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1. Introduction 
 

Internal reinforcement by fiber reinforcement plastic or 

polymer (FRP) as an advanced polymer composite material 

has gained increasing popularity in the reinforced concrete 

building and civil/structural infrastructures during the last 

two decades. This popularity owes to the desired specific 

advantages such as light weight, high tensile strength, non-

corrosive, and nonmagnetic properties despite disadvantages 

such as higher initial cost compared with steel 

reinforcement and as a result a number of types of FRP bars 

are now commercially available (GangaRao et al. 2006). 

FRP bars are a competitive option for internal 

reinforcement in beams more than other types of members 

and known as FRP-reinforced concrete (FRP-RC) beams. 

Because of the mechanical differences between FRP and 

steel bars, FRP-RC beams show different performances 

under flexure and shear failure. Over the last two decades 

several researchers have conducted experimental and 

theoretical studies toward accurate investigation of shear 

strength and more specifically flexural strength of FRP-RC 

beams (Smith and Teng 2002). In parallel many design 

codes developed equations for safe design of FRP-RC 

beams such as: ACI 440.1R-06 (2007), CSA S6-06 (2006), 
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CSA S806-12 (2012), the Japan Society of Civil 

Engineering (JSCE) standard (1997), CNR DT-203/2006 

(2007), Hoult et al. (2008). 

Shear failure mode is as much as flexural failure 

importance because of its rapid progression (El-Chabib et 

al. 2005). Although shear resistance mechanisms of FRP-

RC beams with and without stirrups are mainly similar to 

the steel reinforcement case, the material differences 

between FRP and steel result in different shear resistance 

performances (Jnaid and Aboutaha 2013). Available design 

codes are essentially developed by modifications on the 

shear design equations of steel reinforced beams with the 

aim of minimizing these differences. However, there are 

differences between these equations which result in variable 

performances of safety. Many studies have been conducted 

recently to better evaluate the current design codes based on 

the databases obtained from available experimental 

literature. For example, Razaqpur and Spadea (2014), Oller 

et al. (2015) recently studied comprehensively the shear 

design problem of FRP-RC beams with and without 

stirrups, among many others (Hoque 2006, Sas et al. 2009, 

Bulut et al. 2011, Machial et al. 2012, Zhang et al. 2014, 

Chowdhury and Islam 2015, Liang et al. 2017). Based on 

the literature it is generally accepted that current shear 

design equations of FRP-RC beams are conservative and in 

some cases un-conservative. It should be noted that as much 

as accurate performance prediction of members is desired 

by engineers and on the other hand this can be more curious 

in the case of FRP bars because of its high cost than steel. 

Soft computing based techniques have emerged as more 

flexible, less assumption dependent and potentially self-

adaptive approaches to generate predictive models for 

problems which by their nature are inherently complex, 
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nonlinear and dynamic (See and Openshaw 1999). The 

shear strength capacity of FRP-RC members with and 

without stirrups is supplied by several mechanisms. 

Therefore, it can be an inherently complex, nonlinear and 

dynamic function of many influential mechanical and 

geometrical parameters. In this regards the use of soft 

computing based approaches in the shear strength capacity 

assessment of FRP-RC members is attracted attention in the 

recent years but not as much as other prediction problems of 

RC members (Kaveh et al. 2016, Kaveh et al. 2017). Nehdi 

et al. (2007) applied genetic algorithm for this problem with 

8 influential parameters for two cases of with and without 

stirrups using 100 and 68 data samples, respectively. 

Although a simple equation is developed but considering a 

semi-empirical equation was essential in their study. Kara 

(2011) addressed this problem for the case of without 

stirrups based on the gene expression programming (GEP) 

approach using 104 experimental data with 7 influential 

parameters. Mohammadi Golafshani et al. (2012) developed 

successfully artificial neural network and fuzzy logic based 

models using 179 different splice beam tests with six input 

variables. An explicit formulation is also available based on 

the developed model by GEP approach. Lee and Lee (2014) 

used artificial neural network (ANN) for this problem 

without stirrups using 110 test data with 6 influential 

parameters. ANN is also used by Bashir and Ashour (2012) 

for this problem. Nasrollahzadeh and Basiri (2014) solve 

this problem based on fuzzy inference system (FIS) using 

128 and 69 data samples with 8 influential parameters for 

two cases of without and with stirrups, respectively, and 

present FIS based formulations for each case. Mohammadi 

Golafshani et al. (2015) used artificial neural network and 

genetic programming to develop predictive models for the 

bond strength of the GFRP bars in concrete, based on 159 

experimental database with seven input variables. 

