy

2+fyz
2+fzx

2, and fx, fy, fz are axial normal

stresses and fxy, fyz, fzx are tangential stresses in the cartesian coordinate syetem, and δ is a constant,

which is chosen from the ratio of the ultimate stress reached in biaxial compression to the ultimate

stress reached in uniaxial compression, and λ is a hardening parameter.

In uniaxial compression, the first stress invariant I1 = , the second stress invariant J2 = 2/3,

where  is the uniaxial compressive strength and in biaxial compression, I1 =2 , J2 = 2/3,

where  is the biaxial compressive strength. The failure ratio, γbc= /  is the ratio of the

biaxial compressive strength to the uniaxial compressive strength and is assumed to be 1.15 in this

study. Therefore, failure surface Fc can be obtained as

Fc(I1, J2) = FL − FR = 0 (10)

where FL = − 0.07 I1, FR = 0.51 .

The limit state can be look upon as the simplest application where the failure criterion is

considered to contain just two variables: a load effect FL and a resistance FR, and the failure event is

specified by FL − FR≥ 0. In the reliability analysis, the load effect FL, dimensionally consistent with

FR can be approximated by the response surface method, which the method provides information on

the contribution to the response uncertainty from different sources of uncertainty.

4.2. Load effects

Loads acting on nuclear structures can generally be classified into load process models such as

permanent loads, sustained loads, and transient loads. For concrete containments, the ASME code

section III, division 2 defines explicit and precise load categories. For example, load generated by

the safe shutdown earthquake (SSE) is included in the extreme environmental load category. The

load combination (LC) of abnormal/extreme environmental category is as follows;

LC = 1.0D + 1.0L + 1.0F + 1.0Pa + 1.0Ta + 1.0Ess + 1.0Ra + 1.0Rr (11)

where, D=dead load, L=live load, F=prestress load, Pa=accidental pressure load, Ta=accidental

thermal load, Ess=safe shutdown earthquake load, Ra=pipe reactions from thermal conditions, and

Rr=local effects on the containment due to design basis accident.

Dealing only with D, L, F, Pa, Ta, and Ess for the time being, the meridional and hoop stresses of

concrete at the extreme fibers are shown in Table 6, where the plus sign means tension. The

concrete stresses in the critical element are assumed to govern the limit state in this study and the

steel stresses are neglected in performing the reliability analysis.
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The hoop and meridional maximum concrete stress in the cylindrical wall of containment

including D, L, F, P
a
, T

a
, and Ess, and the load effect FL are calculated at each sampling point. The

load effect FL can be expressed as Eq. (4) by virtue of response surface method and thus the

coefficients of response surface shown in Table 7 are used to calculate the first-order approximate

mean and variance of load effect, FL expressed as Taylor series. 

4.3. Limit state probabilities of failure

The probability of failure is computed by performing the first order second moment (FOSM)

reliability analysis. The reliability index, b of the limit state function by mean value FOSM method

Table 6 Maximum concrete stresses in the cylindrical wall

Loads Magnitude Stress(Mpa)

dead load 23.5 kN/m3 meridional fD −1.45

live load 0.005 Mpa meridional fL −0.052

prestress load 0.41 Mpa
meridional

fF
−5.11

hoop −10.21

accidental
internal pressure

0.41 Mpa
meridional

fP
+ 4.36

hoop + 8.81

accidental
temperature load

outside temp.: −18.9oC
accident temp. : 132.2oC

meridional
fT

−12.26

hoop −12.26

earthquake load 0.2 g, 5% non-exceedance
meridional

fE
−3.31

hoop −0.55

Table 7 Coefficients of response surface for random variables 

Approximation of response

Hoop 
direction

Meridional
direction

FL

fch fcm fch + fcm fcm

Sampling points

S1 14.21 17.82 7.18 9.04

S2 14.33 17.98 7.24 9.12

S3 14.27 17.59 7.12 8.92

S4 14.18 17.07 6.95 8.66

S5 14.54 19.22 7.66 9.75

S6 14.28 17.62 7.13 8.94

S7 14.31 17.82 7.19 9.04

Coefficients of 
response surface

a0 18.09 23.50 9.49 11.89

a1 -5.81E-02 4.22E-02 5.68E-03 2.30E-02

a2 -78.67 -216.11 -79.22 -109.67

a3 -1.83 1.67 0.29 0.83

a11 8.08E-04 -3.14E-05 0.0 -1.79E-04

a22 666.67 1444.44 555.56 733.33

a33 1.48 -1.74 -0.35 -0.87
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is as follows

(12)

where E[FR] = mean value of FR, E[FL] = mean value of FL, Var[FR] = variance of FR, Var[FL] =

variance of FL. 

Also, advanced FOSM method is utilized to search the most probable failure point (MPFP) and to

calculate the reliability index, β. Introduce the set of uncorrelated reduced variates, ui = (xi−μi)/σi

with the basic variables (x1, x2, …, xn), then the point on the failure surface, (u1
*, u2

*, …, un
*),

having the minimum distance to the origin may be determined by minimizing the function b,

subjected to the contstraint Fc(u)=0; that is,

Minimize   subjected to (13)

For this purpose, the iterative procedure is used as;

 

(14)

where, at u = uk

Searching the most probable failure point, (u1
*, u2

*, …, un
*), the minimum distance β is

(15)

The state of stress considered in this study is the biaxial stress, that is, the meridional stress and

the hoop stress at the bottom layer in the cylindrical wall.

