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1. Introduction 
 

Nanofluids have novel properties that make them 

potentially useful in many applications in heat transfer, 

including microelectronics, fuel cells, pharmaceutical 

processes, and hybrid-powered engines, engine 

cooling/vehicle thermal management, domestic refrigerator, 

chiller, heat exchanger, in grinding, machining and in boiler 

flue gas temperature reduction. They exhibit enhanced 

thermal conductivity and the convective heat transfer 

coefficient compared to the base fluid. Knowledge of the 

rheological behaviour of nanofluids is found to be critical in 

deciding their suitability for convective heat transfer 

applications. Nanofluids also have special acoustical 

properties and in ultrasonic fields display additional shear-

wave reconversion of an incident compressional wave; the 

effect becomes more pronounced as concentration 

increases.  

Pipes conveying fluid are of considerable interest in 

many fields such as oil and gas pipelines, pump discharge 

lines, propellant lines, reactor system components and so 

forth. However, the fluid-induced dynamics analysis of 

pipes is studied by researchers. Most of the studies in this 

field are reviewed by Paidoussis (1993) and Amabili 

(2008). Toorani and Lakis (2001) studied dynamic analysis 

of anisotropic cylindrical shells containing flowing fluid. 

Zhang et al. (2001) used a method for the dynamic analysis 

of initially tensioned orthotropic thin-walled cylindrical 

tubes conveying steady fluid flow, based on Sanders' non-

linear theory of thin shells and the classical potential flow 

theory. A coupled formulation based on the semi-analytical 

finite element technique was developed by Jayaraj et al. 
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(2002) for composite shells conveying fluid. A linear 

analysis of the vibratory behaviour of initially tensioned 

orthotropic circular cylindrical shells conveying a 

compressible inviscid fluid was presented by Zhang et al. 

(2002). A coupled fluid structure interaction problem was 

analyzed by Kadoli and Ganesan (2003) using semi-

analytical finite element method involving composite 

cylindrical shells conveying hot fluid for free vibration and 

buckling behavior. The stability and parametric resonances 

of supported pipes conveying pulsating fluid were studied 

by Song and Zhang (2001) via numerical methods. The 

stability and chaotic motions of a standing pipe conveying 

fluid was studied by Wang and Ni (2006) based on 

numerical calculations, bifurcation diagram, time trace and 

phase portrait of the oscillations. The post-divergence 

behaviour of extensible fluid-conveying pipes supported at 

both ends was studied by Modarres-Sadeghi and Païdoussis 

(2009) using the weakly nonlinear equations of motion of 

Semler, Li and Païdoussis. The investigation of the three-

dimensional nonlinear dynamics of a fluid-conveying pipe 

undergoing overall motions was carried out by Meng et al. 

(2011). The differential transformation method (DTM), was 

generalized by Ni et al. (2011) to analyze the free vibration 

problem of pipes conveying fluid with several typical 

boundary conditions. The application of transfer matrix 

method (TMM) to the vibration analysis of three-

dimensional (3D) pipelines conveying fluid was performed 

by Dai et al. (2012). A fully three-dimensional, 

geometrically exact theory for flexible tubes conveying 

fluid was derived by Gay-Balmaz and Putkaradze (2015). 

Nonlinear equations of three-dimensional motion were 

established by Zhang et al. (2016) for fluid-conveying pipes 

with general boundary conditions. The effect of aspect ratio 

of length to diameter on the dynamic response of a fluid-

conveying pipe was studied by Gu et al. (2016) using the 

Timoshenko beam model. Vibration and stability of  
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Fig. 1 A concrete pipe conveying fluid mixed by AL2O3 

nanoparticles 

 

 

concrete pipes reinforced with carbon nanotubes (CNTs) 

and Fe2O3 nanoparticles conveying fluid were presented by 

Zamani Nouri (2017, 2018). 