Shahnewaz et al. (2016) applied genetic algorithm in this 

problem with and without stirrups using 116 and 46 data 

samples, respectively, based on the different shear design 

equations proposed in FRP design guidelines. Very recently 

Mohammadi Golafshani and Ashour (2016) developed a 

new approach based on the biogeography-based 

programming (BBP) as an extension of Biogeography-

Based Optimization (BBO) to address this problem for the 

case of without stirrups using 138 experimental specimens 

with 6 influential parameters and presented an optimum 

equation. used This study investigates efficiency of the 

GMDH network with the aim of improving the prediction 

capability of soft computing based approaches in this 

problem. GMDH is a relatively unexplored network. In 

GMDH the most important input variables, number of 

layers, neurons in hidden layers and optimal model 

structure are determined automatically. The network is thus 

composed of active neurons that organize themselves. The 

GMDH network learns in an inductive way and tries to 

build a function (called a polynomial model) which would 

result in the minimum error between the predicted value 

and expected output (Srinivasan 2008). 

Recently gathered datasets: a set of 175 data samples by 
Razaqpur and Spadea (2014) and a set of 112 data samples 
by Oller et al. (2015) are used here which are more 
comprehensive than the data sets utilized in the previous 

studies as stated in the previous paragraph. The relative 
importance of significant parameters dealing with shear 
strength of FRP-reinforced members is also investigated 
through sensitivity analysis. The performance of proposed 
models evaluated by comparing against several codes of 
practice. Further evaluation also done based on comparison 
with an artificial neural network (ANN) model and an 
ANFIS based model developed in this study using the same 
databases. The accuracy of the developed models is 
evaluated by statistical error parameters. The results show 
that the GMDH outperforms other models and successfully 
can be used as a practical and effective tool for shear 
strength prediction of members without stirrups (R

2
=0.94) 

and with stirrups (R
2
=0.95). Furthermore, the relative 

importance and influence of input parameters in the 
prediction of shear capacity of reinforced concrete members 
is evaluated through parametric and sensitivity analyses. 

The remaining sections of this paper are organized as 

follows. In Section 2, GMDH algorithm is described in 

brief. Third section states to the data description, involved 

input parameters and modeling process for predicting shear 

capacity of FRP-RC members with and without stirrups. 

The GMDH model performance is evaluated against 

empirical approaches and other soft computing based 

approaches (ANFIS and ANN) in Section 4 and related 

results and discussions are made. Sensitivity and parametric 

analyses are also conducted in this section to evaluate the 

robustness of GMDH model in capturing the underlying 

physical behaviors of FRP-RC members. At the end, the 

paper is concluded in Section 5. 

 

 

2. Methodology 
 

Recently, Group Method of Data Handling (GMDH) has 

been used in a great variety of areas such as data mining 

and knowledge discovery, forecasting and systems 

modeling, optimization and pattern recognition (Amanifard 

et al. 2008, Madandoust et al. 2012, Najafzadeh et al. 

2015). It is originally designed and proposed by Ivakhnenko 

(1970) in the 1967s. The main advantage of GMDH method 

in comparison with ANN method as one of the most 

common data mining approaches is that the dependencies 

between input parameters and responses are represented in 

parametric form as an equation while these dependencies 

are hidden within neural network structures in ANN 

method. Besides that, ANN methods need an essential time 

of learning and therefore it is difficult to be applied for 

modeling and forecasting in real time system. The 

description of the GMDH network is outlined at the 

following. 

 
2.1 Principle of the GMDH network 
 

GMDH is a machine learning approach based on the 

polynomial theory of complex systems (Ivakhnenko and 

Ivakhnenko 2000). From this network, the most significant 

input parameters, number of layers, number of neurons used 

in middle layers, and optimal topology design of the 

network are defined automatically. Therefore, the GMDH 

network is included those of active neurons known as a self-
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organized model. The structure of GMDH network is 

configured thorough the training stage with polynomial 

model which produces the minimum error between the 

predicted value and observed output. The formal definition 

of the system identification problem is to find an 

approximate function  ̂ that can be used to predict the 

actual output y or a given input vector X=(x1, x2, x3, xn) as 

close as possible to the actual output y. Therefore, n 

observations of multi-input-single-output data pairs are 

considered as 

 1 2 3 ( =1,2,..., ), , ,...xi ini i i i My f x x x
 

(1) 