The load effect FL is expressed as the polynomial type of random variable function,

(16)

Expanding FL in a Taylor series about the mean value , if the series is truncated at the linear

terms, the first-order approximate mean and variance of load effect are

(17)

(18)

The first-order approximate mean and variance of resistance are
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(20)

The reliability index, β of the limit state function by mean value FOSM method is

β =  4.317 (Pf = 3.58e-5) (21)

And the first-order approximations are evaluated at MPFP and the reliability index, β is calculated

by advanced FOSM as follows

β = 4.464 (Pf = 1.88e-5) (22)

When the only one axial stress is considered in the limit state, the load effect FL is expressed as

(23)

In the similar manner the reliability index can be calculated by mean value FOSM and advanced

FOSM.

The MPFP on the limit state function, reliability index, and the limit state probabilities of failure

are summarized in table 8. And when the only one axial stress such as the meridional stress, which

is larger than the hoop stress in the critical elements, is considered to calculate the limit state

probability of failure, the results are shown in Table 8.

It is seen that the reliability index for the case which the biaxial stress is included, is different

from that for the case which only the meridional stress is included, and the former is larger than the

latter when the state of stress is biaxial compression. This is consistent with the fact that the

maximum compressive strength increases for the biaxial compression state. It is expected that the

reliability index under biaxial compression-tension state will be smaller than under uniaxial

compression state, even though the hoop concrete stress rarely happens to be in tension because the

prestress force is introduced to resist the internal pressure load, which produces the tension stresses

in the meridional and hoop direction. In addition, the reliability index by AFOSM is obtained on the

MPFP of limit state and is larger than by mean value FOSM, and the MPFP moves from the mean

value point like as the resistance term decreases and the load effect term increases.

4.4. Uniaxial strength limit state

Even though the strength of concrete under multiaxial stresses cannot be properly predicted by

simple compressive stress, similar works on the simple limit state function are done to compare

with reliability analysis results from the Drucker-Prager failure criterion. The probability of failure

Var FR[ ] 7.23 Mpa=

FL 11.89 2.30e 2 x1 109.67 x2×–×– 0.83 x2× 1.79e 4 x1
2×–– 733.33 x2

2× 0.87 x3
2×–+ + +=

Table 8 Results of reliability analysis for the containment building

Considering stress Bi-axial stress included One axial stress included

Reliability method
MV FOSM AFOSM MV FOSM AFOSM

Mean MPFP Mean MPFP

Limit state
FR 19.23 14.20 19.23 17.98

FL 07.18 07.24 09.04 09.17

Reliability index, β 04.317 04.464 03.526 03.762

Probability of failure 3.58E-05 1.88E-05 7.97E-04 3.38E-04
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in the uniaxial strength limit state is computed by use of Eq. (8). Meridional stress ( fcm) larger than

hoop stress at the bottom layer of cylindrical wall is used to calculate the reliability index of limit

state function, that is fcm – 0.85  = 0.

The meridional concrete stress at the bottom of the cylindrical wall, fcm is also expressed as the

polynomial type of which coefficients are shown in Table 7,

(24)

The first-order approximate mean and variance of meridional concrete stress, fcm are

(25)

(26)

The first-order approximate mean and variance of resistance are

(27)

(28)

The reliability index, β of the limit state function by mean value FOSM method is

β = 2.880 (Pf = 6.31e-3) (29)

And the reliability index, b by advanced FOSM is

β = 3.144 (Pf = 2.85e-3) (30)

MPFPs of resistance and load effect are 21.26 Mpa and 18.07 Mpa respectively.

As seen from the above, the reliabilities based on the simple compressive strength limit state

differ greatly from results of the multiaxial strength limit state, especially from the case that biaxial

stress are included to calculate the limit state probability of failure. It should be emphasized that the

multiaxial failure criterion is a more likely limit state than the simple failure criterion to predict

concrete failure strength under combined state of stresses. 

5. Conclusions

A reliability analysis for the containment building subjected to earthquake load is performed under

various assumptions and idealizations. The numerical example is worked out by virtue of the

structural analysis considering random variables such as load, resistance and analysis method, the

limit state function of biaxial stress states, and the level II reliability methods. The structural

analysis includes the random vibration analysis to deal with the randomness of earthquake load and

the stochastic finite element analysis to get the information on the contribution to the response

uncertainty from different sources of uncertainty. The Drucker-Prager failure criterion is adopted to

define the limit state for concrete under combined states of stress, and the load effects in the limit

state are approximated on the most probable failure point by the response surface method. The

response surface approximation like as a polynomial type makes it easy to apply the reliability

f
c

′

f
cm

23.50 4.22e 2 x1 216.11 x2 1.67 x3×+× 3.14– e 5 x1
2× 1444.44 x2

2× 1.74 x3
2×––––×–+=

E  f
cm

[ ] a0 a
i
u
x

i

i 1=

3

∑ a
ii
u
x

2

i 1=

3

∑ 17.82 Mpa=+ +≅

Var  f
cm

[ ] Var x
i

[ ]
∂f

cm

∂x
i

---------
⎝ ⎠
⎛ ⎞

2

4.28 Mpa=

i 1=

3

∑≅

E 0.85f 
c

′[ ] 32.05 Mpa=

Var 0.85f 
c

′[ ] 20.13 Mpa=
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methods such as level II methods to the complicated limit state of structure. The reliability analysis

for the multiaxial strength limit state and the uniaxial strength limit state is performed and the

results are compared with each other. This study concludes that the multiaxial failure criterion is a

likely limit state to predict concrete failure strength under combined state of stresses and the

reliability analysis results are compatible with the fact that the maximum compressive strength of

concrete under biaxial compression state increases. But further research efforts investigating more

complex failure criterion are needed to overcome the shortcoming of the Drucker-Prager failure

criterion.
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