In this paper, vibration and stability of concrete pipes 

conveying nanofluid is presented based on classical shell 

model. hTe force of the fluid is calculated by Navier-Stokes 

equation. Applying exact solution, the frequency and 

critical fluid velocity are obtained and the effects of the 

fluid velocity, volume percent of nanoparticle in fluid and 

geometrical parameters of the pipe are considered.  

 

 

2. Mathematical modeling 
 

As shown in Fig. 1, a concrete pipe with length of L, 

radius of R and thickness of h is considered. The pipe is 

conveying fluid which is mixed by AL2O3 nanoparticles.  

Based on the classical shell theory, the displacement 

field can be written as (Reddy 1984) 
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where (u,v,w) denote the displacement components at an 

arbitrary point (x,θ,z) in the concrete pipe, The strain-

displacement relations can be expressed as 
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(2) 

The stress-strain relation of the structure is 
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(3) 

Noted that Cij (i,j=1,2,…,6) are elastic constants. The 

strain energy of the structure can be written as 
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(4) 

where the stress resultants can be defined as 
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The kinetic energy of the concrete pipe may be written 

as 
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The external work due to the internal fluid can be 

obtained from 

  .Fluid

A

W P wdA   
(8) 

where PFluid can be obtained from the Navier-Stokes 

equation as (Zamani Nouri 2018) 
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where the effective viscosity (μμeff
) and density (ρμeff

) of the 

fluid-nanoparticle may be calculated from mixture law as 

follows 
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where ρn, ρf, μn, μf
 
and ϕ

 
are nanoparticle density, fluid 

density, nanoparticle viscosity, fluid viscosity and volume 

fraction of nanoparticle in the fluid respectively. 

The governing equations can be derived by Hamilton's 

principal as follows 

0
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Substituting Eqs. (4), (7) and (8) into Eq. (12) yields the 

following motion equations 
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(15) 

 

 

3. Solution method 
 

Based on Navier method, the dynamic amplitudes can 

be written for simply supported boundary conditions as 
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(16) 

where ω represents vibration frequency of the pipe, m and n 

are half axial and circumferential wave numbers, 

respectively. Substituting Eq. (16) f into motion equations 

yields 

       2 0,K d C M   

 
(17) 

where [K], [C]
 

and
 

[M]
 

are stiffness, damp and mass 

matrixes, respectively; [d]=[A1,A2,A3] is the dynamic vector. 

However, the critical fluid velocity and frequency can be 

obtained from Eq. (17). 

 

 

4. Numerical results and discussion 
 

A concrete pipe with length to radius ratio L/R=4 and 
thickness to radius ratio h/R=0.03 is considered with 

Young's modulus of E=20 GPa and Poisson’s ratios of 

v=0.3.  

To the best author’s knowledge, no similar publications 

for vibration and instability of concrete pipes cannot found 

directly. However, the present work could be partially 

validated based on a simplified analysis suggested by Loy 

et al. (1997), Qu et al. (2013), Zhang et al. (2001b), Tang et 

al. (2016). However, vibration of simply supported classical 
cylindrical shells is investigated where the nonlinear 

Table 1 Validation of present work 

n 
Loy et al. 

(1997) 

Qu et al. 

(2013) 

Zhang et al. 

(2001) 

Tang et al. 

(2016) 
Present 

1 0.016101 0.016103 0.016101 0.016101 0.016234 

2 0.009388 0.009382 0.009382 0.011225 0.011713 

3 0.022108 0.022105 0.022105 0.022310 0.024902 

4 0.042097 0.042095 0.042095 0.042139 0.044934 

5 0.068008 0.068008 0.068008 0.068024 0.070855 

6 0.099730 0.099730 0.099731 0.099738 0.102593 

7 0.0137239 0.137239 0.0137240 0.137240 0.140108 

8 0.180527 0.180528 0.180527 0.180530 0.183402 

9 0.229594 0.229594 0.229596 0.229596 0.232472 

10 0.284435 0.284436 0.284438 0.284439 0.287318 

 

 

Fig. 2 The effect of nanoparticles volume percent on the 

frequency of structure 

 

 

terms in motion equations, fluid and nanoparticles are 

ignored. The structure parameters of the classical shell 

assumed as h/R=0.01, L/R=20, E=210 GPa, v=0.3, ρ=7850 

Kg/m
3
. A non-dimensional frequency is defined as. Table 3 

illustrates the frequency of pipe for classical theory. As can 

be seen, the obtained results are close to those expressed in 

Loy et al. (1997), Qu et al. (2013), Zhang et al. (2001b), 

Tang et al. (2016), indicating validation of our work.  