The general relationship between input and output 

variables can be expressed by a complicated discrete form 

of the Volterra function, a series in the form of 

0
1 1 1

1 1 1

...

n n n

i i ij i j
i i j

n n n

i jijk k
i j k

y w w x w x x

w x x x

  

  

   



 



 
(2) 

which is known as the Kolmogorov-Gabor polynomial 

(Najafzadeh et al. 2015). In the present study, a quadratic 

polynomial of the GMDH network is used that is written as 

0 1 2

2 2
53 4

ˆ:   i j

i j i j

Quadratic y w w x w x

w x x w x w x

   

 
 

(3) 

The weighting coefficients of Eq. (3) are calculated 

using regression techniques such that the difference 

between actual output (y) and the calculated value ( ̂) for 

each pair of xi and xj as input variables is minimized. In this 

way, the weighting coefficients of the quadratic function  ̂ 

are obtained to optimally fit the output to the whole set of 

input-output data pairs, which is defined as 

2
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 (4) 

In this study, the GMDH network is improved using a 

back propagation algorithm. This method includes two main 

steps: (1) the weighting coefficients of the quadratic 

polynomial are determined using the least squares method 

from the input layer to output layer in the form of a forward 

path; and (2) the weighting coefficients were updated using 

a back-propagation algorithm in a backward path. This 

procedure may be continued until the error of the training 

network (E) is minimized. 

 

 

3. Data set and modelling 
 

To develop the GMDH model, shear strength capacity of 

FRP-RC members with and without stirrups was considered 

to be a function of the following parameters 

, , , , , , , , ,

, ,

c F Fu F F Fw

Fw Fw Fuw
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f b d A f E A

V f d

E f
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
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  
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 (5) 

where V is the ultimate shear capacity, including self-weight 

(kN); fc is the average concrete cylinder compression 

strength (Mpa); a/d is the ratio of shear span to the effective 

depth; b is the cross section width (mm); d is the effective 

depth of the cross section (mm); AF and AFw are the area of 

longitudinal and transversal reinforcement, respectively 

(mm
2
); fFu and fFuw are the ultimate tensile strength of 

longitudinal and transversal reinforcement (Mpa), 

respectively; EF and EFw are the Young’s modulus of 

longitudinal and transversal reinforcement (Mpa), 

respectively; ρF and ρFw are the longitudinal and transversal 

reinforcement ratio (%), respectively. 

 
3.1 Data collection 
 

Compiling a comprehensive database is requisite in 

generating new predictive models. Razaqpur and Spadea 

(2014), Oller et al. (2015) recently studied comprehensively 

the shear design problem of FRP-RC beams for the cases: 

with and without stirrups; and with stirrups, respectively. In 

the first study a set of 175 data samples is collected for the 

case of without stirrups and in the latter a set of 112 data 

samples is gathered. In order to generate GMDH models 

these data samples are benefited here which are more 

comprehensive than used data sets in previous studies as 

reviewed in the introduction section. The mentioned 

databases include different amounts and types of FRP 

materials, different sizes of members, a wide range of 

concrete compressive strength and also a/d values. 

 

 

Table 1 Range of the employed parameters for model 

development 

Parameter  Min max Mean Standard deviation 

b (mm) 
With stirrups 135 450 222.46 73.12 

Without stirrups 89 1000 304.62 208.53 

d (mm) 
With stirrups 170 937 293.17 127.47 

Without stirrups 73 3000 351.22 526.38 

a/d 
With stirrups 1.19 7.53 2.56 0.97 

Without stirrups 1.12 16.22 4.12 2.16 

fc (Mpa) 
With stirrups 20 50 33.30 7.15 

Without stirrups 20 93 43.44 17.74 

AF (mm2) 

With stirrups 157 8608 1347.10 1383.60 

Without stirrups 60 8608 950.73 1246.80 

ρF (%) 

With stirrups 0.51 3.98 1.79 0.72 

Without stirrups 0.22 3.98 1.15 0.72 

EF (Mpa) 

With stirrups 29 137 65.18 24.69 

Without stirrups 29 148 70.97 41.30 

fFu (Mpa) 
With stirrups 397 2200 1119.7 345.53 

Without stirrups 397 2640 1084.40 560.16 

V (KN) 

With stirrups 20.5 599.30 184.25 110.06 

Without stirrups 9.8 291.5 67.78 55.62 

EFw (Mpa) 

ρFw(%) 

With stirrups 30 144 73.27 33.97 

With stirrups 0.04 1.50 0.52 0.45 

fFuw (Mpa) 

b (mm) 

With stirrups 322 2040 1056.1 368.91 

With stirrups 135 450 222.46 73.12 

d (mm) 
Without stirrups 89 1000 304.62 208.53 

With stirrups 170 937 293.17 127.47 
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The statistical parameters of the geometrical and 

mechanical properties of the specimens are presented in 

Table 1. From this table, it can be seen that the range of 

input parameters, for example, concrete compressive 

strength and a/d values is remarkably wide. Therefore, the 

derived model can be reliably used for different cases in 

these ranges. 

 
3.2 Data collection 
 
To develop new models for predicting shear strength 

capacity of both FRP-reinforced members with and without 
stirrups using GMDH algorithm, the available datasets are 
randomly divided into training and testing subsets. The 
training data are taken for the learning of the algorithm. 
Furthermore, in the training process, 10-fold cross 
validation technique is employed to avoid the overfitting 
problem. The testing datasets are used to specify the 
generalization capability of the models to a set of new data 
they did not train with. In the other words, the testing data 
are employed to measure the performance of the models 
obtained by GMDH algorithm when applied to dataset 
which played no role in building the models. Out of the 112 
data for FRP-reinforced members with stirrups, 90 data 
vectors (80%) are taken for the training process. The 
remaining 22 data (20%) were used for the testing of the 
models. For FRP-reinforced members without stirrups, 140 
data vectors are used to train the algorithm and the 
remaining 35 data are used to validate the developed model. 

Following data division, they are presented to the 

GMDH for model training. The GMDH returns the 

following selective polynomials for prediction of shear 

strength of members with stirrups as follows: 
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(6d) 

The developed GMDH models for prediction of the 

shear strength of members without stirrups are as follows: 
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4. Results and discussion 

 
Correlation coefficient (R), root mean square error 

(RMSE), coefficient of determination (R
2
), and BIAS as the 

prevalent prediction error indicators are used here. Their 

governing formulae are as follows (Kaveh et al. 2017) 
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 (11) 

where Oi is the measured value, Pi stands for prediction 

values; N is the number of data points, Om is the mean value 

for the observation and Pm is the mean value of prediction. 

In fact, the R parameter was chosen to show correlation 

between predicted and measured values. If the R value is 

more than 0.8, it shows that there is strong correlation 

between measured and predicted values (Smith 1986). 

However, R sometimes may not necessarily indicate better 

model performance due to the tendency of the model to 

deviate toward higher or lower values, particularly when the 

data range is very wide and most of the data are distributed 

about their mean. Consequently, the coefficient of 

determination, R
2
, was used because it can give unbiased  
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estimate and may be a better measure for model 

performance. In addition, BIAS and RMSE parameters 

should be at the minimum for having precise results (Kaveh 

et al. 2016). 

To further confirmation of the predictive performances 

of developed GMDH model, two well-known soft 

computing approaches including ANN and ANFIS are also 

developed in this study. To achieve this, two multi-layer 

perceptron (MLP) neural networks based on Levenberg-

Marquardt algorithm are developed to obtain the optimum 

structures for predicting shear strength of members with 

stirrups and without stirrups. Different number of hidden 

layers and different neurons in each hidden layer are 

applied to reach the best performance. The models with the 

best performances for both training and testing datasets are 

chosen as the predictive models. All simulations are done in 

the MATLAB programming language version R2012a. In 

this regard, the optimum topological structure obtained by 

MLP for members without stirrups is 10 input variables in 

an input layer, 5 neurons in hidden layer 1, and 3 neurons in 

hidden layer 2. The output layer is composed of V values 

predicted by ANN algorithm. For members with stirrups, 9 

input variables in input layer, 6 neurons in hidden layer 1, 

and 7 neurons in hidden layer 2 are obtained for the best 

model. 