Figs. 2 and 3 show the variation of imaginary and real 

parts of dimensionless eigenvalues ( /E   ) for the 

different values of nanoparticles volume percent versus 

dimensionless fluid velocity ( / ,xV E v ).As can be 

seen, Im(Ω)
 
decreases with increasing V, while the Re(Ω) 

remains zero. These imply that the system is stable. When 

the natural frequency becomes zero, critical velocity is 

reached, which the system loses its stability due to the 

divergence via a pitchfork bifurcation. Hence, the Eigen 

frequencies have the positive real parts, which the system 

becomes unstable. In this state, both real and imaginary 

parts of frequency become zero at the same point. 

Therefore, with increasing flow velocity, system stability 

decreases and became susceptible to buckling. As it can be 

seen, the non-dimensional frequency and critical fluid 

velocity increases with increasing the volume percent of 

nanoparticles.  
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Fig. 3 The effect of nanoparticles volume percent on the 

damping of structure 

 

 

Fig. 4 The effect of fluid viscosity on the frequency of 

structure 

 

 

Fig. 5 The effect of fluid viscosity on the damping of 

structure 

 

 

The effect of the fluid viscosity on the dimensionless 

frequency and damping of the concrete pipe with respect to 

dimensionless flow velocity is shown in Figs. 4 and 5. It is 

observed that considering fluid viscosity, the dimensionless 

frequency and critical fluid velocity decreases.  

 

Fig. 6 The effect of length to thickness ratio on the 

frequency of structure 

 

 

Fig. 7 The effect of length to thickness ratio on the damping 

of structure 

 

 

Fig. 8 The effect of thickness to radius ratio on the 

frequency of structure 

 

 

Figs. 6 and 7 present the dimensionless frequency and 

damping of the structure versus dimensionless flow velocity 

for different length to thickness ratio of the pipe. It can be 

seen that the dimensionless frequency and critical fluid 

velocity of the pipe decreases with increasing the length to  
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Fig. 9 The effect of thickness to radius ratio on the damping 

of structure 

 

 

thickness ratio of the pipe. Figs. 8 and 9 present the 

dimensionless frequency and damping of the structure 

versus dimensionless flow velocity for different thickness to 

radius ratio of the pipe. As can be seen, with increasing the 

thickness to radius ratio of the pipe, the dimensionless 

frequency and critical fluid velocity increases. It is since 

with increasing the length to thickness ratio of the pipe and 

decreasing the thickness to radius ratio of the pipe, the 

stiffness decreases.  

 

 

5. Conclusions 
 

In this paper, vibration and stability of concrete pipe 

conveying nanofluid was presented. The force of the fluid 

was calculated by Navier-Stokes equation. Based on 

classical shell model, energy method and Hamilton's 

principle, the motion equations were derived. Applying 

exact solution, the frequency and critical fluid velocity of 

the structure were obtained and the effects of volume 

percent of nanoparticles, fluid velocity and viscosity as well 

as geometrical parameters of the pipes were considered. 

Results show that with increasing flow velocity, system 

stability decreases and became susceptible to buckling. The 

non-dimensional frequency and critical fluid velocity 

increases with increasing the volume percent of 

nanoparticles. It was observed that considering fluid 

viscosity, the dimensionless frequency and critical fluid 

velocity decreases. It can be seen that the dimensionless 

frequency and critical fluid velocity of the pipe decreases 

with increasing the length to thickness ratio of the pipe. In 

addition, with increasing the thickness to radius ratio of the 

pipe, the dimensionless frequency and critical fluid velocity 

increases.  
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