To develop a predictive model for shear strength of FRP-

RC beams with and without stirrups based on the ANFIS 

algorithm, MATLAB programming language version 

R2012a is also employed. The Genfis2 function based on 

the subtractive clustering method is used to generate the FIS 

structure. The strategy for finding the best structure of 

 

Table 2 Performance of GMDH model in predicting shear 

strength for training and testing datasets 

Model Type subsets BIAS RMSE R R2 

G
M

D
H

 With 

stirrups 

Training 1.28×10-4 21.23 0.9770 0.9546 

Testing -0.0236 24.43 0.9705 0.9405 

Without 

stirrups 

Training -1.72×10-4 12.62 0.9738 0.9300 

Testing 0.0126 13.05 0.9645 0.9293 

A
N

N
 

With 

stirrups 

Training 0.0144 4.7263 0.9989 0.9978 

Testing 4.9088 50.0794 0.8815 0.7205 

Without 

stirrups 

Training 0.0385 7.4676 0.9912 0.9825 

Testing 1.3888 21.6965 0.9609 0.8228 

A
N

F
IS

 With 

stirrups 

Training 1.32×10-4 4.7936 0.9987 0.9975 

Testing -8.7570 53.5282 0.9052 0.7849 

Without 

stirrups 

Training -0.0049 0.8144 0.9989 0.9971 

Testing -2.4513 37.5175 0.8307 0.6328 

 

 

ANFIS is similar to the previous methods. At the first step, 

the member functions of the inputs are generated using 

subtractive clustering. Then a recursive least square method 

is used to tune the member function parameters. The 

number of member functions is gradually decreased by 

reducing the range of influence of cluster centers in a trial 

and error manner. 

The performance of GMDH model besides ANN and 

ANFIS based models for estimating shear strength capacity 

of FRP-reinforced members with stirrups and without 

stirrups in the training and testing sets are illustrated in Fig. 

1, which present the scatter between measured and 

predicted shear strength around the optimal line of equality. 

As shown, there is a little scatter around the optimal line  

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 1 Comparison between measured and predicted shear capacity V (KN) for training and testing dataset: (a) GMDH with 

stirrups; (b) GMDH without stirrups; (c) ANN with stirrups; (d) ANN without stirrups; (e) ANFIS with stirrups; and (f) 

ANFIS without stirrups 
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between predicted and measured values of shear strength in 

both training and testing sets. The similar performances of 

the GMDH models on the training and testing data indicate 

that they have both good predictive ability and 

generalization performances. 

The GMDH model performances are further confirmed 

analytically in Table 2, which contains four different 

performance measures including: R, R
2
, RMSE, and BIAS. It 

is demonstrated that the models perform well in both 

training and testing sets and the performance of GMDH 

model for training set is consistent with testing sets. 

To further evaluation of the GMDH models the results 

obtained for prediction of shear strength are compared with 

the traditional design equations and with other soft 

computing based techniques in the following first two 

subsections, respectively. Parametric analysis and 

sensitivity analysis are also conducted in the next two 

subsections to assess the influences of important parameters 

on shear strength and determining the most important 

predictive parameters. 

 
4.1 Performance comparison with design equations 
 
A comparative study was conducted to evaluate the 

performance of GMDH models against several codes of 

practice including ACI 440.1R-06 (440 2007), CSA S6-06 

(2006), CSA S806-12 (2012), the Japan Society of Civil 

Engineering (JSCE) standard (1997), CNR DT-203/2006 

(2007) and models by Deitz et al. (1999), Tureyen and 

Frosch (2003), Nehdi et al. (2007), Hoult et al. (2008). In 

order to measure the capability of the models, the 

mentioned four statistical error indicators are used. The 

prediction performance of different models for entire 

database is summarized in Table 3. Furthermore, Fig. 2 

visualizes the histogram plots of the ratio of the 

experimental to predicted shear strength values for the 

entire database for models predict the both cases with and 

without stirrups. For FRP-RC members with stirrup, 

 

 

predictions of ACI, CSA S806, CSA S6, JSCE, and Hoult et 

al. (Hoult et al. 2008) underestimate the shear capacity 

while predictions of CNR model overestimate the shear 

capacity. However, the performance of CSA S806 is more 

accurate than others in prediction of shear capacity of 

members with stirrups according to Fig. 2 and Table 3. 

According to Table 3, the developed GMDH for FRP-RC 

members with stirrups improved the RMSE and R
2
 values 

by 46% and 11.7%, respectively, in respect to CSA S806 

models, which is the most accurate model among other 

design equations.  

For FRP-RC members without stirrup, all models 

underestimate the shear strength except CNR model. The 

results of Hoult et al. (Hoult et al. 2008) and CSA S806 

models are more accurate than other design models. 

However, the developed GMDH model performances are 

remarkably more accurate than other models. 

According to the Table 3, the GMDH improved the 

RMSE and R
2
 values by 58% and 35%, respectively, in 

respect to the best models among the design codes (Hoult et 

al. 2008). As shown in the Fig. 2, the ratio between 

predicted shear by GMDH model and measured shear are 

mostly concentrated on value 1. It can be interpreted that 

the developed GMDH model has less uncertainty and 

higher level of accuracy than the mentioned design 

methods. 

 
4.2 Parametric analysis 
 
Parametric analysis of the developed models is carried 

out with the aim to deeper understand of the shear strength 

of reinforced concrete with and without stirrups. The 

parametric analysis investigates the response of the 

predicted shear strength based on the GMDH model to a set 

of hypothetical input data generated over the ranges of the 

minimum and maximum data used for the model training. 

The methodology is based on the change of only one input 

variable at a time while the other variables are kept constant  

Table 3 Performance of various methods for prediction of shear capacity 

Model  BIAS RMSE R R2 

Deitz et al. (1999) Without stirrups 9.6053 53.4496 0.6655 0.0714 

Tureyen and Frosch (2003) Without stirrups 21.2499 48.5423 0.8923 0.2341 

Nehdi et al. (2007) With stirrups -14.5129 49.9430 0.8858 0.7489 

Hoult et al. (2008) 
With stirrups -104.7465 125.3379 0.8757 -0.3120 

Without stirrups -16.5428 30.5144 0.8964 0.6973 

CSA S6 (2006) 
With stirrups -114.6302 135.2815 0.9053 -0.5285 

Without stirrups -24.4146 37.6559 0.8759 0.5390 

ACI (2007) 
With stirrups -34.7581 84.1493 0.7574 0.4086 

Without stirrups -30.5228 42.9928 0.8640 0.3992 

JSCE (1997) 
With stirrups -115.3977 138.0292 0.8682 -0.5912 

Without stirrups -23.2551 36.0670 0.8837 0.5772 

CNR (2007) 
With stirrups 59.3698 97.3723 0.8660 0.2081 

Without stirrups 9.5247 38.1315 0.8209 0.5274 

CSA S806 (2012) 
With stirrups -19.6729 41.7546 0.9414 0.8544 

Without stirrups -4.0633 32.31 0.8198 0.6606 

GMDH model (present study) 
With stirrups 1.25×10-10 21.23 0.9770 0.9546 

Without stirrups -9.14×10-10 12.62 0.9738 0.9482 
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at the average values of their entire data sets. A set of 

synthetic data for the single varied parameter is generated 

by increasing the value in increments. These inputs are 

presented to the prediction equation and the shear strength 

is calculated. This procedure is repeated using another 

variable until the model response is tested for all input 

variables. The robustness of the GMDH models is 

determined by examining how well the predicted shear 

strength values agree with the underlying physical behavior 

of the shear capacity of RC members. Fig. 3 illustrates the 

 

 

 

tendency of the shear strength prediction of reinforced 

members with stirrups and without stirrups to the variations 

of the main design parameters including reinforcement 

ratio, shear span to depth ratio and concrete compressive 

strength. 

From Fig. 3(a), it can be seen that shear strength 

decreases due to increasing shear span to depth ratio for 

both reinforced members with stirrups and without stirrups. 

It is also well-known that the failure mode is changed from 

shear comparison to diagonal tension for a/d=2.5. 

   

 

  

 

 

  

 

Fig. 2 Histogram of the measured/predicted shear strength values using different models 

   
(a) (b) (c) 

Fig. 3 Shear strength parametric analysis in the GMDH-based model for different ranges of: (a) shear span to depth ratio; (b) 

longitudinal reinforcement ratio; and (c) transversal reinforcement ratio 
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According to Fig. 3(a), this mechanism has been captured 

by the GMDH model for both members with stirrups and 

without stirrups. In general, the shear strength of members 

with stirrups are more than the members without stirrups 

and the discrepancy between the amounts of shear strength 

for both members increases due to increasing the shear span 

to depth ratio. These results from parametric analysis are 

also in good agreement with structural engineering senses.  

In Fig. 3(b), the variation of shear strength capacity with 

longitudinal reinforcement ratio (ρF) for both FRP-

reinforced members with stirrups and without stirrups is 

shown. It can be observed that shear strength capacity 

increases due to increasing the longitudinal reinforcement. 

In general, shear strength in members without stirrups 

withstands with the shear of concrete and shear strength of 

longitudinal FRP. It can be expected that increasing of 

longitudinal reinforcement ratio leads to increase of shear 

strength capacity. The GMDH model correctly captured this 

effect of longitudinal reinforcement ratio on shear strength. 

For FRP-reinforced members with stirrups, the shear 

strength withstands with three components: shear of 

concrete, axial strength of stirrup and shear strength of 

longitudinal FRP. According to Fig. 3(b), the shear strength 

capacity of these members increases due to increasing 

longitudinal reinforcement ratio which is consistent with 

previous studies. 

To consider the effect of transverse reinforcement ratio 

on shear strength in GMDH model, the tendency of the 
shear strength predictions to variations of transverse 
reinforcement ratio (ρFW) is illustrated in Fig. 3(c). It can be 
seen that shear strength is notably more sensitive to change 
of ρFW than changes of a/d and ρF. It has also been 
concluded in the literature that the shear strength in these 

members is mainly controlled by axial strength of stirrups 
(Ramirez et al. 1998, Campana et al. 2013). In Fig. 3(c), the 
effect of compressive strength (fc) on shear strength is also 
depicted. As shown, the shear strength of FRP-reinforced 
members increases due to increasing fc. These extracted 
results of GMDH model are also consistent with previous 

experiments and studies in the literature (Ramirez et al. 
1998, Campana et al. 2013). 

 
4.3 Sensitivity analysis 
 
To determine the importance of each input variable on 

the shear strength of reinforced members with and without 

stirrups, the sensitivity analysis is performed. The analysis 

is conducted such that, one parameter of predictive 

variables is eliminated one by one to observe how the 

statistical error parameters of the developed GMDH 

network predictions is changed. Tables 4 and 5 present the 

sensitivity analysis of GMDH network for reinforced 

members with and without stirrups, respectively. Parameters 

L and h in these tables are span length and overall depth of 

cross section, respectively. In case of members with 

stirrups, results of sensitivity analysis show that the ρFW 

(R
2
=0.86, RMSE=36.90, and MSE=13.64) is the most 

effective parameter on the shear strength whereas the fFuw 

(R
2
=0.95, RMSE=21.33, MSE=450.77) has the least 

influence on shear strength modeled by the GMDH. The 

other effective parameters on shear strength are a/d, d, b, fc, 

Table 4 Sensitivity analysis of the governing parameters for 

reinforced members with stirrups 

Model with stirrup MSE RMSE RRMSE R2 

Model in absence of b 878.1830 29.6452 0.2974 0.9116 

Model in absence of ρFW 1362.2 36.9078 0.3703 0.8629 

Model in absence of fc 712.5966 26.6945 0.2679 0.9283 

Model in absence of ρF 670.8496 25.9008 0.2599 0.9325 

Model in absence of EF 626.1115 25.0222 0.2511 0.9370 

Model in absence of a/d 1240.8 35.2250 0.3535 0.8751 

Model in absence of EFW 638.1424 25.2615 0.2535 0.9358 

Model in absence of fFuw 450.7797 21.2316 0.2130 0.9546 

Model in absence of d 1043.7 32.3068 0.3242 0.8949 

 

Table 5 Sensitivity analysis of the governing parameters for 

reinforced members without stirrups 

Model without stirrups MSE RMSE RRMSE R2 

Model in absence of ρF 329.4017 18.1494 0.3272 0.8929 

Model in absence of h 159.3090 12.6218 0.2276 0.9482 

Model in absence of d 162.4776 12.7467 0.2298 0.9472 

Model in absence of L 162.1723 12.7347 0.2296 0.9473 

Model in absence of a/d 443.6473 21.0629 0.3797 0.8558 

Model in absence of fc 162.4776 12.7467 0.2298 0.9472 

Model in absence of b 289.0096 17.0003 0.3065 0.9061 

Model in absence of AF 168.0521 12.9635 0.2337 0.9454 

Model in absence of EF 234.7373 15.3211 0.2762 0.9237 

Model in absence of fFu 162.3883 12.7432 0.2297 0.9472 

 

 

ρF, EF, and EFW ranked from higher to lower values, 

respectively. It should be mentioned that the contributions 

of d, ρFW and a/d are remarkably more than other 

parameters. Based on the Table 5, for members without 

stirrups, results of sensitivity analysis indicated that the a/d 

(R
2
=0.85, RMSE=21.06, MSE=443.64) is the most effective 

parameter on the shear strength whereas the h (R
2
=159.30, 

RMSE=12.62, MSE=443.64) has the least influence on 

shear strength for the GMDH model. The other effective 

parameters on shear strength were ρF, b, EF, AF, d, fFu, fc, 

and L ranked from higher to lower values, respectively. It 

should be noted that results show that the a/d and ρF were 

the most important parameters whereas the other parameters 

had marginally effects on the prediction of shear strength. 

To obtain new contribution of this study, effects of the 

GMDH output model and the output of the most common 

empirical equations on the variations of a/d, fc, ρF, and ρFW 

are investigated. In this way, the discrepancy ratio (DR), 

known as the ratio between predicted and measured values, 

is employed to quantify the sensitivity of the proposed 

models to input parameters. DR value of 1 show a perfect 

agreement, while values greater (or smaller) than 1 indicate 

overestimation (or underestimation) of the shear strength. 

Fig. 4 depicts variations of DR values versus the a/d, fc, 

ρF, ρFW parameters for GMDH and three empirical models 

(which had the more accuracy than other models according 

to the Table 3) for FRP-reinforced members with stirrups. 

As it is shown, errors of CSA S6 and Hoult et al. (Hoult, 

Sherwood et al. (2008)) models are remarkably sensitive to 

change of mentioned parameters. It can be interpreted that  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 Variation of discrepancy ratio (DR) between 

predicted and measured shear strength of reinforced 

members with stirrups with (a) a/d; (b) fc; (c) ρf; and (d) ρt 

 

 

the mentioned models did not correctly incorporate 

predictive parameters in their models. In general, for having 

a good performance, model errors should be independent of 

the input parameters or less sensitive to them (Sahay and 

Dutta (2009)). The CSA S806 and GMDH errors are less 

sensitive to change of input parameters than other models. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Variation of discrepancy ratio (DR) between 

predicted and measured shear strength of reinforced members 

without stirrups with (a) a/d; (b) fc; (c) ρf and (d) fFu 

 

 

However, the CSA S806 errors also slightly show tendency 

to change of predictive parameters. As shown in Fig. 4, the 

GMDH errors in prediction of shear strength are completely 

independent of predictive parameters. 

In Fig. 5, the variation of DR values with predictive 

parameters such as a/d, fc, ρF, and fFU for reinforced 
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members without stirrups for different approaches are 

presented. From this figure, it can be seen that the scattering 

of JSCE and Hoult et al. (Hoult et al. 2008) are notable. 

These scattering are increased especially with variation of 

longitudinal reinforcement ratio (ρF). It can be interpreted 

that this predictive parameter is not incorporated 

appropriately in the mentioned models. As shown, the CSA 

S806 and GMDH model show less sensitivity to variation 

of predictive parameters. However, the GMDH model 

shows the better performance than CSA S806 in this aspect 

and its errors are completely independent of predictive 

parameters, especially longitudinal reinforcement ratio. 

 
 

5. Conclusions 
 

The GMDH network is utilized as a new alternative 

approach to formulate shear strength capacity of FRP-RC 

members with and without stirrups. Comprehensive datasets 

from literature were employed to develop the models for 

both reinforced members with stirrups and without stirrups. 

Effective parameters on shear strength including the 

effective depth, shear span-to-depth ratio, modulus of 

elasticity and ratio of the FRP longitudinal and transversal 

reinforcement, and compressive concrete strength were 

considered in modeling process. The proposed GMDH 

models give reliable estimation of the shear capacity of 

FRP-reinforced members. The GMDH models also 

produced better outcome than several codes of practice, i.e., 

ACI, CSA S806, CSA S6, CNR, JSCE, and Hoult et al. 

model. The developed GMDH for FRP-RC members 

without stirrups improved the RMSE and R2 values by 58% 

and 35%, respectively, in respect to the best models among 

the mentioned design codes. In case of FRP-RC members 

with stirrups, the developed GMDH improved the RMSE 

and R
2
 values by 46% and 11.7%, respectively, in respect to 

CSA S806 models, which was the most accurate model 

among the other design equations. To further confirmation 

of the predictive performances of developed GMDH model, 

two well-known soft computing approaches including ANN 

and ANFIS are also developed in this study. The results 

show comparative performance of the GMDH network.  

The relative importance of input parameters in the 

prediction of shear capacity is evaluated through sensitivity 

analysis. It is found that the shear span to depth ratio and 

longitudinal reinforcement ratio was the most important 

predictive parameters in prediction of shear strength of 

reinforced members without stirrups. In case of members 

with stirrups, the effective depth, the transverse 

reinforcement ratio, and shear span to depth ratio were the 

most effective parameters in prediction of shear capacity. In 

general, the results of sensitivity and parametric analyses 

indicate that the GMDH model is capable of capturing the 

underlying physical behavior of the shear strength of FRP-

RC members. 
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